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1 Introduction

Let R5*™ be the (s + m)-dimensional pseudo-Euclidean space which is the real vector

space R*T™ equipped with the non-degenerate inner product (-, )¢ given by
<X7Y>S = _Xl : Yl + X2 : }/27 X = (X17X2)7 Y = (}/17}/2) ER* X R™ = R8+m7

where the dot “” is the standard Euclidean inner product either on R* or on R™.
Denote by RP™" the real projection space of dimension m + 2. Then the so called

conformal space Q"™ is defined as (see [1])

QP+ = {[¢] € RP™% (¢, )2 = 0},

while, for any a > 0, the de Sitter space S7"**(a) and the anti-de Sitter space H}*** (—%)

a

are defined respectively by

, 1 ,
S0 = (€€ RP (6.6 =) HI™ () = (€ € R 68 = ).
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Then S7"*!(a), H"™! (fa%) and the Lorentzian space R7"™! are called Lorentzian space

forms. Denote S"*' = ST*1(1) and H**' = H}*™' (—1). Define three hyperplanes as

follows

™ :{[II?] € Q{n+1;x1 = xm-‘rQ};
m ={[z] € Q1" Zpmy2 = 0},

m_ ={[zr] € Q""" z; = 0}.

Then there are three conformal diffeomorphisms from the Lorentzian space forms into the

conformal space
oo : R — QU \m,  w— [((w,u)y + 1, 2u, (u,u); — 1)],
or SIS QP T, u— [(Lu)] (1.1)

o HPM - QN7 u—s [(u,1)].

Therefore Q"' is the common conformal compactification of R7"™! S+ and H" .

In the reference [1], Nie at al. successfully set up a unified framework of conformal geom-
etry for both regular surfaces and hypersurfaces in Lorentzian space forms by introducing the
conformal space QTH and some basic conformal invariants, including the conformal metric
g, the conformal form @, the Blaschke tensor A and the conformal second fundamental form
B. Later, all of these were generalized to regular submanifolds of higher codimensions (see
[2]). Under this framework, several characterization or classification theorems were obtained
for hypersurfaces with some special conformal invariants, see for example (see [1, 3]). The
achievement of these certainly proves the efficiency of the above framework. In particular, as
the main theorems, regular hypersurfaces with parallel conformal second fundamental forms,
and conformal isotropic submanifolds were classified in [1] and [2], respectively. Note that,
a regular submanifold in the conformal space Q7""! with vanishing conformal form is called
conformal isotropic if its Blaschke tensor A is parallel to the conformal metric. For the later
use, we rewrite these two theorems applied in the special case of space-like hypersurfaces as
follows.

Theorem 1.1 [1] Let 2 : M™ — Q! be a regular space-like hypersurface with parallel
conformal second fundamental form. Then x is locally conformal equivalent to one of the
following hypersurfaces

1. H* x R % c R, k=1,---,m—1;or

2. S™k(a) x HF (—a21 ) cSrtta>1,k=1,---,m—1;or

—1
3.HF (%) x H™ *(—L;) cH" , 0<a<1l,k=1,--- ,m—1;or

1—a?

4. WP(p,q,a) C R for some constants p, ¢, a, as indicated in Example 3.1.

Theorem 1.2 [2] Any regular, space-like and conformal isotropic hypersurface in Q7!
is conformal equivalent to a maximal, space-like and regular hypersurface in R7"**, ST+ or
H" ! with constant scalar curvature.

We remark that a Mobius classification of umbilic-free hypersurfaces in the unit sphere

with parallel Mobius second fundamental forms was established in [4]. By the way, for
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complete hypersurfaces in H""1(—1) with constant scalar curvature, two rigidity theorems
were proved in [5].

Motivated by the above theorems, we aims in the present paper at a complete classifica-
tion of regular space-like hypersurfaces in QTH with parallel Blaschke tensors. To this end,
we would like to make a direct use of the ideas and technics with which we previously studied
the Mobius geometry of umbile-free hypersurfaces in the unit sphere(see [6-9]). So we firstly
define two conformal non-homogeneous coordinate systems (with the coordinate maps (I\IJ), (&J),
respectively) covering the conformal space Q"**, which are modeled on the de Sitter space
S so that the conformal geometry of the hypersurfaces in Q7! corresponds right to that
of the hypersurfaces in the de Sitter space. It follows that the conformal geometry of regular
hypersurfaces in each of H*** and R7"™" is made unified with that in S7***. This shows that
we only need to consider and study the conformal invariants of the hypersurfaces in S7"**
which plays the same role as the unit sphere does in the M&bius geometry of umbilic-free
submanifolds. With this consideration, we only focus here on the study of the conformal
invariants of regular space-like hypersurfaces in the de Sitter space ST"**. As a result, we are
able to establish a complete classification for all the regular space-like hypersurfaces with
parallel Blaschke tensors.

