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Abstract: This paper is diverted to the study of two strong dual problems of a primal

nonconvex set-valued optimization in the sense of strict efficiency. By using the principles of

Lagrange duality and Mond-Weir duality, for each dual problem, a strong duality theorem with

strict efficiency is established. The conclusions can be formulated as follows: starting from a strictly

efficient solution of the primal problem, it can be constructed a strictly efficient solution of the dual

problem such that the corresponding objective values of both problems are equal. The results

generalize the strong dual theorems in which the set-valued maps are assumed to be cone-convex.
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1 Introduction

One of the most important topics of set-valued optimization is related to proper effi-
ciency, this is because that the range of the set of (weak) efficient solutions is often too large.
In order to contract the solution range, several kinds of proper efficiency were presented. For
example, Benson efficiency [1], Henig efficiency [2], Geoffrion efficiency [3], Super efficiency
[4] and Strictly efficiency [5] etc. Especially, super efficiency, given by Borwein and Zhuang
[4], was shown to have some desirable properties. However, the condition to guarantee its
existence is rather strong. Later, weakening the existence condition, Professor Cheng and Fu
[5] improved the concept of supper efficiency and introduced the concept of strict efficiency.

Since duality assertions allow to study a minimization problem through a maximization
problem and to know what one can expect in the best case. At the same time, duality resulted
in many applications within optimization, and it provided many unifying conceptual insights
into economics and management science. So it is not surprising that duality is one of the
important topics in set-valued optimization. There were many papers dedicated to duality
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theory of set-valued optimization (see [6–11]). Among results obtained in this field, we want
to mention the strong duality. In vector optimization, it is often said that strong duality
holds between primal and dual problems, if a weakly efficient solution of a primal problem is
a weakly efficient solution of dual problem and such that the corresponding objective values
of the primal and dual problems are equal. If in this problem“weakly efficient solution”is
replaced by “properly efficient solution”, then it is said that strong duality with proper
efficiency holds between the primal and dual problems. However, strong duality with proper
efficiency was considered only for the case when proper efficiency was understood in the
sense of Geoffiron [10] and Benson [11].

On the other hand, it is well known that the concept of cone-convexity and its general-
izations play an important role in establishing duality theorems for set-valued optimization
problems. Up to now, there are many notions of generalized convexity for set-valued maps
which are introduced and are proved to be useful for optimization theory and related topics.
Among them, the notion of ic-cone-convexlikeness seemed to be more general one [12], and
was successfully applied to strict efficiency and Henig efficiency in set-valued optimization
[13–16].

Based upon the above observation, the aim of this note is to establish the strong du-
ality theorems with strict efficiency for set-valued optimization problems under the ic-cone-
convexlikeness assumptions. This paper is arranged as follows: In Section 2, some well-known
definitions and results used in the sequel are recalled. In Section 3, two improved dual mod-
els are introduced, and strong duality theorems with strict efficiency are established under
the assumption of ic-cone-convexlikeness, respectively.

2 Preliminaries

In this paper, let X, Y and Z be real topological spaces. Let D ⊂ Y and E ⊂ Z be
pointed convex cones, and denoted

y1 ≤ y2 if y2 − y1 ∈ D\{0Y },
y1 � y2 if y2 − y1 6∈ D\{0Y }.

Definition 2.1 Let M be a nonempty subset of Y , ȳ ∈ M is called a minimize
(maximize) point of M , if

(M − ȳ) ∩ (−D\{0Y }) = ∅ ((M − ȳ) ∩ (D\{0Y }) = ∅).

The set of minimize (maximize) point of M is denoted by Min[M, D] (Max[M, D]).
For a set A ⊂ Y , we write cone(A) = {λ · a : λ ≥ 0, a ∈ A}. The closure and interior

of set A is denoted by cl(A) and int(A). A convex subset B of a cone D is a base of D if
0Y /∈ cl(B) and D = cone(B).

Throughout this paper, it is always assumed that the pointed convex cone D ⊂ Y has
a base B.
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Definition 2.2 [5, 13] Let M be a nonempty subset of Y , ȳ ∈ M is called a strictly
minimize point of M with respect to B, if there is a neighbourhood U of 0Y such that

cl
[
cone(M − ȳ)

] ∩ (U −B) = ∅. (2.1)

The set of strictly efficient point of M with respect to B is denoted by Strmin[M, B].
Remark 2.1 [5, 13] (1) With respect to the definition of strictly minimize points,

equality (2.1) is equivalent to

cone(M − ȳ) ∩ (U −B) = ∅. (2.2)

Moreover, if necessary, the neighbourhood U of 0Y can be chosen to be open, convex or
balanced.

