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Abstract: In this paper, we study the WYL conjugate gradient method for unconstrained

optimization problems. By making use of the modified iterative scheme, the sufficient descent con-

ditions are satisfied at each iteration independent of the line search used. Also, by removing the

original restriction on the parameter of the Wolfe conditions, we establish the strongly global con-

vergence property for the general function. Numerical results illustrate that our method is efficient

for the test problems.
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1 Introduction

Consider the following unconstrained optimization problem

min f(x), (1.1)

where f : Rn → R is a smooth and nonlinear function, and its gradient gk = ∇f(xk) is
available. The conjugate gradient (CG) methods represent an important class of uncon-
strained optimization algorithms with strong local and global convergence properties and
modest memory requirements.
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The iterative formula of the CG method is given by

xk+1 = xk + sk, sk = αkdk. (1.2)

In (1.2), dk is a search direction updated by

dk =

{
−gk, k = 1,

−gk + βkdk−1, k ≥ 2,
(1.3)

and the steplength αk > 0 is commonly chosen to satisfy certain line search conditions.
Among them, the so-called Wolfe conditions have attracted special attention in the conver-
gence analyses and the implementations of CG methods, requiring that

f(xk + αkdk)− f(xk) ≤ ραkg
T
k dk, (1.4)

g (xk + αkdk)
T

dk ≥ σgT
k dk, (1.5)

where 0 < ρ < σ < 1 are often imposed on the line search.
The well-known formulas βk are Fletcher-Reeves, Hestenes–Stiefel, Polak-Ribière-Polyak

and Dai-Yuan formulas, which are specified by

βFR
k =

‖gk‖2

‖gk−1‖2
, βHS

k =
gT

k (gk − gk−1)
dT

k−1yk−1

,

βPRP
k =

gT
k (gk − gk−1)
‖gk−1‖2

, βDY
k =

‖gk‖2

dT
k−1yk−1

, (1.6)

where yk−1 = gk − gk−1. Please refer to [1] for more details of their convergence properties.
Little is known concerning global convergence of the HS method for nonconvex mini-

mization problems. However, the HS method, which resembles the PRP method in practical
computation and is often recommended due to its superior numerical properties.

Recently, various modifications of the HS method received growing interests, in which
sufficient descent condition is important in the convergence analysis of CG method.

Hager and Zhang [2] proposed the CG DESCENT method and proved its convergence
with the Wolfe search. Based on the MBFGS method [3], Zhang [4] and Dai [5] introduced
modified HZ methods with the Armijo search for nonconvex objective functions. Zhang, Zhou
and Li [6] proposed a three·term modified PRP method, in which the property−dT

k gk = ‖gk‖2

always holds without any line searches. To seek the CG direction that is closest to the
direction of the scaled memoryless BFGS method, Dai and Kou [7] proposed a family of
CGOPT methods. Yu et al. [8, 9] proposed several modified spectral CG methods. For
further study on the some recent advances, we may refer to [10–15].

In this paper, we will continue to study the HS-type method. One feature of our method
is that our method guarantee sufficient descent condition and strongly global convergence.

The rest of this paper is organized as follows. In the next section, the new method is
presented formally. Meanwhile, we prove the proposed method possesses sufficient descent
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and strongly global convergence properties with the Wolfe line search. In Section 4, we
report numerical comparisons with existing methods by using some test problems.

2 A New CG Method and Its Properties

Recently, Wei, Yao and Huang [16] proposed the MHS, WYL and MLS methods, in
which the parameters βk are given by

βMHS
k =

gT
k yk−1

dT
k−1yk−1

, βWY L
k =

gT
k yk−1

||gk−1||2 , βMLS
k = − gT

k yk−1

dT
k−1gk−1

, (2.1)

where yk−1 = gk − ‖gk‖
‖gk−1‖gk−1.