Note that the above two conformal non-homogeneous coordinate maps (\i/) and (\i/) are

conformal equivalent where both of them are defined. Therefore we can use ¥ to denote
either one of &l) and %) By this, the main theorem of the present paper is stated as follows.

Theorem 1.3 Let z : M™ — ST"™', m > 2, be a regular space-like hypersurface. If the
Blaschke tensor A of x is parallel, then one of the following holds.

1. x is conformal isotropic and thus is locally conformal equivalent to a maximal space-
like regular hypersurface in S7""! with constant scalar curvature, or the conformal image
under W oo _; of a maximal regular hypersurface in H}*** with constant scalar curvature, or
the conformal image under ¥ o o of a maximal regular hypersurface in R7**! with constant
scalar curvature;

2. x is of parallel conformal second fundamental form B and thus is locally conformal
equivalent to

(a) the image under ¥ ooy of H* x R™* c RP"*' k=1,---m —1;or

(b) S F(a) x HF (—55) c S, a>1,k=1,---m—1;0r

(¢) the image under ¥ oo_; of H* (—%) x H" % (—25) Cc H""', 0 < a < 1,k =

1—a?

1,---m—1;or

(d) WP(p,q,a) C R for some constants p, ¢, a.

3. x is non-isotropic with a non-parallel conformal second fundamental form B and is
locally conformal equivalent to

(a) one of the maximal hypersurfaces as indicated in Example 3.2; or

(b) one of the non-maximal hypersurfaces as indicated in Example 3.3.

Remark 1.1 It is directly verified in Section 3 that each of the regular space-like

hypersurfaces stated in the above theorem has a parallel Blaschke tensor.
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2 Necessary Basics on Regular Space-Like Hypersurfaces

This section provides some basics of the conformal geometry of regular space-like hy-
persurfaces in the Lorentzian space forms. The main idea comes originally from the work
of Wang on the M&bius geometry of umbilic-free submanifolds in the unit sphere (see [10]),
and much of the detail can be found in a series of papers by Nie at al (see for example [1-3]).

Let z : M™ — ST € R be a regular space-like hypersurface in S™™'. Denote by
h the (scalar-valued) second fundamental form of x with components h,;; and H = %trh
the mean curvature. Define the conformal factor p > 0 and the conformal position Y of x,

respectively, as follows
m m p— m
p2 = m(‘hp—m‘le), sz(l,:[:) GR% XRI +2 :RQ +3. (21)
Then Y (M™) is clearly included in the light cone C™*2? C Ry""? where

C™H2 = {£ e Ry (€,€)2 = 0,€ # 0}

The positivity of p implies that Y : M™ — R is an immersion of M™ into the Ryt
Clearly, the metric g := (dY,dY )y = p*(dz,dz); on M™, induced by Y and called the con-
formal metric, is invariant under the pseudo-orthogonal group O(m + 3,2) of linear trans-
formations on R5**? reserving the Lorentzian product (-,-),. Such kind of things are called
the conformal invariants of x.

Definition 2.1 (see [1-3]) Let z,# : M™ — ST be two regular space-like hypersur-
faces with Y,Y their conformal positions, respectively. If there exists some T € O(m + 3,2)
such that Y = T(Y), then x, & are called conformal equivalent to each other.

For any local orthonormal frame field {e;} and the dual {6’} on M™ with respect to
the standard metric (dz, dzx),, define

Ei=ple, w =pb. (2.2)

Then {E;} is a local orthonormal frame field with respect to the conformal metric g with
{w'} its dual coframe. Let n be the time-like unit normal of x. Define £ = (—H,—Hz +n),
then (£,£); = —1. Let A denote the Laplacian with respect to the conformal metric g.
Define N : M™ — R} by

1 1
N = ——AY - 5 (AV,AY),Y. (2.3)
Then it holds that
<AKY>2 =—-m, <KY>2 = <N7 N>2 =0, <Y?N>2 =1 (24)

Furthermore, {Y, N,Y;, £, 1 <i <m} forms a moving frame in Ry"** along Y, with respect
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to which the equations of motion is as follows

dy = ZY,;M,

AN =" 4Yi + ¢,

dY; ==Y —w; N+ w;¥Vj + 78,
| dE=¢V +) 7Y

By the exterior differentiation of (2.5) and using Cartan’s lemma, we can write
(b = Z @iwi, wl = ZAijwj, Aij = Aji) T = Z Bijwj, Bij = Bﬂ (26)
i J J

Then the conformal form ®, the Blaschke tensor A and the conformal second fundamental
form B defined by