(2) Strmin[M, B] ⊂ Min[M, D].
(3) Similarly, ȳ ∈ M is called a strictly maximize point of M with respect to B, if there

is a neighbourhood V of 0Y such that

cl
[
cone(M − ȳ)

] ∩ (B − V ) = ∅.
Remark 2.2 In Definition 2.2, if equality (2.1) holds, then

cl
[
cone(M − ȳ) + D

] ∩ (U −B) = ∅. (2.3)

In fact, if not, there exist λ > 0, m ∈ M , d ∈ D\{0Y }, u ∈ U and b ∈ B, such that
λ(m − ȳ + d) = u − b. Since B is the base of D, there exist µ > 0 and b1 ∈ B such that
d = µ · b1. Since B is convex set, we get that

λ(m− ȳ) = u− (b + λµ · b1) ∈ U −B.

Therefore, we can get

λ

1 + λµ
(m− ȳ) =

1
1 + λµ

· u− (
1

1 + λµ
b +

λµ

1 + λµ
· b1) ∈ U −B,

which contradicts equality (2.1).
Definition 2.3 [12] The set-valued map F : X → 2Y is called ic-D-convexlike if

int(cone(im(F ) + D)) is convex and

cone(im(F ) + D) ⊂ cl
[
int(cone(im(F ) + D))

]
,

where im(F ) is the image of F , and that is

im(F ) =
⋃{

F (x) : x ∈ X
}
.

Assume that F : X → 2Y and G : X → 2Z are set-valued maps. This note considers
the following set-valued optimization problem (SOP):

(SOP)





minimize F (x),

subject to G(x) ∩ (−E) 6= ∅,
x ∈ X.
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The set of feasible solution of (SOP) is denoted by Ω, that is

Ω =
{
x ∈ X : G(x) ∩ (−E) 6= ∅}.

Definition 2.4 If x̄ ∈ S and ȳ ∈ F (x̄) ∩ Strmin
[
F (S), B

]
, then we say that (x̄, ȳ) is a

strictly efficient solution of problem (SOP).
Let L(X, Y ) be the family of (single-valued) linear continuous maps from X into Y . Let

L+(Z, Y ) =
{
T ∈ L(Z, Y ) : T (E) ⊂ D

}
.

Definition 2.5 [13] Let F : X → 2Y be a set-valued map, x̄ ∈ X and ȳ ∈ F (x̄). A
map T ∈ L(X, Y ) is said to be a strict subgradient of F at (x̄, ȳ) if

ȳ − T (x̄) ∈ Strmin
[
im(F − T ), B

]
.

The set of all strict subgradients of F at (x̄, ȳ) is denoted by ∂strF (x̄, ȳ).
Assumption (A) [12] In problem (SOP), let x̄ ∈ S, ȳ ∈ F (x̄) and z̄ ∈ G(x̄) ∩ (−E).

It is said that Assumption (A) is satisfied if there exists β ∈ [0, 1) such that the set-valued
map Hβ := (F − x̄)× (G− β · z̄) : X → 2Y×Z is ic-D × E-convexlike.

Definition 2.6 [12] It is said that condition (CQ) holds if cl
[
cone(imG + E)

]
= Z.

Lemma 2.7 [13] Let x̄ ∈ S, ȳ ∈ F (x̄) and z̄ ∈ G(x̄) ∩ (−E). Let Assumption (A) and
condition (CQ) be satisfied. If (x̄, ȳ) is a strictly efficient solution of problem (SOP), then
there exists T̄ ∈ L+(Z, Y ) such that T̄ (z̄) = 0Y and

0 ∈ ∂str(F + T̄G)(x̄, ȳ + T̄ (z̄)). (2.4)

3 Strong Duality

3.1 Lagrange-Wolfe Strong Duality

We first rewrite the Lagrange dual problem in the form similar to the Wolfe dual problem
[17], which is denoted by problem (LWD) as follows:

(LWD) maximize u + T (v),

subject to (u, v) ∈ F (ξ)×G(ξ), ξ ∈ X, (3.1)

0 ∈ ∂str(F + TG)(ξ, u + T (v)), (3.2)

T ∈ L+(Z, Y ). (3.3)

Denote by Q1 the set of all feasible points of (LWD), i.e., the set of points (ξ, u, v, T ) ∈
X × Y × Z × L(Z, Y ) satisfying (3.1)–(3.3). Let S1 be the set of all points u + T (v) such
that there exists ξ ∈ X with (ξ, u, v, T ) ∈ Q1.

