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Abstract: In this paper, we introduce two conformal non-homogeneous coordinate systems.
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1 , we cover the conformal space Qm+1

1 . The conformal geometry
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1 Introduction

Let Rs+m
s be the (s + m)-dimensional pseudo-Euclidean space which is the real vector

space Rs+m equipped with the non-degenerate inner product 〈·, ·〉s given by

〈X, Y 〉s = −X1 · Y1 + X2 · Y2, X = (X1, X2), Y = (Y1, Y2) ∈ Rs × Rm ≡ Rs+m,

where the dot “·” is the standard Euclidean inner product either on Rs or on Rm.
Denote by RPm+2 the real projection space of dimension m + 2. Then the so called

conformal space Qm+1
1 is defined as (see [1])

Qm+1
1 = {[ξ] ∈ RPm+2; 〈ξ, ξ〉2 = 0},

while, for any a > 0, the de Sitter space Sm+1
1 (a) and the anti-de Sitter space Hm+1

1

(− 1
a2

)

are defined respectively by

Sm+1
1 (a) = {ξ ∈ Rm+2

1 ; 〈ξ, ξ〉1 = a2}, Hm+1
1

(
− 1

a2

)
= {ξ ∈ Rm+2

2 ; 〈ξ, ξ〉2 = −a2}.
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Then Sm+1
1 (a), Hm+1

1

(− 1
a2

)
and the Lorentzian space Rm+1

1 are called Lorentzian space
forms. Denote Sm+1

1 = Sm+1
1 (1) and Hm+1

1 = Hm+1
1 (−1). Define three hyperplanes as

follows

π ={[x] ∈ Qm+1
1 ;x1 = xm+2},

π+ ={[x] ∈ Qm+1
1 ;xm+2 = 0},

π− ={[x] ∈ Qm+1
1 ;x1 = 0}.

Then there are three conformal diffeomorphisms from the Lorentzian space forms into the
conformal space

σ0 : Rm+1
1 → Qm+1

1 \π, u 7−→ [(〈u, u〉1 + 1, 2u, 〈u, u〉1 − 1)] ,

σ1 : Sm+1
1 → Qm+1

1 \π+, u 7−→ [(1, u)] ,

σ−1 : Hm+1
1 → Qm+1

1 \π−, u 7−→ [(u, 1)] .

(1.1)

Therefore Qm+1
1 is the common conformal compactification of Rm+1

1 , Sm+1
1 and Hm+1

1 .
In the reference [1], Nie at al. successfully set up a unified framework of conformal geom-

etry for both regular surfaces and hypersurfaces in Lorentzian space forms by introducing the
conformal space Qm+1

1 and some basic conformal invariants, including the conformal metric
g, the conformal form Φ, the Blaschke tensor A and the conformal second fundamental form
B. Later, all of these were generalized to regular submanifolds of higher codimensions (see
[2]). Under this framework, several characterization or classification theorems were obtained
for hypersurfaces with some special conformal invariants, see for example (see [1, 3]). The
achievement of these certainly proves the efficiency of the above framework. In particular, as
the main theorems, regular hypersurfaces with parallel conformal second fundamental forms,
and conformal isotropic submanifolds were classified in [1] and [2], respectively. Note that,
a regular submanifold in the conformal space Qm+1

1 with vanishing conformal form is called
conformal isotropic if its Blaschke tensor A is parallel to the conformal metric. For the later
use, we rewrite these two theorems applied in the special case of space-like hypersurfaces as
follows.

Theorem 1.1 [1] Let x : Mm → Qm+1
1 be a regular space-like hypersurface with parallel

conformal second fundamental form. Then x is locally conformal equivalent to one of the
following hypersurfaces

1. Hk × Rm−k ⊂ Rm+1
1 , k = 1, · · · ,m− 1; or

2. Sm−k(a)×Hk
(− 1

a2−1

) ⊂ Sm+1
1 , a > 1, k = 1, · · · ,m− 1; or

3. Hk
(− 1

a2

)×Hm−k(− 1
1−a2 ) ⊂ Hm+1

1 , 0 < a < 1, k = 1, · · · ,m− 1; or
4. WP (p, q, a) ⊂ Rm+1

1 for some constants p, q, a, as indicated in Example 3.1.
Theorem 1.2 [2] Any regular, space-like and conformal isotropic hypersurface in Qm+1

1

is conformal equivalent to a maximal, space-like and regular hypersurface in Rm+1
1 , Sm+1

1 or
Hm+1

1 with constant scalar curvature.
We remark that a Möbius classification of umbilic-free hypersurfaces in the unit sphere

with parallel Möbius second fundamental forms was established in [4]. By the way, for
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complete hypersurfaces in Hn+1(−1) with constant scalar curvature, two rigidity theorems
were proved in [5].

Motivated by the above theorems, we aims in the present paper at a complete classifica-
tion of regular space-like hypersurfaces in Qm+1

1 with parallel Blaschke tensors. To this end,
we would like to make a direct use of the ideas and technics with which we previously studied
the Möbius geometry of umbilc-free hypersurfaces in the unit sphere(see [6–9]). So we firstly

define two conformal non-homogeneous coordinate systems (with the coordinate maps
(1)

Ψ,
(2)

Ψ,
respectively) covering the conformal space Qm+1

1 , which are modeled on the de Sitter space
Sm+1

1 , so that the conformal geometry of the hypersurfaces in Qm+1
1 corresponds right to that

of the hypersurfaces in the de Sitter space. It follows that the conformal geometry of regular
hypersurfaces in each of Hm+1

1 and Rm+1
1 is made unified with that in Sm+1

1 . This shows that
we only need to consider and study the conformal invariants of the hypersurfaces in Sm+1

1

which plays the same role as the unit sphere does in the Möbius geometry of umbilic-free
submanifolds. With this consideration, we only focus here on the study of the conformal
invariants of regular space-like hypersurfaces in the de Sitter space Sm+1

1 . As a result, we are
able to establish a complete classification for all the regular space-like hypersurfaces with
parallel Blaschke tensors.

Note that the above two conformal non-homogeneous coordinate maps
(1)

Ψ and
(2)

Ψ are
conformal equivalent where both of them are defined. Therefore we can use Ψ to denote

either one of
(1)

Ψ and
(2)

Ψ. By this, the main theorem of the present paper is stated as follows.
Theorem 1.3 Let x : Mm → Sm+1

1 , m ≥ 2, be a regular space-like hypersurface. If the
Blaschke tensor A of x is parallel, then one of the following holds.