=) P, A=) Apww, B=) Bjww
i i,j 2%}

are all conformal invariants. By a long but direct computation, we find that

Ajj =~ (Y5, N)2 = —p~*((log p) i — ei(log p)e; (log p) + hi; H)
%(me|mtn% (27)
— (Y35, &)2 = p~ ' (hij — Hbyy), (2.8)
— (& dN)2 = —p~?[(hij — Hdyj)e;(log p) + e;(H)], (2.9)

where Y;; = E;(Y;), V is the Levi-Civita connection of the standard metric (-,-);, and the
subscript ;; denotes the covariant derivatives with respect to V. The differentiation of (2.5)
also gives the following integrability conditions

®ij — @i = Z(BikAkj — Bj Aki), (2.10)
Aijr — Aixj = Bi;j @, — By @, (2.11)
Bijkx — Bikj = 0;;Pr — 6P, (2.12)
Rijr = Z(Bikle — BuBji) + Audjr — Aidji + Ajidi — Aj1dig, (2.13)

where A;ji, Biji, ®;; are respectively the components of the covariant derivatives of A, B,
®, and R, is the components of the Riemannian curvature tensor of the conformal metric
g. Furthermore, by (2.1) and (2.8) we have

-1
wB =3 Bu=0, B =3 (Bu) = = =, 2.14)

m

and by (2.13) we find the Ricci curvature tensor

Rij = BBy +0;tr A+ (m — 2)Ay, (2.15)
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which implies that
1
trA = %(mzn —1) (2.16)

with x being the normalized scalar curvature of g.

It is easily seen [1] that the conformal position vector Y defined above is exactly the
canonical lift of the composition map £ = ojo0xz : M™ — (@71’”“1, implying that the conformal
invariants g, ®, A, B defined above are the same as those of  introduced by Nie at al. in [1].

On the other hand, the conformal space Q7" is clearly covered by the following two

open sets

Ur = {ly € Q"9 = (y1,42,93) € Ry x Ry x R™™ =Ry 4y # 0},

Us = {[y] € QI = (41,90, y3) € R x RY x R™T1 = Ry 5 # 0} . (2.17)
Define the following two diffeomorphisms
.U, S a=1,2 (2.18)
by
W ([9) = vi (2 ) for [y) € Ur, 4 = (1,92 0); (2.19)
U ([y) = u> (91,9) for 9] € Ua, y = (1,92 4)- (2.20)

Then with respect to the conformal structure on Q""" introduced in [1] and the standard

&) @
. 1
metric on S7**', both ¥ and ¥ are conformal.

Now for a regular space-like hypersurface z : M™ — Q’{‘H with the canonical lift
Y : M™— C™? C Ry

write Y = (Y1,Y5,Y3) € R}l x R} x R™"'. Then we have the following two composed
hypersurfaces

@ (a) (a) (a)
@=Wo | :M— ST, M={pe M;z(p) €U}, a=1,2 (2.21)
M

COINC)
Then M™ =M |J M, and the following lemma is clearly true by a direct computation:

&)
Lemma 2.1 The conformal position vector Y of 2 is nothing but Y|.,, while the
M

.- @ L@, .
conformal position vector Y of Z is given by

0 1
2) 0
Y=T(Y|x), where T=1] 1 0 : (2.22)
M

0 Ierl

Corollary 2.2 The basic conformal invariants g, ®, A, B of T coincide accordingly with

1) (2) o @, :
those of each of x and = on where 2 or 2 is defined, respectively.
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€) @
Therefore ¥ and ¥ can be viewed as two non-homogenous coordinate maps preserving

the conformal invariants of the regular space-like hypersurfaces.
COINC)
Corollary 2.3 % and 7 are conformal equivalent to each other on M N M.
On the other hand, all the regular space-like hypersurfaces in the three Lorentzian space

forms can be viewed as ones in QTH via the conformal embeddings o1, 09 and o_; defined
e) @
in (1.1). Now, using ¥ and W, one can shift the conformal geometry of regular space-like

hypersurfaces in Q7" to that of regular space-like hypersurfaces in the de Sitter space ST,
It follows that, in a sense, the conformal geometry of regular space-like hypersurfaces can
also be unified as that of the corresponding hypersurfaces in the de Sitter space. Concisely,

we can achieve this simply by introducing the following four conformal maps

1y @ (1)m+1 mal 2u 1-— <U, u)

_ : S 2.23
g \I]OO'O Rl — 1 ) UH(1—|—<U7U>,1+<U,U> ’ ( )
(S'):(&J)O gp - (Hi??ln—‘rl — S;n+17 U — 1 + <u’ u> 9 %’ 1 — <u’ u> ) (224)

2uq Uy 2uy
1 1
(71'):(\11)0 g_1: iﬁﬁn+1 - ST+17 Yy <y27 %7 ) ’ (225)
Y 1
( ) 1
P=Wo oy T - 81,y (“’) (2.26)
Ya2 Y2 Y2
where
&)
RP = {u € RPMS 1+ (u,u) # 0}, (2.27)
@)
R = {u = (u1, 1) € Ry uy # 0}, (2.28)
)
H' = {y = (y1,92,y3) € H" 501 # 0}, (2:29)
2)
HY ™ = {y = (y1,y2,y3) € HI" ;95 # 0} (2.30)

The following theorem will be used later in this paper.
Theorem 2.4 [2] Two hypersurfaces = : M™ — SP*! and  : M™ — ST (m > 3)
are conformal equivalent if and only if there exists a diffeomorphism f : M — M which

preserves the conformal metric and the conformal second fundamental form.

