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Abstract: In this paper, we mainly study the Hopf-bifurcation and the stability of differential-

algebraic biological economic system with predator harvesting. By using the method of stability tho-

ery and Hopf bifurcation theorem dynamical systems and differential algebraic system, we find some

related conclusions about stability and Hopf-bifurcation. We have improved the ratio-dependent

predator-prey system, take economic effect µ as the bifurcation parameter and make a numerical

simulation by using Matlab at last, so the conclusions are made more practical.
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1 Introduction

According to the lack of biological resources on the earth, more and more people in-
creasingly realized the importance of the modelling and research of biological system. The
predator-prey was one of the most popular models that many researchers [1–8] studied and
acquired some valuable characters of dynamic behavior. For example, the stability of equi-
librium, Hopf bifurcation, flip bifurcation, limit cycle and other relevant conducts. At the
same time, the development and utilization of biological resources and artificial arrest was
researched commonly in the fields of fishery, wildlife and forestry management by some ex-
perts [9–11]. Most of them choose differential equations and difference equations to research
biological models. It is well known that economic profit become more and more important
and take a fundamental gradually situation in social development. In recent years, biologi-
cal economic systems were researched by many authors [12–16], who describe the system by
differential-algebraic equations or differential-difference-algebraic equations.

Basic analysis model which applied by differential-algebraic equations and differential-
difference-algebraic equations are familiar at present. However, there still exist some disad-
vantages in many systems such as harvesting function. In this paper, the main research is
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the stability and Hopf bifurcation of a biological-algebraic biological economic system, which
is changed in some details and meaningful.

Our basic model is based on the following ratio-dependent predator-prey system with
harvest {

u̇ = u(r1 − εv),
v̇ = v(r2 − θ v

u
)− αvE∗,

(1.1)

where u and v represent the predator density and prey density at time t, respectively, ε, θ

and α are all positive constants, and r1 and r2 stand for the densities of predator and prey
populations, and E represents harvesting effort. αEv denotes that the harvests for predator
population are proportional to their densities at time t.

In 1954, Gordon [17] studied the effect of the harvest effort on ecosystem form an
economic perspective and proposed the following economic principle:

Net Economic Revenue (NER) = Total Revenue (TR)− Total Cost (TC).

Associated with system (1.1), an algebraic equation which considers the economic profit
m of the harvest effort on predator can be established as follows

E(t)(pv − q) = m,

where E(t) represents the harvest effort, p denotes harvesting reward per unit harvesting
effort for unit weight, c represents harvesting cost per unit harvesting effort. Combining
the economic theory of fishery resources, we can establish a differential algebraic biological
economic system 




u̇ = u(r1 − εv),
v̇ = v(r2 − θ v

u
)− αvE∗,

0 = E∗(pv − q)−m.

(1.2)

Nevertheless, the capture effect to predator is not always shown in the liner in nature
based on many factors that can affect the predation such as the ability of search, illness and
death. Therefore, the harvesting function of system (1.2) is modified as follows





u̇ = u(r1 − εv),
v̇ = v(r2 − θ v

u
)− αE∗ v

1+γv
,

0 = E∗(p v
1+γv

− q)−m.

(1.3)

To simplify system (1.2), we use these dimensionless variables

x =
ε

θ
u, y = εv, E = αE∗, β =

γ

ε
, c =

εq

p
, µ =

αεm

p

and then obtain the following system




ẋ = x(r1 − y),
ẏ = y(r2 − y

x
)− E y

1+βy
,

0 = E( y
1+βy

− q)− µ.

(1.4)
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For simplicity, let

f(Z, E, µ) =

(
f1(Z, E, µ)
f2(Z, E, µ)

)
=

(
x(r1 − y)

y(r2 − y
x
)− E y

1+βy

)
,

g(Z, E, µ) = E(
y

1 + βy
− q)− µ,

where Z = (x, y)T , µ is a bifurcation parameter, which will be defined in the follows.
In this paper, we discuss the effects of the economic profit on the dynamics of system

(1.4) in the region R3
+ = {(x, y, E)|x > 0, y > 0, E > 0}.

Next, the paper will be organized as follows. In Section 2, the stability of the positive
equilibrium point is discussed by corresponding characteristic equation of system (2.2). In
Section 3, we provide Hopf bifurcation analysis of system (1.4). In Section 4, we use numerical
simulations to illustrate the effectiveness of result. Then give a brief conclusion in Section
5.

2 Local Stability Analysis of System (1.4)

It is obvious that there exists an equilibrium in R3
+ if only if this point χ0 := (x0, y0, E0)T

is a real solution of the equations




x(r1 − y) = 0,

y(r2 − y
x
)− E y

1+βy
= 0,

E( y
1+βy

− q)− µ = 0.

(2.1)

By the calculation, we get

χ0 = (x0, y0, E0) = (
r1G0

r2G0 − µ
, r1,

µ(1 + βr1)
G0

),

where
G = G(y) = y − c(1 + βy), G0 = G(y = r1) = r1 − c(1 + βr1).