1. x is conformal isotropic and thus is locally conformal equivalent to a maximal space-
like regular hypersurface in Sm+1

1 with constant scalar curvature, or the conformal image
under Ψ ◦σ−1 of a maximal regular hypersurface in Hm+1

1 with constant scalar curvature, or
the conformal image under Ψ ◦ σ0 of a maximal regular hypersurface in Rm+1

1 with constant
scalar curvature;

2. x is of parallel conformal second fundamental form B and thus is locally conformal
equivalent to

(a) the image under Ψ ◦ σ0 of Hk × Rm−k ⊂ Rm+1
1 , k = 1, · · ·m− 1; or

(b) Sm−k(a)×Hk
(− 1

a2−1

) ⊂ Sm+1
1 , a > 1, k = 1, · · ·m− 1; or

(c) the image under Ψ ◦ σ−1 of Hk
(− 1

a2

) × Hm−k(− 1
1−a2 ) ⊂ Hm+1

1 , 0 < a < 1, k =
1, · · ·m− 1; or

(d) WP (p, q, a) ⊂ Rm+1
1 for some constants p, q, a.

3. x is non-isotropic with a non-parallel conformal second fundamental form B and is
locally conformal equivalent to

(a) one of the maximal hypersurfaces as indicated in Example 3.2; or
(b) one of the non-maximal hypersurfaces as indicated in Example 3.3.
Remark 1.1 It is directly verified in Section 3 that each of the regular space-like

hypersurfaces stated in the above theorem has a parallel Blaschke tensor.
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2 Necessary Basics on Regular Space-Like Hypersurfaces

This section provides some basics of the conformal geometry of regular space-like hy-
persurfaces in the Lorentzian space forms. The main idea comes originally from the work
of Wang on the Möbius geometry of umbilic-free submanifolds in the unit sphere (see [10]),
and much of the detail can be found in a series of papers by Nie at al (see for example [1–3]).

Let x : Mm → Sm+1
1 ⊂ Rm+2

1 be a regular space-like hypersurface in Sm+1
1 . Denote by

h the (scalar-valued) second fundamental form of x with components hij and H = 1
m

trh

the mean curvature. Define the conformal factor ρ > 0 and the conformal position Y of x,
respectively, as follows

ρ2 =
m

m− 1
(|h|2 −m|H|2) , Y = ρ(1, x) ∈ R1

1 × Rm+2
1 ≡ Rm+3

2 . (2.1)

Then Y (Mm) is clearly included in the light cone Cm+2 ⊂ Rm+3
2 , where

Cm+2 = {ξ ∈ Rm+3
2 ; 〈ξ, ξ〉2 = 0, ξ 6= 0}.

The positivity of ρ implies that Y : Mm → Rm+3
2 is an immersion of Mm into the Rm+3

2 .
Clearly, the metric g := 〈dY, dY 〉2 ≡ ρ2〈dx, dx〉1 on Mm, induced by Y and called the con-
formal metric, is invariant under the pseudo-orthogonal group O(m + 3, 2) of linear trans-
formations on Rm+3

2 reserving the Lorentzian product 〈·, ·〉2. Such kind of things are called
the conformal invariants of x.

Definition 2.1 (see [1–3]) Let x, x̃ : Mm → Sm+1
1 be two regular space-like hypersur-

faces with Y, Ỹ their conformal positions, respectively. If there exists some T ∈ O(m + 3, 2)
such that Ỹ = T(Y ), then x, x̃ are called conformal equivalent to each other.

For any local orthonormal frame field {ei} and the dual {θi} on Mm with respect to
the standard metric 〈dx, dx〉1, define

Ei = ρ−1ei, ωi = ρθi. (2.2)

Then {Ei} is a local orthonormal frame field with respect to the conformal metric g with
{ωi} its dual coframe. Let n be the time-like unit normal of x. Define ξ = (−H,−Hx + n) ,

then 〈ξ, ξ〉2 = −1. Let ∆ denote the Laplacian with respect to the conformal metric g.
Define N : Mm → Rm+3

2 by

N = − 1
m

∆Y − 1
2m2

〈∆Y,∆Y 〉2Y. (2.3)

Then it holds that

〈∆Y, Y 〉2 = −m, 〈Y, Y 〉2 = 〈N, N〉2 = 0, 〈Y, N〉2 = 1. (2.4)

Furthermore, {Y, N, Yi, ξ, 1 ≤ i ≤ m} forms a moving frame in Rm+3
2 along Y , with respect
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to which the equations of motion is as follows




dY =
∑

Yiω
i,

dN =
∑

ψiYi + φξ,

dYi =− ψiY − ωiN +
∑

ωijYj + τiξ,

dξ =φY +
∑

τiYi.

(2.5)

By the exterior differentiation of (2.5) and using Cartan’s lemma, we can write

φ =
∑

i

Φiω
i, ψi =

∑
j

Aijω
j , Aij = Aji, τi =

∑
j

Bijω
j , Bij = Bji. (2.6)

Then the conformal form Φ, the Blaschke tensor A and the conformal second fundamental
form B defined by

Φ =
∑

i

Φiω
i, A =

∑
i,j

Aijω
iωj , B =

∑
i,j

Bijω
iωj

are all conformal invariants. By a long but direct computation, we find that

Aij =− 〈Yij , N〉2 = −ρ−2((log ρ),ij − ei(log ρ)ej(log ρ) + hijH)

− 1
2
ρ−2

(|∇̄ log ρ|2 − |H|2 − 1
)
δij , (2.7)

Bij =− 〈Yij , ξ〉2 = ρ−1(hij −Hδij), (2.8)

Φi =− 〈ξ, dN〉2 = −ρ−2[(hij −Hδij)ej(log ρ) + ei(H)], (2.9)

where Yij = Ej(Yi), ∇̄ is the Levi-Civita connection of the standard metric 〈·, ·〉1, and the
subscript ,ij denotes the covariant derivatives with respect to ∇̄. The differentiation of (2.5)
also gives the following integrability conditions

Φij − Φji =
∑

(BikAkj −BkjAki), (2.10)

Aijk −Aikj = BijΦk −BikΦj , (2.11)