3 Examples

Before proving the main theorem, we first present some regular space-like hypersurfaces
in STt with parallel Blaschke tensors.

Example 3.1 (see [1, 4]) Let R* be the half line of positive real numbers. For any
two given natural numbers p,q with p + ¢ < m and a real number a > 1, consider the
hypersurface of warped product embedding

1
w: HY <— 5 1> x SP(a) x Rt x R™P-a-1 , Rt
a2 —
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defined by

U = (tul,tu",um)a where v’ € H? (_ ) ’ W e Sp(a% te R+’ u" € RMP—a-1.

a?—1
Then Z := 0 o u is a regular space-like hypersurface in the conformal space Q""" with
parallel conformal second fundamental form. This hypersurface is denoted as W P(p, ¢, a) in
[1]. By Proposition 3.1 together with its proof in [1], Z is also of parallel Blaschke tensor. It

follows from Corollary 2.2 that the composition map

1
r=Voz:H! (— 1> x SP(a) x RT x Rm—P=e~1 _, gmtl

a —
where ¥ denotes ¥ or (\i/), defines a regular space-like hypersurface in S**' with both parallel
conformal second fundamental form and parallel Blaschke tensor. For convenience, we also
denote = by the same symbol WP(p,q,a). Note that, by a direct calculation, one easily
finds that W P(p, q,a) has exactly three distinct conformal principal curvatures.

The similar example of W P(p, q,a) in M6bius geometry was originally found by [4] and
denoted by CSS(p,q,a).

Example 3.2 Given r > 0. For any integers m and K satisfying m > 3 and 2 < K <
m— 1, let §; : MF — SK*1(r) € RE*? be a regular and maximal space-like hypersurface
with constant scalar curvature

g = mK(K — 1)+ (m —1)r? 3.1)

mr2

and

y o, Y m= 1 m— m—
= (o) 1 (— ) REx R =Ry

be the canonical embedding, where ¢, > 0. Set

~h

- 1 -~ -
M™ = Mll{ X HmiK <—> 5 - (y()yylay?)' (32)

r2
Then Y : M™ — R+ is an immersion satisfying (Y,Y), = 0. The induced metric
g ={dY,dY)y = —dij + (dijr, dj1)1 + dija - dij2
by Y is clearly a Riemannian one, and thus as Riemannian manifolds we have
(317,9) = (O, i) > (57 (<) i ). (33)

Define
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Then 2 = 1 and thus we have a smooth map & : M™ — S7"*!. Clearly,

. dy 1. .
dz = 2120 (U1, 92) + —(dy, dij2). (3.5)
Yo Yo

Therefore the induced “metric” § = d¥ - d¥ is derived as

9= 9o digg (G, )1 + 2 - §2) + Jo > ((dfir, dfa)1 + djz - difa)

— 2G5 *dgio (91, diir )1 + G2 - dijz) (3.6)
= G *(dgs + g + diig — 2dg3) (3.7)
=79, (3.8)

implying that & is a regular space-like hypersurface.

If 72, is the time-like unit normal vector field of 7; in SK*'(r) ¢ RE*2 then n =
(f1,0) € R is a time-like unit normal vector field of #. Consequently, by (3.5), the
second fundamental form h of Z is given by

h = (dir,dz)1 = ((ds,0), — G *dijo(§1, F2) + Jo " (dfir, dfia))1

B 3 R ) (3.9)
= — o 2dio(diir, §1)1 + Ty {dir, din )1 = o b,

where h is the second fundamental form of §; : M — SK+1,

Let {E;;1 <i < K} (resp. {E;;K+1<1i<m})be alocal orthonormal frame field on
(My,dg}) (resp. on H™ ¥ (—%)). Then {E;;1 < i < m} gives a local orthonormal frame
field on (]\me,g). Put e; = goE;, i =1,--- ,m. Then {e; ;1 < i <m} is a orthonormal frame
field along Z. Thus we obtain

hij = hlei, e;) = Goh(E;i, E;) = (3.10)

~ Hoh(Es, E;) = Gohaj, when 1 <4,5 < K,
0, otherwise.