Definition 3.1 If (ξ, u, v, T ) ∈ Q1, and u + T (v) ∈ Strmax
[
S,B

]
, then we say that

(ξ, u, v, T ) is a strictly efficient solution of problem (LWD).
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Theorem 3.2 (Weak Duality) If x ∈ Ω and (ξ, u, v, T ) ∈ Q1, then

cl
[
cone(F (x)− (u + T (v)))

] ∩ (U −B) = ∅. (3.4)

Proof Since x ∈ Ω, it holds that G(x) ∩ (−E) 6= ∅. So we can take a point v′ ∈
G(x) ∩ (−E) such that −T (v′) ∈ T (E) ⊂ D. Hence

F (x)− (u + T (v)) = F (x) + T (v′)− (u + T (v))− T (v′)

⊂ F (x) + T (v′)− (u + T (v)) + D

⊂ F (x) + T ◦G(x)− (u + T (v)) + D

⊂ im(F + T ◦G)− (u + T (v)) + D.

On the other hand, (3.2) shows that there exists a neighbourhood U of 0Y such that

cl
[
cone(im(F + T ◦G)− (u + T (v)))

] ∩ (U −B) = ∅.

It follows from Remark 2.2 that

cl
[
cone(im(F + TG)− (u + T (v)) + D)

] ∩ (U −B) = ∅.

So we get (3.4), as desired.
Remark 3.1 In weak duality Theorem 3.2, it follows from (3.4) and Remark 2.1 that

u + T (v) ∈ min
[
F (x), D

]
. This leads to

(F (x)− (u + T (v))) ∩ (−D\{0Y }) = ∅,

so (3.4) means that y 6≤ u + T (v), ∀y ∈ F (x), which is the sense of general weak duality in
literatures [6–8].

Theorem 3.3 (Strong Duality) Let x̄ ∈ X, ȳ ∈ F (x̄) and z̄ ∈ G(x̄) ∩ (−E). Let
Assumption (A) and condition (CQ) be satisfied. If (x̄, ȳ) is a strictly efficient solution of
problem (SOP), then there exists T̄ ∈ L+(Z, Y ) such that T̄ (z̄) = 0, (x̄, ȳ, z̄, T̄ ) is a strictly
efficient solution of (LWD), and the corresponding objective values of (SOP) and (LWD) are
equal.

Proof It yields from Lemma 2.7 that there exists T̄ ∈ L+(Z, Y ) such that T̄ (z̄) = 0 and
(x̄, ȳ, z̄, T̄ ) ∈ Q1. It remains to prove that ȳ = ȳ + T̄ (z̄) ∈ Strmax[S1, B]. In fact, otherwise
there exist the neighbourhood U0 of 0Y such that

cl
[
cone(S1 − ȳ)

] ∩ (B − U0) 6= ∅.

Hence, there exist b0 ∈ (B − U0), λ > 0 and û + T (v̂) ∈ S1 such that b0 = λ(û + T (v̂) − ȳ)
or, equivalently,

−b0 = λ(ȳ − (û + T (v̂))) ∈ cl
[
cone(F (x̄)− (û + T (v̂)))

]
.
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This indicates that

(U0 −B) ∩ cl
[
cone(F (x̄)− (û + T (v̂)))

] 6= ∅,

a contradiction to the weak duality property (3.4) with x = x̄.

3.2 Mond-Weir Strong Duality

This subsection is devoted to construct another duality problem on the basis of the idea
of Mond-Weir [18], called the Mond-Weir duality problem (MWD), and establish a strong
duality result between (SOP) and (MWD). The next problem is named the Mond-Weir dual
problem of (SOP) and is denoted by (MWD):

(MWD) maximize u,

subject to (u, v) ∈ F (ξ)×G(ξ), (3.5)

0 ∈ ∂str(F + TG)(ξ, u + T (v)), (3.6)

T ∈ L+(Z, Y ), (3.7)

T (v) ∈ D. (3.8)

Denote by Q2 the set of all feasible points of (MWD), i.e., the set of points (ξ, u, v, T ) ∈
X × Y ×Z ×L(Z, Y ) satisfying (3.5)–(3.8). Let S2 be the set of all points u such that there
exists (ξ, v, T ) ∈ X × Z × L(Z, Y ) with (ξ, u, v, T ) ∈ Q2.