Bijk −Bikj = δijΦk − δikΦj , (2.12)

Rijkl =
∑

(BikBjl −BilBjk) + Ailδjk −Aikδjl + Ajkδil −Ajlδik, (2.13)

where Aijk, Bijk, Φij are respectively the components of the covariant derivatives of A, B,
Φ, and Rijkl is the components of the Riemannian curvature tensor of the conformal metric
g. Furthermore, by (2.1) and (2.8) we have

trB =
∑

Bii = 0, |B|2 =
∑

(Bij)2 =
m− 1

m
, (2.14)

and by (2.13) we find the Ricci curvature tensor

Rij =
∑

BikBkj + δijtrA + (m− 2)Aij , (2.15)
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which implies that

trA =
1

2m
(m2κ− 1) (2.16)

with κ being the normalized scalar curvature of g.
It is easily seen [1] that the conformal position vector Y defined above is exactly the

canonical lift of the composition map x̄ = σ1 ◦x : Mm → Qm+1
1 , implying that the conformal

invariants g, Φ, A, B defined above are the same as those of x̄ introduced by Nie at al. in [1].
On the other hand, the conformal space Qm+1

1 is clearly covered by the following two
open sets

U1 =
{
[y] ∈ Qm+1

1 ; y = (y1, y2, y3) ∈ R1
1 × R1

1 × Rm+1 ≡ Rm+3
2 , y1 6= 0

}
,

U2 =
{
[y] ∈ Qm+1

1 ; y = (y1, y2, y3) ∈ R1
1 × R1

1 × Rm+1 ≡ Rm+3
2 , y2 6= 0

}
.

(2.17)

Define the following two diffeomorphisms

(α)

Ψ: Uα → Sm+1
1 , α = 1, 2 (2.18)

by

(1)

Ψ ([y]) = y−1
1 (y2, y3) for [y] ∈ U1, y = (y1, y2, y3); (2.19)

(2)

Ψ ([y]) = y−1
2 (y1, y3) for [y] ∈ U2, y = (y1, y2, y3). (2.20)

Then with respect to the conformal structure on Qm+1
1 introduced in [1] and the standard

metric on Sm+1
1 , both

(1)

Ψ and
(2)

Ψ are conformal.
Now for a regular space-like hypersurface x̄ : Mm → Qm+1

1 with the canonical lift

Y : Mm → Cm+2 ⊂ Rm+3
2 ,

write Y = (Y1, Y2, Y3) ∈ R1
1 × R1

1 × Rm+1. Then we have the following two composed
hypersurfaces

(α)
x :=

(α)

Ψ ◦ x̄|(α)
M

:
(α)

M→ Sm+1
1 ,

(α)

M= {p ∈ M ;x(p) ∈ Uα}, α = 1, 2. (2.21)

Then Mm =
(1)

M
⋃ (2)

M , and the following lemma is clearly true by a direct computation:

Lemma 2.1 The conformal position vector
(1)

Y of
(1)
x is nothing but Y |(1)

M
, while the

conformal position vector
(2)

Y of
(2)
x is given by

(2)

Y = T(Y |(2)
M

), where T =




0 1
1 0

0

0 Im+1


 . (2.22)

Corollary 2.2 The basic conformal invariants g, Φ, A, B of x̄ coincide accordingly with
those of each of

(1)
x and

(2)
x on where

(1)
x or

(2)
x is defined, respectively.
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Therefore
(1)

Ψ and
(2)

Ψ can be viewed as two non-homogenous coordinate maps preserving
the conformal invariants of the regular space-like hypersurfaces.

Corollary 2.3
(1)
x and

(2)
x are conformal equivalent to each other on

(1)

M ∩ (2)

M .
On the other hand, all the regular space-like hypersurfaces in the three Lorentzian space

forms can be viewed as ones in Qm+1
1 via the conformal embeddings σ1, σ0 and σ−1 defined

in (1.1). Now, using
(1)

Ψ and
(2)

Ψ, one can shift the conformal geometry of regular space-like
hypersurfaces in Qm+1

1 to that of regular space-like hypersurfaces in the de Sitter space Sm+1
1 .

It follows that, in a sense, the conformal geometry of regular space-like hypersurfaces can
also be unified as that of the corresponding hypersurfaces in the de Sitter space. Concisely,
we can achieve this simply by introducing the following four conformal maps

(1)
σ=

(1)

Ψ◦ σ0 :
(1)

Rm+1
1 → Sm+1

1 , u 7→
(

2u

1 + 〈u, u〉 ,
1− 〈u, u〉
1 + 〈u, u〉

)
, (2.23)

(2)
σ=

(2)

Ψ◦ σ0 :
(2)

Rm+1
1 → Sm+1

1 , u 7→
(

1 + 〈u, u〉
2u1

,
u2

u1

,
1− 〈u, u〉

2u1

)
, (2.24)

(1)
τ =

(1)

Ψ◦ σ−1 :
(1)

Hm+1
1 → Sm+1

1 , y 7→
(

y2

y1

,
y3

y1

,
1
y1

)
, (2.25)

(2)
τ =

(2)

Ψ◦ σ−1 :
(2)

Hm+1
1 → Sm+1

1 , y 7→
(

y1

y2

,
y3

y2

,
1
y2

)
, (2.26)

where
(1)

Rm+1
1 = {u ∈ Rm+1

1 ; 1 + 〈u, u〉 6= 0}, (2.27)

(2)

Rm+1
1 = {u = (u1, u2) ∈ Rm+1

1 ;u1 6= 0}, (2.28)

(1)

Hm+1
1 = {y = (y1, y2, y3) ∈ Hm+1

1 ; y1 6= 0}, (2.29)

(2)

Hm+1
1 = {y = (y1, y2, y3) ∈ Hm+1

1 ; y2 6= 0}. (2.30)

The following theorem will be used later in this paper.
Theorem 2.4 [2] Two hypersurfaces x : Mm → Sm+1

1 and x̃ : M̃m → Sm+1
1 (m ≥ 3)

are conformal equivalent if and only if there exists a diffeomorphism f : M → M̃ which
preserves the conformal metric and the conformal second fundamental form.