Since the mean curvature of §; = 0 by the maximality of §;, the mean curvature H of &

vanishes. Therefore

_ m . . _
=7 (Zh?j—m|H|2> _7% Zh = 7o,
i

1,j=1

where we have used the Gauss equation and (3.1). It follows that Z is regular and its
conformal factor p = 5. Thus Y, given in (3.2), is exactly the conformal position vector of
#, implying the induced metric ¢ by Y is nothing but the conformal metric of Z. Furthermore,

the conformal second fundamental form of ¥ is given by

B= pt Z(ﬁlj — Hojj)w il = Z hmw W’ (3.11)

3,j=1

where {w'} is the local coframe field on M™ dual to {E;}.
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On the other hand, by (3.3) and the Gauss equations of ¢; and ¢, one finds that the

Ricci tensor of g is given as follows

K1 -
Ry ZTT% +;hikhk]’7 if1<4,j<K, (3.12)
Ry = — m_rifj_léij, K +1<i,j<m, (3.13)
R;=0,if1<i<K K+1<j<m,or K+1<i<m,1<j<K, (3.14)

which implies that the normalized scalar curvature of g is given by

H:m(K(K_l)_(m_K)(m_K_l))—f-(m—l)r?.

m2(m — 1)r2 (3.15)
hus 1 K(K —1) = (m - K)(m—K —1)
%(mQH -1)= S(m — 1) . (3.16)

Since m > 3, it follows from (2.15) and (3.11)—(3.16) that the Blaschke tensor of Z is
given by A = > A;;w'w’, where

1 . . 1 . .
A; =0, f1<i<K K+1<j<m,or K+1<i<m,1<j<K. (3.18)
Clearly, A has two distinct eigenvalues A\; = =Xy = #, which are constant. Thus by

(3.3), A is parallel.
Example 3.3 Given r > 0. For any integers m and K satisfying m > 3 and 2 < K <
m—1, let
1
g ME — HEH (_1‘2> C RE*2
be a regular and maximal space-like hypersurface with constant scalar curvature

gl:—mK(K—1)—!—(m—1)r2 (3.19)

mr2

and g : S (r) — R™ K+1 be the canonical embedding. Set
M™ = M x§"5(r), ¥ = (5,5), (3.20)

then (Y,Y)y = 0. Thus we have an immersion Y : M™ — C”™*2 ¢ R""® with the induced
metric g = (dY,dY )y = (dfj, dij)s + djs - dijs, which is certainly positive definite. It follows

that, as Riemannian manifolds

(M™, g) = (My,{dg, djj)2) x (S™%(r),dj3) . (3.21)
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If we write § = (90,7, 7") € Rl x Rl x RE = RE™2, then §j, and 4| can not be zero
simultaneously. So without loss of generality, we can assume that gy # 0. In this case, we
denote € = Sgn (o) and write g, := (7}, 7). Define

=L a5 = ?, T = e(T1,T2). (3.22)

o’ Yo
Then # € R7™*2 42 = 1 and, similar to that in Example 3.2, & : M™ — S7*! defines a

regular space-like hypersurface. In fact, since

s dgoy . . |
edit = — 2 (i1, ) + —(dijr, difa), (3.23)
Yo Yo

the induced metric g = dz - dx is related to g by
9 =70 dijg (1, Gr)r + G2 - G2) + Jo > ((dijr, dijn)1 + difs - djz)
— 24 *dgio (G, dn)1 + o - dija)
217072(*(1@3 + <d3717 d?j1>1 + Yz - dﬂz)
=0 29 (3.24)

Suitably choose the time-like unit normal vector field (7, 721) of g, define
i = (f1,0) — efip® € RY"H2,

Then (n,n); = —1,(n,z); = 0,(n,dZ); = 0 indicating that n is a time-like unit normal

vector field of . The second fundamental form h of Z is given by

h =(dn,dz); = ((diy,0) — edigZ — engdi, dz),

=c(J5 "h — 70Ty 29), (3.25)

where h is the second fundamental form of 3.

Let {E;;1 <i < K} (resp. {E;; K+1<1i<m}) be alocal orthonormal frame field on
(M, dy?) (resp. on S™~K(r)). Then {E;;1 < i < m} is a local orthonormal frame field on
(M™,g). Put e; = egoE;, i = 1,--- ,m. Then {e;;1 <i < m} is a local orthonormal frame
field with respect to the metric § = (dZ,dz);. Thus

e(Yohi; — nodij), when 1 <1i,j < K,
iLij = ;L(ei»ej> = gg;l(Ez,E]) = _eﬁOg(Ei,Ej) = _Eﬁoéij) when K + 1 < Z,j < m,
0, for other i, j.