The global convergence of these methods with the strong Wolfe line search was proved for

cases that the parameter σ in (1.5) is constrained to σ ∈
[
0,

1
3

]
, σ ∈

[
0,

1
4

]
and σ ∈

[
0,

1
4

]
,

respectively. Furthermore, with the same restriction on the parameter σ, these methods
above possessed the sufficient descent condition.

The above discussion prompts naturally us to raise the following question:
Is it possible to modify the direction of the MHS method in a suitable way, thereby

enlarging its sufficient descent properties and ensuring the global convergence for the general
functions?

By taking the theoretical advantage of the MHS method into consideration, we give an-
other method to guarantee sufficient descent condition, in which strongly global convergence
is satisfied. With our choices, the additional restriction on the parameter σ in (1.5) can be
removed. The direction dk in our method is given by

dDHS
k =

{
−gk, dT

k−1yk−1 ≤ ε1‖yk−1||||dk−1||,
−gk + βDHS

k dk−1 + ϕkgk−1, dT
k−1yk−1 > ε1‖yk−1||||dk−1||,

(2.2)

where ε1 > 0 is a constant.
In (2.2), the parameters βDHS

k and ϕk are chosen as

βDHS
k =

gT
k

(
gk − ‖gk‖

‖gk−1‖gk−1

)

max{dT
k−1yk−1, λ|dT

k−1gk|} , (2.3)

ϕk =
gT

k dk−1

max{dT
k−1yk−1, λ|dT

k−1gk|} ·
‖gk‖
‖gk−1‖ , (2.4)

where λ > 1 and ε1 > 0 are two given constants.
For convenience, we call our method (2.2) as DHS method in later part of this paper

and formally state the steps of this method as follows.
Algorithm 2.1 (DHS method)
Step 1 Choosing constants λ > 1, ε1 > 0 and ε > 0. Select an initial point x1 ∈ Rn,

set k = 1.
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Step 2 Test a criterion for stopping the iterations. If ‖gk‖ < ε, then stop, otherwise
calculate dk by (2.2).

Step 3 Determine the steplength by the Wolfe conditions.
Step 4 Calculate the new iterate by xk+1 = xk + αkdk, set k = k + 1 and goto Step 2.
The descent property is an indispensable factor in the convergence analysis of CG

method. More exactly, if there exists a constant c1 > 0 such that

dT
k gk ≤ −c1‖gk‖2,∀k ∈ N (2.5)

holds for all k ∈ N , then the so-called sufficient descent condition holds.
Property (2.5) is guaranteed in our method, as proved in the following lemma.
Lemma 2.1 Let{xk} and {dk} be generated by the DHS method. Then the direction

dk satisfies the sufficient descent condition (2.5), which is independent of any line search.
Proof For k = 1, it follows that dT

1 g1 = −‖g1‖2. Now we mainly consider the case
where

dT
k−1yk−1 > ε1‖yk−1||||dk−1||

is satisfied. It follows from (2.2) that

gT
k dk = −||gk||2 +

gT
k dk−1

max{dT
k−1yk−1, λ|dT

k−1gk|} ||gk||2

≤ −||gk||2 +
|gT

k dk−1|
max{dT

k−1yk−1, λ|dT
k−1gk|} ||gk||2

≤ −
(

1− 1
λ

)
||gk||2. (2.6)

Then the conclusion holds by letting c1 = 1− λ−1.

3 Convergence Analysis

In this section, we prove the global convergence of the proposed CG method. We need
the following assumptions, which are generally assumed in the literature.