3 Examples

Before proving the main theorem, we first present some regular space-like hypersurfaces
in Sm+1

1 with parallel Blaschke tensors.
Example 3.1 (see [1, 4]) Let R+ be the half line of positive real numbers. For any

two given natural numbers p, q with p + q < m and a real number a > 1, consider the
hypersurface of warped product embedding

u : Hq

(
− 1

a2 − 1

)
× Sp(a)× R+ × Rm−p−q−1 → Rm+1

1
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defined by

u = (tu′, tu′′, u′′′), where u′ ∈ Hq

(
− 1

a2 − 1

)
, u′′ ∈ Sp(a), t ∈ R+, u′′′ ∈ Rm−p−q−1.

Then x̄ := σ0 ◦ u is a regular space-like hypersurface in the conformal space Qm+1
1 with

parallel conformal second fundamental form. This hypersurface is denoted as WP (p, q, a) in
[1]. By Proposition 3.1 together with its proof in [1], x̄ is also of parallel Blaschke tensor. It
follows from Corollary 2.2 that the composition map

x = Ψ ◦ x̄ : Hq

(
− 1

a2 − 1

)
× Sp(a)× R+ × Rm−p−q−1 → Sm+1

1 ,

where Ψ denotes
(1)

Ψ or
(2)

Ψ, defines a regular space-like hypersurface in Sm+1
1 with both parallel

conformal second fundamental form and parallel Blaschke tensor. For convenience, we also
denote x by the same symbol WP (p, q, a). Note that, by a direct calculation, one easily
finds that WP (p, q, a) has exactly three distinct conformal principal curvatures.

The similar example of WP (p, q, a) in Möbius geometry was originally found by [4] and
denoted by CSS(p, q, a).

Example 3.2 Given r > 0. For any integers m and K satisfying m ≥ 3 and 2 ≤ K ≤
m − 1, let ỹ1 : MK

1 → SK+1
1 (r) ⊂ RK+2

1 be a regular and maximal space-like hypersurface
with constant scalar curvature

S̃1 =
mK(K − 1) + (m− 1)r2

mr2
(3.1)

and

ỹ = (ỹ0, ỹ2) : Hm−K

(
− 1

r2

)
→ R1

1 × Rm−K ≡ Rm−K+1
1

be the canonical embedding, where ỹ0 > 0. Set

M̃m = MK
1 ×Hm−K

(
− 1

r2

)
, Ỹ = (ỹ0, ỹ1, ỹ2). (3.2)

Then Ỹ : M̃m → Rm+3
2 is an immersion satisfying 〈Ỹ , Ỹ 〉2 = 0. The induced metric

g = 〈dỸ , dỸ 〉2 = −dỹ2
0 + 〈dỹ1, dỹ1〉1 + dỹ2 · dỹ2

by Ỹ is clearly a Riemannian one, and thus as Riemannian manifolds we have

(M̃m, g) = (M1, 〈dỹ1, dỹ1〉1)×
(
Hm−K

(
− 1

r2

)
, 〈dỹ, dỹ〉1

)
. (3.3)

Define

x̃1 =
ỹ1

ỹ0

, x̃2 =
ỹ2

ỹ0

, x̃ = (x̃1, x̃2). (3.4)
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Then x̃2 = 1 and thus we have a smooth map x̃ : Mm → Sm+1
1 . Clearly,

dx̃ = −dỹ0

ỹ2
0

(ỹ1, ỹ2) +
1
ỹ0

(dỹ1, dỹ2). (3.5)

Therefore the induced “metric” g̃ = dx̃ · dx̃ is derived as

g̃ = ỹ−4
0 dỹ2

0(〈ỹ1, ỹ1〉1 + ỹ2 · ỹ2) + ỹ−2
0 (〈dỹ1, dỹ1〉1 + dỹ2 · dỹ2)

− 2ỹ−3
0 dỹ0(〈ỹ1, dỹ1〉1 + ỹ2 · dỹ2) (3.6)

= ỹ−2
0 (dỹ2

0 + g + dỹ2
0 − 2dỹ2

0) (3.7)

= ỹ−2
0 g, (3.8)

implying that x̃ is a regular space-like hypersurface.
If ñ1 is the time-like unit normal vector field of ỹ1 in SK+1

1 (r) ⊂ RK+2
1 , then ñ =

(ñ1, 0) ∈ Rm+2
1 is a time-like unit normal vector field of x̃. Consequently, by (3.5), the

second fundamental form h̃ of x̃ is given by

h̃ = 〈dñ, dx̃〉1 = 〈(dñ1, 0),−ỹ−2
0 dỹ0(ỹ1, ỹ2) + ỹ−1

0 (dỹ1, dỹ2)〉1
= −ỹ−2

0 dỹ0〈dñ1, ỹ1〉1 + ỹ−1
0 〈dñ1, dỹ1〉1 = ỹ−1

0 h,
(3.9)

where h is the second fundamental form of ỹ1 : MK
1 → SK+1

1 .
Let {Ei ; 1 ≤ i ≤ K} (resp. {Ei ;K +1 ≤ i ≤ m}) be a local orthonormal frame field on

(M1, dỹ2
1) (resp. on Hm−K(− 1

r2 )). Then {Ei ; 1 ≤ i ≤ m} gives a local orthonormal frame
field on (M̃m, g). Put ei = ỹ0Ei, i = 1, · · · ,m. Then {ei ; 1 ≤ i ≤ m} is a orthonormal frame
field along x̃. Thus we obtain

h̃ij = h̃(ei, ej) = ỹ2
0h̃(Ei, Ej) =

{
ỹ0h(Ei, Ej) = ỹ0hij , when 1 ≤ i, j ≤ K,

0, otherwise.
(3.10)

Since the mean curvature of ỹ1 ≡ 0 by the maximality of ỹ1, the mean curvature H̃ of x̃

vanishes. Therefore

ρ̃2 =
m

m− 1

(∑
i,j

h̃2
ij −m|H̃|2

)
=

m

m− 1
ỹ2
0

K∑
i,j=1

h2
ij = ỹ2

0 ,

where we have used the Gauss equation and (3.1). It follows that x̃ is regular and its
conformal factor ρ̃ = ỹ0. Thus Ỹ , given in (3.2), is exactly the conformal position vector of
x̃, implying the induced metric g by Ỹ is nothing but the conformal metric of x̃. Furthermore,
the conformal second fundamental form of x̃ is given by