(3.26)
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By the maximality of ¢;, the mean curvature of Z is

~ 1 ~ 1 1
H=— hii = e—(goKH, — Kng) —e—(m — K)ng = —en 3.27
m Z m(yo 1 — Kio) Em(m )7 Mg (3.27)
and
|h)* = Z 2+ 7207 — 2iggjohi;0i + Z )62 = fioh? + mii2. (3.28)
i,j=1 i,j=K+1

Therefore, by definition, the conformal factor p of Z is determined by

N m , .
~ s (o e ) < O
,J

where we have used the Gauss equation and (3.19). Hence p = || = €Jo > 0 and thus
Y = j(1, %) is the conformal position vector of Z. Consequently, the conformal metric of &
is defined by (dY,dY ), = g. Furthermore, the conformal second fundamental form of & is
given by

B =p"Y(hiy; — Héj)w'w’ = Z hijw'w? (3.29)

,j=1

where {w'} is the local coframe field on M™ dual to {E;}.
On the other hand, by (3.21) and the Gauss equations of §; and g, one finds the Ricci

tensor of g as follows

K—1 K
Rijz—ﬁaiﬁ;hikhw, if1<i,j<K, (3.30)
Rz‘jzm_rif_l%, if K+1<4,j<m, (3.31)
Ri;j=0, if1<i<K K+1<j<m,or K+1<i<m,1<j<K, (3.32)

which implies that the normalized scalar curvature of g is given by

L I (3.3

Thus
1 m—K)(m-K-1)—K(K-1)

o 1) = 2(m — 1)12

Since m > 3, it follows from (2.15) and (3.29)—(3.34) that the Blaschke tensor of Z is
given by A = > A;;w'w?, where

(3.34)

1 . . 1 . .
Aij = — ﬁéij, if 1 S 1,7 S K, Aij = ﬁ&j, lfK+ 1 S 1,7 S m, (335)

A; =0, f1<i<K K+1<j<m,orK+1<i<m,1<j<K, (3.36)
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which, once again, implies that A is parallel with two distinct eigenvalues A\; = =Xy = —55.

4 Proof of Main Theorem

To make the argument more readable, we divide the proof into several lemmas.

Let z : M™ — S"*! be a regular space-like hypersurface.

Lemma 4.1 If the Blaschke tensor A is parallel, then the conformal form & vanishes
identically.

Proof For any given point p € M™, take an orthonormal frame field {E;} around p
with respect to the conformal metric g, such that B;;(p) = B;0;;. Then it follows from (2.11)
that

Aiji — Aikj = Bij®r — Bir®;.

Since A is parallel, A;;; = 0 for any ¢, j, k. Thus at the given point p, we have
Bi(6ij®r(p) — 6i®;(p)) = 0. (4.1)

By (2.14), there are different indices i;,45 such that B;, # 0 and B;, # 0. Then for any

indices 1, j, we have
0, Pi(p) — 04,i®;(p) =0,  04,;Pi(p) — 6:,i®;(p) = 0. (4.2)

If ¢ = iy, put j = io; if ¢ # 4y, put j = i;. Then it follows from (4.2) that ®;(p) = 0. By the
arbitrariness of ¢ and p, we obtain that ® = 0.
Remark 4.1 Since A is parallel, then all eigenvalues of the Blaschke tensor A of z are

constant on M™. From the equation
0= Z Aijkwk = dAZ] — Akjwf — Aikw;-“,

we obtain that
wj» =0 in case that 4; # A;. (4.3)

Lemma 4.2 If A is parallel, then B;; = 0 as long as A; # A;.
Proof Since A is parallel, there exists around each point a local orthonormal frame
field {E;} such that
Aij = Aibij. (4.4)

It follows from (2.10) and Lemma 4.1 that > Bz Ay; — AixBrj = ®;; — ®;; = 0. Then we
have B;;(A; — A;) = 0.

Now, let ¢ be the number of the distinct eigenvalues of A, and Ay, -+, A; denote the
distinct eigenvalues of A. Fix a suitably chosen orthonormal frame field {E;} for which the

matrix (A;;) can be written as

(AZj) == Dlag(/\h : 7>\17)\27' o 7)‘2"' . 7)‘t7 e 7)\t>7 (45)
Vv Hﬂ
k1 k2 ki
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or equivalently,
Al == Akl = /\1)"' 7Am—kt+1 == Am = )‘t‘ (46)

Lemma 4.3 Suppose that ¢ > 3. If, with respect to an orthonormal frame field {E;},
(4.5) holds and at a point p, B;; = B;6;;, then B; = B, in the case that A; = A;.

Proof By (4.3), for any i, j satisfying A; # A;, we have w;- = 0. Differentiating this
equation, we obtain from (2.13) that 0 = R;j;; = B}, — BiiBj; + Aii — Aijoi; + Aj; — Aijdij.
Thus at p, it holds that

—B;B;j+A;+A4; =0. (4.7)

If there exist indices ¢,j such that A, = A; but B; # B,, then for all k satisfying

Ay # A;, we have

—B;B, +A; + A, =0, —B;By, + Aj + A, = 0. (48)

It follows from (4.8) that (B; — B;)By, = 0, which implies that B, = 0. Thus by (4.8), we
obtain Ay = —A; = —A;. This implies that ¢ = 2, contradicting the assumption.
Corollary 4.4 If t > 3, then there exists an orthonormal frame field {E;} such that