Assumption 3.1
Boundedness Assumption: the level set defined by Ω = {x ∈ Rn|f(x) ≤ f(x1)} with x1

to be the initial point, is bounded;
Lipschitz Assumption: in some neighborhood Ω0 of Ω, the objective function f is

continuously differentiable, and its gradient g is Lipschitz continuous, namely, there exist a
constant L > 0 such that

||g(x)− g(y)|| ≤ L||x− y||,∀x, y ∈ Ω0. (3.1)

Theorem 3.1 Suppose that Assumption 3.1 holds. Let {xk} and {dk} be generated
by Algorithm 2.1. Then there exists a constant c such that

||dk|| ≤ c||gk||, ∀k ∈ N. (3.2)
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Proof Since d1 = −g1, the result obviously holds for k = 1.
If k > 1, it suffice to consider the case where dT

k−1yk−1 > ε1‖yk−1||||dk−1|| holds.
It follows form the definition βDHS

k in (2.3) and the Cauchy inequality that

|βDHS
k | ≤ ||gk||

||gk − gk−1| |+
∥∥∥∥gk−1 − ‖gk‖

‖gk−1‖gk−1

∥∥∥∥
dT

k−1(gk − gk−1)

≤ 2
||gk||||yk−1||
|dT

k−1yk−1| ≤
2
ε1

||gk||
||dk−1|| .

Also, we can estimate the upper bound for |ϕk|, presented by

|ϕk| =
∣∣∣∣

gT
k dk−1

max{dT
k−1yk−1, λ|dT

k−1gk|}

∣∣∣∣ ·
‖gk‖
‖gk−1‖ ≤

1
λ

||gk||
||gk−1|| . (3.3)

Combining this with (3.3) yields

||dk|| ≤ ||gk||+ |βDHS
k |||dk−1||+ |ϕk|‖gk−1‖

≤
(

1 +
2
ε1

+
1
λ

)
‖gk‖. (3.4)

Let c = 1 +
2
ε1

+
1
λ

, we complete the proof.

The conclusion of the following theorem, called the Zoutendijk condition, is often used
to prove global convergence of nonlinear CG method.

Theorem 3.2 (see [17]) Suppose that Assumption 3.1 holds. Consider the general CG
method, where dk is a descent direction and αk satisfies the Wolfe conditions. Then we have

∑
k≥1

(gT
k dk)2

||dk||2 < ∞. (3.5)

For the general function, we can develop a strongly global convergence result as follows.
Theorem 3.3 Suppose that Assumption 3.1 holds. Let {xk} be generated by Algorithm

2.1. Then
lim

k→∞
||gk|| = 0. (3.6)

Proof The bound for ||dk|| in (3.2) coupled with (2.5) indicates that

∑
k≥1

(c)−2 ||gk||2 ≤
∑
k≥1

||gk||4
||dk||2 <

(
1− 1

λ

)−2 ∑
k≥1

(gT
k dk)2

||dk||2 < +∞. (3.7)

Equation (3.7) leads to (3.6).

4 Numerical Experiments

In this section, we provide the implementation detail of the new methods to verify the
numerical performance. Our tests problems come form Moré [18].
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We stop the iteration if the inequality ||gk|| ≤ 10−6 is satisfied. We use“F”to denote
the numbers of iteration exceed 2000. All algorithms use exactly the same implementation
of the strong Wolfe conditions with ρ = 10−3, σ = 0.5. The parameters in (2.2) are specified
by ε1 = 10−12, µ = 10.

In order to rank the CG methods, we subsequently use the method of Dai and Ni [19]
to compare the performance of our methods with that of the other methods in [16].

First, we compute the total number of the function and its gradient evaluations by the
formula Ntotal = NF + m ∗NG, where m=5.

Second, for all our two methods, we evaluate their efficiency with respect to the WYL
method in the following way. For each problem i, compute the ratio

ri =
Ntotal,i(a method in [16])

Ntotal,i(DHS)

and the geometric mean of these ratios over all the test problems rtotal = (
∏
i∈S

ri)
1
|S| , where

S denotes the set of the problems and |S| the number of elements in S.