B̃ = ρ̃−1
∑

(h̃ij − H̃δij)ωiωj =
K∑

i,j=1

hijω
iωj , (3.11)

where {ωi} is the local coframe field on Mm dual to {Ei}.
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On the other hand, by (3.3) and the Gauss equations of ỹ1 and ỹ, one finds that the
Ricci tensor of g is given as follows

Rij =
K − 1

r2
δij +

K∑
k=1

hikhkj , if 1 ≤ i, j ≤ K, (3.12)

Rij =− m−K − 1
r2

δij , if K + 1 ≤ i, j ≤ m, (3.13)

Rij =0, if 1 ≤ i ≤ K, K + 1 ≤ j ≤ m, or K + 1 ≤ i ≤ m, 1 ≤ j ≤ K, (3.14)

which implies that the normalized scalar curvature of g is given by

κ =
m(K(K − 1)− (m−K)(m−K − 1)) + (m− 1)r2

m2(m− 1)r2
. (3.15)

Thus
1

2m
(m2κ− 1) =

K(K − 1)− (m−K)(m−K − 1)
2(m− 1)r2

. (3.16)

Since m ≥ 3, it follows from (2.15) and (3.11)–(3.16) that the Blaschke tensor of x̃ is
given by A =

∑
Aijω

iωj , where

Aij =
1

2r2
δij , if 1 ≤ i, j ≤ K, Aij = − 1

2r2
δij , if K + 1 ≤ i, j ≤ m, (3.17)

Aij =0, if 1 ≤ i ≤ K, K + 1 ≤ j ≤ m, or K + 1 ≤ i ≤ m, 1 ≤ j ≤ K. (3.18)

Clearly, A has two distinct eigenvalues λ1 = −λ2 = 1
2r2 , which are constant. Thus by

(3.3), A is parallel.
Example 3.3 Given r > 0. For any integers m and K satisfying m ≥ 3 and 2 ≤ K ≤

m− 1, let

ỹ : MK
1 → HK+1

1

(
− 1

r2

)
⊂ RK+2

2

be a regular and maximal space-like hypersurface with constant scalar curvature

S̃1 =
−mK(K − 1) + (m− 1)r2

mr2
(3.19)

and ỹ2 : Sm−K(r) → Rm−K+1 be the canonical embedding. Set

M̃m = MK
1 × Sm−K(r), Ỹ = (ỹ, ỹ2), (3.20)

then 〈Ỹ , Ỹ 〉2 = 0. Thus we have an immersion Ỹ : Mm → Cm+2 ⊂ Rm+3
2 with the induced

metric g = 〈dỸ , dỸ 〉2 = 〈dỹ, dỹ〉2 + dỹ2 · dỹ2, which is certainly positive definite. It follows
that, as Riemannian manifolds

(M̃m, g) = (M1, 〈dỹ, dỹ〉2)×
(
Sm−K(r), dỹ2

2

)
. (3.21)
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If we write ỹ = (ỹ0, ỹ
′
1, ỹ

′′
1 ) ∈ R1

1 × R1
1 × RK ≡ RK+2

2 , then ỹ0 and ỹ′1 can not be zero
simultaneously. So without loss of generality, we can assume that ỹ0 6= 0. In this case, we
denote ε = Sgn (ỹ0) and write ỹ1 := (ỹ′1, ỹ

′′
1 ). Define

x̃1 =
ỹ1

ỹ0

, x̃2 =
ỹ2

ỹ0

, x̃ = ε(x̃1, x̃2). (3.22)

Then x̃ ∈ Rm+2
1 , x̃2 = 1 and, similar to that in Example 3.2, x̃ : M̃m → Sm+1

1 defines a
regular space-like hypersurface. In fact, since

εdx̃ = −dỹ0

ỹ2
0

(ỹ1, ỹ2) +
1
ỹ0

(dỹ1, dỹ2), (3.23)

the induced metric g̃ = dx̃ · dx̃ is related to g by

g̃ =ỹ−4
0 dỹ2

0(〈ỹ1, ỹ1〉1 + ỹ2 · ỹ2) + ỹ−2
0 (〈dỹ1, dỹ1〉1 + dỹ2 · dỹ2)

− 2ỹ−3
0 dỹ0(〈ỹ1, dỹ1〉1 + ỹ2 · dỹ2)

=ỹ−2
0 (−dỹ2

0 + 〈dỹ1, dỹ1〉1 + ỹ2 · dỹ2)

=ỹ−2
0 g. (3.24)

Suitably choose the time-like unit normal vector field (ñ0, ñ1) of ỹ, define

ñ = (ñ1, 0)− εñ0x̃ ∈ Rm+2
1 .

Then 〈ñ, ñ〉1 = −1, 〈ñ, x̃〉1 = 0, 〈ñ, dx̃〉1 = 0 indicating that ñ is a time-like unit normal
vector field of x̃. The second fundamental form h̃ of x̃ is given by

h̃ =〈dñ, dx̃〉1 = 〈(dñ1, 0)− εdñ0x̃− εñ0dx̃, dx̃〉1
=〈(dñ1, 0), dx̃〉1 − εdñ0〈x̃, dx̃〉1 − εñ0〈dx̃, dx̃〉1
=ε(ỹ−1

0 (−dñ0 · dỹ0 + 〈dñ1, dỹ1〉1)− ñ0〈dx̃, dx̃〉1)
=ε(ỹ−1

0 〈d(ñ0, ñ1), dỹ〉1 − ñ0〈dx̃, dx̃〉1)
=ε(ỹ−1

0 h− ñ0ỹ
−2
0 g), (3.25)

where h is the second fundamental form of ỹ.
Let {Ei ; 1 ≤ i ≤ K} (resp. {Ei ;K +1 ≤ i ≤ m}) be a local orthonormal frame field on

(M1, dỹ2) (resp. on Sm−K(r)). Then {Ei ; 1 ≤ i ≤ m} is a local orthonormal frame field on
(Mm, g). Put ei = εỹ0Ei, i = 1, · · · ,m. Then {ei ; 1 ≤ i ≤ m} is a local orthonormal frame
field with respect to the metric g̃ = 〈dx̃, dx̃〉1. Thus

h̃ij = h̃(ei, ej) = ỹ2
0h̃(Ei, Ej) =





ε(ỹ0hij − ñ0δij), when 1 ≤ i, j ≤ K,

−εñ0g(Ei, Ej) = −εñ0δij , when K + 1 ≤ i, j ≤ m,

0, for other i, j.