Lemma 3.4 It holds that Q2 ⊂ Q1 and S2 ⊂ S1 −D.
Proof According to the definitions of Q1 and Q2, it is obviously that Q2 ⊂ Q1 is

satisfied. So it is to prove the second one only. Let u ∈ S2. Then there exists (ξ, v, T ) ∈
X × Z × L(Z, Y ) such that (ξ, u, v, T ) ∈ Q2 ⊂ Q1 is satisfied. We get that

u = u + T (v)− T (v) ∈ S1 − T (v) ⊂ S1 −D.

Thus, u ∈ S1 −D. This completes proof.
Theorem 3.5 (Weak Duality) If x ∈ Ω and (ξ, u, v, T ) ∈ Q2, then there exists a

neighbourhood U of 0Y such that

cl
[
cone(F (x)− u)

] ∩ (U −B) = ∅. (3.9)

Proof By Lemma 3.4, we obtain that Q2 ⊂ Q1. Again, we get from Theorem 3.2 that
there exists a neighbourhood U of 0Y such that

cl
[
cone(F (x)− (u + T (v)))

] ∩ (U −B) = ∅.

Hence it follows from Remark 2.2 that

cl
[
cone(F (x)− (u + T (v) + D))

] ∩ (U −B) = ∅. (3.10)
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On the other hand, it yields from (3.8) that

F (x)− u = F (x)− (u + T (v) + T (v) ⊂ F (x)− (u + T (v)) + D.

Combing above inquality with (3.10) yields (3.9), as required.
In order to formulating the strong duality between (SOP) and (MWD), we need propose

the following Lemma 3.6.
Lemma 3.6 If (ξ̄, ū, v̄, T̄ ) is a strictly efficient solution of (LWD) and T̄ (v̄) = 0, then

(ξ̄, ū, v̄, T̄ ) is a strictly efficient solution of (MWD) and the corresponding objective values
of both problems are equal.

Proof Because (ξ̄, ū, v̄, T̄ ) is a strictly efficient solution of (LWD), it follows from the
definition of set S1 that there exists a neighbourhood U of 0Y such that

cl
[
cone(S1 − (ū + T̄ (v̄)))

] ∩ (B − U) = ∅.

Therefore, we get from Remark 2.2 that

cl
[
cone(S1 − (ū + T̄ (v̄))−D)

] ∩ (B − U) = ∅. (3.11)

On the other hand, according to Lemma 3.4, we have S2 ⊂ S1 − D. Then we derive
from T̄ (v̄) = 0 that

S2 − ū ⊂ S1 − (ū + T̄ (v̄))−D. (3.12)

Together (3.11) with (3.12), it is clear that cl
[
cone(S2 − ū)

] ∩ (B − U) = ∅, which is the
desired result.

Theorem 3.7 (Strong Duality) Let x̄ ∈ X, ȳ ∈ F (x̄) and z̄ ∈ G(x̄) ∩ (−E). Let
Assumption (A) and condition (CQ) be satisfied. If (x̄, ȳ) is a strictly efficient solution of
problem (SOP), then there exists T̄ ∈ L+(Z, Y ) such that T̄ (z̄) = 0, (x̄, ȳ, z̄, T̄ ) is a strictly
efficient of (MWD), and the corresponding objective values of (SOP) and (MWD) are equal.

Proof It follows from Lemma 2.7 that there exists T̄ ∈ L+(Z, Y ) such that T̄ (z̄) = 0
and (x̄, ȳ, z̄, T̄ ) ∈ Q2 ⊂ Q1. Hence, we get from the strong duality Theorem 3.3 between
(SOP) and (LWD) that (x̄, ȳ, z̄, T̄ ) is a strictly efficient solution of (LWD) and the corre-
sponding objective values of (SOP) and (LWD) are equal. Therefore, it yields from Lemma
3.6 that (x̄, ȳ, z̄, T̄ ) is also a strictly efficient of (MWD) and the corresponding objective
values of (LWD) and (MWD) are equal. This can obtain the desired results.
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非凸集值优化问题严有效解的强对偶定理
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摘要: 本文研究了非凸集值向量优化的严有效解在两种对偶模型的强对偶问题. 利用Lagrange对偶

和Mond-Weir对偶原理, 获得了如下结果: 原集值优化问题的严有效解, 在一些条件下是对偶问题的强有效

解, 并且原问题和对偶问题的目标函数值相等; 推广了集值优化对偶理论在锥-凸假设下的相应结果.
关键词: 严有效性; 强对偶; 集值优化; 生成锥内部凸-锥类凸性
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