Table 4.1: Numerical Results

Problem N
DHS MHS WYL MLS

NI/NF/NG/TIME NI/NF/NG/TIME NI/NF/NG/TIME NI/NF/NG/TIME

ROSE 2 36/120/102/0.094 93/254/218 /0.03 105/282/248/0.034 61/176/151 /0.021

FROTH 2 19/76/64/0.0086 24/95/79/0.01 39/147/125/0.016 25/102/85/0.01

BADSCP 2 48/245/219/0.025 F F 902/2548/2345/0.34

BADSCB 2 13/56/45/0.0061 F F 253/1165/836/0.12

BEALE 2 14/47/37/0.0069 16/57/43/0.0073 17/61/47/0.0073 26/86/69/0.01

JENSAM 2 13/43/31/0.0061 15/51/39/0.0064 19/63/50/0.0087 18/61/47/0.0085

HELIX 3 55/149/121/0.026 100/262/221/0.037 134/364/312/0.05 43/121/95/0.016

BARD 3 28/88/77/0.018 22/69/58/0.014 25/81/68/0.016 37/106/85/0.02

GAUSS 3 4/9/5/0.0023 4/9/5/0.0018 4/9/5/0.0026 4/9/5/0.0018

MEYER 3 F F F F

GULF 3 70/340/301/0.059 29/131/107/0.023 31/140/119/0.025 30/122/99/0.022

BOX 3 31/125/99/0.029 19/67/54/0.011 174/525/456/0.085 99/303/259/0.049

SING 4 188/588/514/0.07 324/1041/923/0.12 425/1354/1201/0.16 525/1625/1433/0.22

WOOD 4 79/288/246/0.034 407/1093/989/0.14 377/1003/923/0.13 343/893/830/0.12

KOWOSB 4 211/650/580/0.1 51/165/146/0.027 57/173/149/0.028 63/231/201/0.034

BD 4 64/866/372/0.27 F 57/491/256/0.14 53/770/355/0.2

OSB1 5 794/2574/2290/0.67 F F 336/1172/1027/0.29

BIGGS 6 75/264/232/0.046 142/486/429/0.087 113/385/335/0.068 184/542/487/0.11

OSB2 11 215/559/509/0.31 183/481/426/0.27 217/589/527/0.33 222/596/534/0.34

WATSON 20 1039/3521/3102/4.6 F F F

ROSEX 1000 39/132/112/2 119/361/320/5.7 64/206/185/3.3 84/264/228/4.1

SINGX 1000 361/1175/1029/19 1509/5135/4486/78 265/832/733/13 1832/5899/5237/90

PEN1 20 141/625/524/0.21 100/402/348/0.14 100/404/349/0.14 120/461/404/0.16

PEN2 20 144/658/580/0.13 150/617/537/0.13 107/443/376/0.087 347/1191/1036/0.25

VARDIM 100 10/90/59/0.028 7/92/61/0.027 9/84/55/0.032 9/84/55/0.026

TRIG 100 49/123/109/0.3 50/128/113/0.31 50/128/116/0.31 49/125/108/0.3

BV 1000 0/1/1/0.022 0/1/1/0.021 0/1/1/0.02 0/1/1/0.02

IE 500 6/14/9/1.7 6/14/9/1.7 6/14/9/1.7 6/14/9/1.7

BAND 100 18/54/33/0.038 18/57/35/0.043 19/59/36/0.041 19/59/36/0.041

LIN 100 1/8/8/0.015 1/8/8/0.014 1/8/8/0.014 1/8/8/0.014

LIN 500 1/9/9/0.28 1/9/9/0.29 1/9/9/0.28 1/9/9/0.29
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Finally, we present the rtotal in the Table 4.2:

Table 4.2: Comparison of efficiency with other algorithm
Algorithm DHS MHS WYL MLS

rtotal 1 1.1216 1.1642 1.3124
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一类新的具有充分下降条件和强收敛性的共轭梯度法
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摘要: 本文研究了求解无约束优化问题的WYL共轭梯度法. 利用修正迭代格式, 得到了算法在每步迭

代能产生不依赖于搜索条件的充分下降方向. 同时, 在原算法中关于Wolfe条件中参数去掉的情况下, 获得了

本文算法是强收敛的. 数值实验说明本文算法可以有效求解测试问题.
关键词: 共轭梯度法; 充分下降条件; 强收敛性; Wolfe搜索
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