(3.26)
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By the maximality of ỹ1, the mean curvature of x̃ is

H̃ =
1
m

∑
h̃ii = ε

1
m

(ỹ0KH1 −Kñ0)− ε
1
m

(m−K)ñ0 = −εñ0 (3.27)

and

|h̃|2 =
K∑

i,j=1

ỹ2
0h

2
ij + ñ2

0δ
2
ij − 2ñ0ỹ0hijδij +

m∑
i,j=K+1

(−ñ0)2δ2
ij = ỹ0h

2 + mñ2
0. (3.28)

Therefore, by definition, the conformal factor ρ̃ of x̃ is determined by

ρ̃2 =
m

m− 1

(∑
i,j

h̃2
ij −m|H̃|2

)
=

m

m− 1
ỹ2
0

∑
i,j

h2
ij = ỹ2

0 ,

where we have used the Gauss equation and (3.19). Hence ρ̃ = |ỹ0| = εỹ0 > 0 and thus
Ỹ = ρ̃(1, x̃) is the conformal position vector of x̃. Consequently, the conformal metric of x̃

is defined by 〈dỸ , dỸ 〉2 = g. Furthermore, the conformal second fundamental form of x̃ is
given by

B̃ = ρ̃−1(h̃ij − H̃δij)ωiωj =
K∑

i,j=1

hijω
iωj , (3.29)

where {ωi} is the local coframe field on Mm dual to {Ei}.
On the other hand, by (3.21) and the Gauss equations of ỹ1 and ỹ, one finds the Ricci

tensor of g as follows

Rij =− K − 1
r2

δij +
K∑

k=1

hikhkj , if 1 ≤ i, j ≤ K, (3.30)

Rij =
m−K − 1

r2
δij , if K + 1 ≤ i, j ≤ m, (3.31)

Rij =0, if 1 ≤ i ≤ K, K + 1 ≤ j ≤ m, or K + 1 ≤ i ≤ m, 1 ≤ j ≤ K, (3.32)

which implies that the normalized scalar curvature of g is given by

κ =
m((m−K)(m−K − 1)−K(K − 1)) + (m− 1)r2

m2(m− 1)r2
. (3.33)

Thus
1

2m
(m2κ− 1) =

(m−K)(m−K − 1)−K(K − 1)
2(m− 1)r2

. (3.34)

Since m ≥ 3, it follows from (2.15) and (3.29)–(3.34) that the Blaschke tensor of x̃ is
given by A =

∑
Aijω

iωj , where

Aij =− 1
2r2

δij , if 1 ≤ i, j ≤ K, Aij =
1

2r2
δij , if K + 1 ≤ i, j ≤ m, (3.35)

Aij =0, if 1 ≤ i ≤ K, K + 1 ≤ j ≤ m, or K + 1 ≤ i ≤ m, 1 ≤ j ≤ K, (3.36)
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which, once again, implies that A is parallel with two distinct eigenvalues λ1 = −λ2 = − 1
2r2 .

4 Proof of Main Theorem

To make the argument more readable, we divide the proof into several lemmas.
Let x : Mm → Sm+1

1 be a regular space-like hypersurface.
Lemma 4.1 If the Blaschke tensor A is parallel, then the conformal form Φ vanishes

identically.
Proof For any given point p ∈ Mm, take an orthonormal frame field {Ei} around p

with respect to the conformal metric g, such that Bij(p) = Biδij . Then it follows from (2.11)
that

Aijk −Aikj = BijΦk −BikΦj .

Since A is parallel, Aijk = 0 for any i, j, k. Thus at the given point p, we have

Bi(δijΦk(p)− δikΦj(p)) = 0. (4.1)

By (2.14), there are different indices i1, i2 such that Bi1 6= 0 and Bi2 6= 0. Then for any
indices i, j, we have

δi1jΦi(p)− δi1iΦj(p) = 0, δi2jΦi(p)− δi2iΦj(p) = 0. (4.2)

If i = i1, put j = i2; if i 6= i1, put j = i1. Then it follows from (4.2) that Φi(p) = 0. By the
arbitrariness of i and p, we obtain that Φ ≡ 0.

Remark 4.1 Since A is parallel, then all eigenvalues of the Blaschke tensor A of x are
constant on Mm. From the equation

0 =
∑

Aijkω
k = dAij −Akjω

k
i −Aikω

k
j ,

we obtain that
ωi

j = 0 in case that Ai 6= Aj . (4.3)

Lemma 4.2 If A is parallel, then Bij = 0 as long as Ai 6= Aj .
Proof Since A is parallel, there exists around each point a local orthonormal frame

field {Ei} such that
Aij = Aiδij . (4.4)

It follows from (2.10) and Lemma 4.1 that
∑

BikAkj − AikBkj = Φij − Φji = 0. Then we
have Bij(Aj −Ai) = 0.

Now, let t be the number of the distinct eigenvalues of A, and λ1, · · · , λt denote the
distinct eigenvalues of A. Fix a suitably chosen orthonormal frame field {Ei} for which the
matrix (Aij) can be written as

(Aij) = Diag(λ1, · · · , λ1︸ ︷︷ ︸
k1

, λ2, · · · , λ2︸ ︷︷ ︸
k2

, · · · , λt, · · · , λt︸ ︷︷ ︸
kt

), (4.5)
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or equivalently,

A1 = · · · = Ak1 = λ1, · · · , Am−kt+1 = · · · = Am = λt. (4.6)

Lemma 4.3 Suppose that t ≥ 3. If, with respect to an orthonormal frame field {Ei},
(4.5) holds and at a point p, Bij = Biδij , then Bi = Bj in the case that Ai = Aj .

Proof By (4.3), for any i, j satisfying Ai 6= Aj , we have ωi
j = 0. Differentiating this

equation, we obtain from (2.13) that 0 = Rijji = B2
ij −BiiBjj + Aii −Aijδij + Ajj −Aijδij .

Thus at p, it holds that
−BiBj + Ai + Aj = 0. (4.7)

If there exist indices i, j such that Ai = Aj but Bi 6= Bj , then for all k satisfying
Ak 6= Ai, we have

−BiBk + Ai + Ak = 0, −BjBk + Aj + Ak = 0. (4.8)

It follows from (4.8) that (Bi − Bj)Bk = 0, which implies that Bk = 0. Thus by (4.8), we
obtain Ak = −Ai = −Aj . This implies that t = 2, contradicting the assumption.