Furthermore, if (4.5) holds, then
(BU) = Diag(,ula Y VA Y 15 PR U PA U 7 P a,ut>7 (410>
—_———
k1 ko k¢
that is
BIZ"':Blﬂ:Ml,"'7Bm7kt+1:"‘:Bm:.ut' (411)

Proof Since A is parallel, we can find a local orthonormal frame field {E;}, such that
(4.5) holds. It then suffices to show that, at any point, the component matrix (B;;) of B
with respect to { E;} is diagonal. Note that kq, ..., k; are the multiplicities of the eigenvalues
A1y, Ay, respectively. By Lemma 4.2, we can write (B;;) = Diag(Bq),- -, B()), where
By, -+, By are square matrices of orders ki, - - - , k;, respectively. For any point p, we can
choose a suitable orthogonal matrix 7" of the form T = Diag(7\1), - - - , T{¢)), with T(ay, - -, T(p

being orthogonal matrices of orders ky, - - - , k¢, such that

T -(Bi(p))- T~ = Diag(By,- -+ , Bim),

where By, .-, B, are the eigenvalues of tensor B at p. It then follows from Lemma 4.3 that
By=---=By, =1, ,Bp_p41 == By, := ;. Hence
TyBy(p) Ty = Diag(pa, -+, ), (4.12)

Tty By (p)T ;) = Diag(pe, -+, pue)- (4.13)
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Therefore
Buy(p) = Ty - Diag(pu, -+, 1) - Ttry = Diag(pur, -+, ). (4.14)

In the same way,

B(2) (p) = Diag(:u% T 3/1'2)’ T 7B(t)<p> = Diag(:u't? T mut)' (4'15>
Thus
(BlJ(p)) = Diag(ula RS VS P L P a:ut)'
Lemma 4.5 If ¢ > 3, then all the conformal principal curvatures puq,--- ,us of x are

constant, and hence x is conformal isoparametric.

Proof Without loss of generality, we only need to show that p; is constant. To this
end, choose a frame field {E;} such that (4.5) and (4.10) hold. Note that, by (4.3), when
1<i<k;and j> ki, we have

Z Bijkwk = dBlj — Z Bkjwf — Z BikW;C =0,

which implies that B;j;, = 0.

By Lemma 4.1, ® = 0. Hence from (2.12) one seen that B;j; is symmetric with respect
to i, j, k. It follows that B;j; = 0, in case that two indices in 1, j, k are less than or equal to
k1 with the other index larger than ki, or one index in ¢, j, k is less than or equal to k; with

the other two indices larger than k;. In particular, for any i, j satisfying 1 <4,j < kq,
Z Bijkwk = dBij — Z Bkjwf — Z Bbkwf = deéu — B](AJi — Bzw;
k=1

Putting j = i, one obtains

k1
Z Bipw"* = duy, (4.16)
k=1
which implies that
Ep(u) =0, k+1<k<m. (4.17)
Similarly,
Ei(Bj)=0, 1<i<ky, ki+1<j<m. (4.18)

On the other hand, we see from (4.7) that
*/JllBj“r)\lﬂ’Aj :0, k1+1 S] §m (419)

hold identically. Differentiating (4.19) in the direction of Ej, 1 < k < k;, and using (4.18),
we obtain
Ep(p1)B; =0, 1<k<k, ki+1<j<m.

By (2.14) there exists some index j such that k1 +1 < j < m and B; # 0. Therefore,
Ei(p1) =0 for 1 < k < ky. This together with (4.17) implies that u is a constant.
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Corollary 4.6 Ift¢ > 3, then t = 3 and B is parallel.

Proof Indeed, the conclusion that B is parallel comes from (4.3), Corollary 4.4 and
Lemma 4.5.

If ¢t > 3, then there exist at least four indices i1, i, i3, 44, such that A;, , A;,, A;,, A;, are
distinct each other. Then it follows from (4.7) that

- BB, +A,+A4,=0, —B.B;,+A;,+A4;, =0, (4.20)
- BB, +A,+A,=0, —-B.,B;,+A,+A;, =0. (4.21)

Consequently, we obtain (A4;, — 4;,)(A

Lemma 4.7 If t <2 and B is not parallel, then one of the following cases holds:

i i) (Ai, — A;,) =0, a contradiction.
(1) t =1 and z is conformal isotropic;
(2) t =2, A1 + A2 =0 and B; = 0 either for all 1 <4 < kq, or for all k1 +1 < i < m.
Proof Note that ® = 0. Thus z is conformal isotropic if and only if ¢t = 1.
If t = 2, then for any point p € M™, we can find an orthonormal frame field {F;} such
that (4.9) holds at p.