Corollary 4.4 If t ≥ 3, then there exists an orthonormal frame field {Ei} such that

Aij = Aiδij , Bij = Biδij . (4.9)

Furthermore, if (4.5) holds, then

(Bij) = Diag(µ1, · · · , µ1︸ ︷︷ ︸
k1

, µ2, · · · , µ2︸ ︷︷ ︸
k2

, · · · , µt, · · · , µt︸ ︷︷ ︸
kt

), (4.10)

that is
B1 = · · · = Bk1 = µ1, · · · , Bm−kt+1 = · · · = Bm = µt. (4.11)

Proof Since A is parallel, we can find a local orthonormal frame field {Ei}, such that
(4.5) holds. It then suffices to show that, at any point, the component matrix (Bij) of B

with respect to {Ei} is diagonal. Note that k1, . . . , kt are the multiplicities of the eigenvalues
λ1, · · · , λt, respectively. By Lemma 4.2, we can write (Bij) = Diag(B(1), · · · , B(t)), where
B(1), · · · , B(t) are square matrices of orders k1, · · · , kt, respectively. For any point p, we can
choose a suitable orthogonal matrix T of the form T = Diag(T(1), · · · , T(t)), with T(1), · · · , T(t)

being orthogonal matrices of orders k1, · · · , kt, such that

T · (Bij(p)) · T−1 = Diag(B1, · · · , Bm),

where B1, · · · , Bm are the eigenvalues of tensor B at p. It then follows from Lemma 4.3 that
B1 = · · · = Bk1 := µ1, · · · , Bm−kt+1 = · · · = Bm := µt. Hence

T(1)B(1)(p)T−1
(1) = Diag(µ1, · · · , µ1), (4.12)

...

...

T(t)B(t)(p)T−1
(t) = Diag(µt, · · · , µt). (4.13)
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Therefore
B(1)(p) = T−1

(1) ·Diag(µ1, · · · , µ1) · T(1) = Diag(µ1, · · · , µ1). (4.14)

In the same way,

B(2)(p) = Diag(µ2, · · · , µ2), · · · , B(t)(p) = Diag(µt, · · · , µt). (4.15)

Thus
(Bij(p)) = Diag(µ1, · · · , µ1, · · · , µt, · · · , µt).

Lemma 4.5 If t ≥ 3, then all the conformal principal curvatures µ1, · · · , µt of x are
constant, and hence x is conformal isoparametric.

Proof Without loss of generality, we only need to show that µ1 is constant. To this
end, choose a frame field {Ei} such that (4.5) and (4.10) hold. Note that, by (4.3), when
1 ≤ i ≤ k1 and j > k1, we have

∑
Bijkω

k = dBij −
∑

Bkjω
k
i −

∑
Bikω

k
j = 0,

which implies that Bijk = 0.
By Lemma 4.1, Φ ≡ 0. Hence from (2.12) one seen that Bijk is symmetric with respect

to i, j, k. It follows that Bijk = 0, in case that two indices in i, j, k are less than or equal to
k1 with the other index larger than k1, or one index in i, j, k is less than or equal to k1 with
the other two indices larger than k1. In particular, for any i, j satisfying 1 ≤ i, j ≤ k1,

k1∑
k=1

Bijkω
k = dBij −

∑
Bkjω

k
i −

∑
Bikω

k
j = dBiδij −Bjω

j
i −Biω

i
j .

Putting j = i, one obtains
k1∑

k=1

Biikω
k = dµ1, (4.16)

which implies that
Ek(µ1) = 0, k1 + 1 ≤ k ≤ m. (4.17)

Similarly,
Ei(Bj) = 0, 1 ≤ i ≤ k1, k1 + 1 ≤ j ≤ m. (4.18)

On the other hand, we see from (4.7) that

−µ1Bj + λ1 + Aj = 0, k1 + 1 ≤ j ≤ m (4.19)

hold identically. Differentiating (4.19) in the direction of Ek, 1 ≤ k ≤ k1, and using (4.18),
we obtain

Ek(µ1)Bj = 0, 1 ≤ k ≤ k1, k1 + 1 ≤ j ≤ m.

By (2.14) there exists some index j such that k1 + 1 ≤ j ≤ m and Bj 6= 0. Therefore,
Ek(µ1) = 0 for 1 ≤ k ≤ k1. This together with (4.17) implies that µ1 is a constant.
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Corollary 4.6 If t ≥ 3, then t = 3 and B is parallel.
Proof Indeed, the conclusion that B is parallel comes from (4.3), Corollary 4.4 and

Lemma 4.5.
If t > 3, then there exist at least four indices i1, i2, i3, i4, such that Ai1 , Ai2 , Ai3 , Ai4 are

distinct each other. Then it follows from (4.7) that

−Bi1Bi2 + Ai1 + Ai2 = 0, −Bi3Bi4 + Ai3 + Ai4 = 0, (4.20)

−Bi1Bi3 + Ai1 + Ai3 = 0, −Bi2Bi4 + Ai2 + Ai4 = 0. (4.21)

Consequently, we obtain (Ai1 −Ai4)(Ai2 −Ai3) = 0, a contradiction.
Lemma 4.7 If t ≤ 2 and B is not parallel, then one of the following cases holds:
(1) t = 1 and x is conformal isotropic;
(2) t = 2, λ1 + λ2 = 0 and Bi = 0 either for all 1 ≤ i ≤ k1, or for all k1 + 1 ≤ i ≤ m.
Proof Note that Φ ≡ 0. Thus x is conformal isotropic if and only if t = 1.
If t = 2, then for any point p ∈ Mm, we can find an orthonormal frame field {Ei} such

that (4.9) holds at p.
By (4.3), we see that

ωi
j = 0, 1 ≤ i ≤ k1, k1 + 1 ≤ j ≤ m (4.22)

hold identically. Taking exterior differentiation of (4.22) and making use of (2.13), we find
that, at p

−BiBj + Ai + Aj = 0, 1 ≤ i ≤ k1, k1 + 1 ≤ j ≤ m. (4.23)

If there exist one pair of indices i0, j0 satisfying 1 ≤ i0 ≤ k1, k1 + 1 ≤ j0 ≤ m such that
Bi0 6= 0 and Bj0 6= 0, then for each index i satisfying 1 ≤ i ≤ k1, we obtain

−Bi0Bj0 + Ai0 + Aj0 = 0, −BiBj0 + Ai + Aj0 = 0

from which it follows that (Bi − Bi0)Bj0 = 0, or equivalently Bi = Bi0 , 1 ≤ i ≤ k1.

Similarly, we obtain Bj = Bj0 , k1 + 1 ≤ j ≤ m. Consequently, (4.10) also holds in the
case that t = 2. Now, an argument similar to that in the proof of Lemma 4.5 shows that
the conformal principal curvatures Bi are all constant. Therefore B is parallel by (4.22),
contradicting to the assumption. Thus either Bi = 0 for all indices i satisfying 1 ≤ i ≤ k1,
or Bj = 0 for all indices j satisfying k1 + 1 ≤ j ≤ m. In both cases we have, by (4.23),
λ1 + λ2 = 0.

Proof of Theorem 1.2 By Theorem 1.1 and Theorem 1.2, it clearly suffices to consider
the case that x neither is conformal isotropic nor has parallel conformal second fundamental
form. Hence from those Lemmas proved in this section, we can suppose without loss of
generality that

t = 2, λ1 = −λ2 = λ 6= 0, Bk1+1 = · · · = Bm = 0. (4.24)

Since
∑

Bi = 0 and
∑

B2
i = (m− 1)/m, one sees easily that m ≥ 3. Since A is parallel, the

tangent bundle TMm of Mm has a decomposition TMm = V1⊕V2, where V1 and V2 are the
eigenspaces of A corresponding to the eigenvalues λ1 = λ and λ2 = −λ, respectively.
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Let {Ei ; 1 ≤ i ≤ k1} and {Ej ; k1 + 1 ≤ j ≤ m} be orthonormal frame fields for
subbundles V1 and V2, respectively. Then {Ei ; 1 ≤ i ≤ m} is an orthonormal frame field
on Mm with respect to the conformal metric g. Then (4.22) implies that both V1 and V2

are integrable, and thus Riemannian manifold (Mm, g) can be locally decomposed into a
direct product of two Riemannian manifolds (M1, g1) and (M2, g2), that is, as a Riemannian
manifold, locally

(Mm, g) = (M1, g1)× (M2, g2). (4.25)

It follows from (2.13), (4.5), (4.24) and (4.25) that the Riemannian curvature tensors of
(M1, g1) and (M2, g2) have the following components, respectively,

Rijkl = 2λ(δilδjk − δikδjl) + (BikBjl −BilBjk), 1 ≤ i, j, k, l ≤ k1, (4.26)

Rijkl = −2λ(δilδjk − δikδjl), k1 + 1 ≤ i, j, k, l ≤ m. (4.27)

Thus (M2, g2) is of constant sectional curvature −2λ.
Next we consider the following cases separately.
Case (1) λ > 0. In this case, set r = (2λ)−1/2. Then (M2, g2) can be locally identified

with Hm−k1
(− 1

r2

)
. Let ỹ = (ỹ0, ỹ2) : Hm−k1

(− 1
r2

) → Rm−k1+1
1 be the canonical embedding.

Since h =
k1∑

i,j=1

Bijω
iωj is a Codazzi tensor on (M1, g1), it follows from (4.26) that there

exists a maximal immersed hypersurface

ỹ1 : (M1, g1) → Sk1+1
1 (r) ⊂ Rk1+2

1 , 2 ≤ k1 ≤ m− 1,

which has h as its second fundamental form. Clearly, ỹ1 has constant scalar curvature

S1 =
mk1(k1 − 1) + (m− 1)r2

mr2
,

and Mm can be locally identified with M̃m = (M1, g1)×Hm−k1(− 1
r2 ).

Define x̃1 = ỹ1/ỹ0, x̃2 = ỹ2/ỹ0 and x̃ = (x̃1, x̃2). Then, by the discussion in Example
3.2, x̃ : M̃m → Sm+1

1 yields a regular space-like hypersurface with the given g and B as
its conformal metric and conformal second fundamental form, respectively. Therefore, by
Theorem 2.4, x is conformal equivalent to x̃.

Case (2) λ < 0. In this case, set r = (−2λ)−1/2, then (M2, g2) can be locally identified
with Sm−k1(r). Let ỹ2 : Sm−k1(r) → Rm−k1+1 be the canonical embedding.

Since h =
k1∑

i,j=1

Bijω
iωj is a Codazzi tensor on (M1, g1), it follows from (4.26) that there

exists a maximal immersed hypersurface

ỹ = (ỹ0, ỹ1) : (M1, g1) → Hk1+1
1

(
− 1

r2

)
⊂ Rk1+2

2 , 2 ≤ k1 ≤ m− 1,

which has h as its second fundamental form. Clearly, ỹ has constant scalar curvature

S1 =
−mk1(k1 − 1) + (m− 1)r2

mr2
,
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and Mm can be locally identified with M̃m = (M1, g1)× Sm−k1 (r).
Assume without loss of generality that ỹ0 6= 0. Define ε = Sgn (ỹ0) and let x̃1 = εỹ1/ỹ0,

x̃2 = εỹ2/ỹ0 and x̃ = (x̃1, x̃2). Then, by the discussion in Example 3.3, x̃ : M̃m → Sm+1
1

defines a regular space-like hypersurface with the given g and B as its conformal metric
and conformal second fundamental form, respectively. It follows by Theorem 2.4 that x is
conformal equivalent to x̃.
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[10] Wang Changping. Möbius geometry of submanifolds in Sn[J]. Manus. Math., 1998, 96: 517–534.

de Sitter空间Sm+1
1 中具有平行Blaschke张量的正则类空超曲面

李兴校,宋虹儒

(河南师范大学数学与信息科学学院, 河南新乡 453007)

摘要: 本文引入两个以de Sitter空间为模型的非齐性坐标来覆盖共形空间Qm+1
1 . 利用球面Sm+1中超

曲面的Möbius 几何的方法, 本文研究了Qm+1
1 中正则类空超曲面的共形几何. 作为其结果, 本文对所有具有

平行Blaschke张量的正则类空超曲面进行了完全分类.
关键词: 共形形式; 平行Blaschke张量; 共形度量; 共形第二基本形式; 极大超曲面; 常数量曲率
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