By (4.3), we see that
wi=0, 1<i<k, k+1<j<m (4.22)

hold identically. Taking exterior differentiation of (4.22) and making use of (2.13), we find
that, at p

If there exist one pair of indices ig, jo satisfying 1 < ig < ki, k1 +1 < jg < m such that
B;, # 0 and Bj, # 0, then for each index ¢ satisfying 1 < i < k;, we obtain

_Biijo + Aio + Ajo = 0? _BiBjo + Ai + Ajo =0

from which it follows that (B; — B;,)Bj, = 0, or equivalently B; = B;,, 1 < i < ky.
Similarly, we obtain B; = B;,, ki +1 < j < m. Consequently, (4.10) also holds in the
case that ¢t = 2. Now, an argument similar to that in the proof of Lemma 4.5 shows that
the conformal principal curvatures B; are all constant. Therefore B is parallel by (4.22),
contradicting to the assumption. Thus either B; = 0 for all indices i satisfying 1 < i < ky,
or B; = 0 for all indices j satisfying k; +1 < j < m. In both cases we have, by (4.23),
AL+ A2 =0.

Proof of Theorem 1.2 By Theorem 1.1 and Theorem 1.2, it clearly suffices to consider
the case that = neither is conformal isotropic nor has parallel conformal second fundamental
form. Hence from those Lemmas proved in this section, we can suppose without loss of
generality that

t=2 M=—-X=AX#0, Byt1=-=B,=0. (4.24)

Since " B; =0 and Y B? = (m —1)/m, one sees easily that m > 3. Since A is parallel, the
tangent bundle TM™ of M™ has a decomposition TM™ = V; & V5, where V; and V5 are the

eigenspaces of A corresponding to the eigenvalues A\; = A and Ay = — A, respectively.
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Let {E;;1 < i < ki} and {E;;ki +1 < j < m} be orthonormal frame fields for
subbundles V; and V5, respectively. Then {E;;1 < ¢ < m} is an orthonormal frame field
on M™ with respect to the conformal metric g. Then (4.22) implies that both V; and V3
are integrable, and thus Riemannian manifold (M™, g) can be locally decomposed into a
direct product of two Riemannian manifolds (M, g;) and (Mz, g2), that is, as a Riemannian

manifold, locally
(M™,g) = (M1, 1) x (Ma, ga). (4.25)

It follows from (2.13), (4.5), (4.24) and (4.25) that the Riemannian curvature tensors of
(M, g1) and (Ma, g2) have the following components, respectively,

Rijii = 2X(040% — 0i6j1) + (BixBji — BuBji), 1<i,j,k,1 <k, (4.26)
Rijkl = _2)\(5ilajk — 6ik5jl)7 k’l + 1 S ’i,j, ]C,l S m. (427)

Thus (M, g2) is of constant sectional curvature —2\.
Next we consider the following cases separately.
Case (1) A > 0. In this case, set 7 = (2X)~/2. Then (My, g») can be locally identified

with H™ =% (—%). Let § = (Jo, §2) : H" ™% (= %) — R "' be the canonical embedding.
Since h = ) B;jw'w’ is a Codazzi tensor on (M, g1), it follows from (4.26) that there
ig=1
exists a maximal immersed hypersurface

gl : (Mlagl) - SlflJrl(r) C Rllcl+27 2 S kl S m — 13

which has h as its second fundamental form. Clearly, §; has constant scalar curvature

mki(ky — 1) 4+ (m — 1)r?

2 J

Sy =

mr

and M™ can be locally identified with M™ = (M, g;) x H™ *1(—1).

Define 1 = §1 /%0, T2 = U2/%0 and & = (%1, %2). Then, by the discussion in Example
32,7 : M™ — S™! vields a regular space-like hypersurface with the given g and B as
its conformal metric and conformal second fundamental form, respectively. Therefore, by
Theorem 2.4, z is conformal equivalent to Z.

Case (2) A < 0. In this case, set r = (—2))~'/2, then (My, g2) can be locally identified
with S™=*1(r). Let g : S™ %1 (r) — R™~*1+1 be the canonical embedding.

Since h = Y Bjw'w’ is a Codazzi tensor on (M, g1), it follows from (4.26) that there

i1
exists a maximal immersed hypersurface

- . 1
Yy = (?Janl) : (thl) - HlflJrl <_’I"2> C R§1+27 2 S kl S m — 17

which has h as its second fundamental form. Clearly, 4 has constant scalar curvature

—mk‘l(k‘l - 1) + (m - 1)7‘2
Sl = )

mr?
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and M™ can be locally identified with M™ = (M, g;) x S™ % (r).

Assume without loss of generality that go # 0. Define € = Sgn (7o) and let %1 = g1 /o,
&y = efa/io and & = (#1,%2). Then, by the discussion in Example 3.3, & : M™ — ST"+!
defines a regular space-like hypersurface with the given g and B as its conformal metric
and conformal second fundamental form, respectively. It follows by Theorem 2.4 that z is

conformal equivalent to .
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