According to this analysis procedure, this essay only concentrate on the interior equi-
librium of system (1.4). Based on the ecology meaningful of the interior equilibrium, the
predator and the harvest effort to predator are all exist that it is the key point to the study.
Thus, a simple assumption that the inequality 0 < µ < r2G0 holds in this paper. Following,
we use the linear transformation χT = QMT , where

M = (X, Y, Ē), Q =




1 0 0
0 1 0

0 − E0

y0(1 + βy0)− c(1 + βy0)2
1


 .

Then we obtain Dχg(χ)Q = (0, 0, y0
1+βy0

− c), M = (x, y, µ
G2

0
y + E), where

Ē =
µ

G2
0

y + E =
E0

y0(1 + βy0)− c(1 + βy0)2
y + E.
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Next, let E = Ē − µ
G2

0
y. Thus we transform system (1.4) into





Ẋ = X(r1 − Y ),
Ẏ = Y [r2 − Y

X
+ ( µ

G2
0
Y − Ē) 1

1+βY
],

0 = (Ē − µ
G2

0
Y )( Y

1+βY
− c)− µ.

(2.2)

From Section 1, we obtain

f(M, µ) =

(
f1(M, µ)
f2(M, µ)

)
=

(
X(r1 − Y )

Y [r2 − Y
X

+ ( µ
G2

0
Y − Ē) 1

1+βY
]

)
,

g(M, µ) = (Ē − µ

G2
0

Y )(
Y

1 + βY
− c)− µ.

For system (2.2), we consider the local parametric ψ, which defined as follows

(X, Y, ĒT ) = ψ(Z̄) = MT
0 + U0Z̄ + V0h(Z̄),

where

U0 =




1 0
0 1
0 0


 , V0 =




0
0
1


 , Z̄ = (y1, y2)T , M0 = (X0, Y0, Ē0),

h : R2 → R3 is a smooth mapping. Then we can obtain the parametric system (2.2) as
follows: {

ẏ1 = f1(µ, ψ(µ,M)),
ẏ2 = f2(µ, ψ(µ,M)).

(2.3)

More details about the definition can be found in [18]. Based on system (2.3), we can get
Jacobian matrix E(M0), which takes the form of

E(M0) =

(
DMf1(M0)
DMf2(M0)

)(
DMG1(M0)

UT
0

)−1 (
0
I1

)

=

(
DXf1(M0) DY f1(M0)
DXf2(M0) DY f2(M0)

)

=

(
0 − r1G0

r2G0−µ

(r2 − µ
G0

)2 −r2
µ

G2
0
(2G0 + c)

)
.

Then the following theorem summarizes the stability of the positive equilibrium point of
system (1.4).

Theorem 2.1 For system (2.2)
(i) If (r2 − µ2G0+c

G2
0

)2 > 4r1
r2G0−µ

G0
and µ < min

{
r2G2

0
2G0+c

, r2G0

}
, the positive equilibrium

point of system (1.4) is asymptotically stable; otherwise when r2G2
0

2G0+c
< µ < r2G0, the positive

equilibrium point of system (1.4) is unstable.
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(ii) If (r2−µ2G0+c
G2

0
)2 < 4r1

r2G0−µ
G0

and µ < min
{

r2G2
0

2G0+c
, r2G0

}
, the positive equilibrium

point of system (1.4) is a sink; otherwise when r2G2
0

2G0+c
< µ < r2G0, the positive equilibrium

point of system (1.4) is a source.
Proof First, the characteristic equation of the matrix E(M0) can be written as

λ2 + (r2 − µ
2G0 + c

G2
0

)λ + r1
r2G0 − µ

G0

= 0. (2.4)

Now donate ∆ by

∆ = (r2 − µ
2G0 + c

G2
0

)2 − 4r1
r2G0 − µ

G0

.

If ∆ ≥ 0 and µ < min
{

r2G2
0

2G0+c
, r2G0

}
, eq. (2.4) has two negative real roots; when ∆ ≥ 0

and r2G2
0

2G0+c
< µ < r2G0, eq. (2.4) has two positive real roots. We can obtain part (i) of the

theorem by the Routh-Hurwitz criteria, part (ii) can be similar proofed. Thus, we complete
the proof of Theorem 2.1.

Remark 1 The local stability of χ0 is equivalent to the local stability of M0.
Remark 2 When the roots of eq. (2.4) exist zero real parts, system (1.4) will occur

bifurcation, which will be discussed in Section 3.

3 Hopf Bifurcation Analysis of the Positive Equilibrium

In this section, we discuss the Hopf bifurcation from the equilibrium point χ0 by choosing
µ as the bifurcation parameter. Based on the Hopf bifurcation theorem in [19], we need find
some sufficient conditions.

According to the definition of ∆, we obtain

J± =
(2r2G0 + r2c− 2r1G0)G2

0

(2G0 + c)2
±

√
(2r2G0 + r2c− 2r1G0)2G4

0

(2G0 + c)4
+ B = A±

√
A2 + B,

where

A =
(2r2G0 + r2c− 2r1G0)G2

0

(2G0 + c)2
,

B = (4r1r2 − r2
2) ·

G4
0

(2G0 + c)2
,

here, we assume that A2 + B > 0 in this paper.
Thus, for eq. (2.4), if B > 0 and 0 < µ < min {r2G0, J+}. Eq. (2.4) has one pair of

imaginary roots. When B > 0, A > 0, J− < r2G0 and J− < µ < min {r2G0, J+}, eq. (2.4)
has one pair of imaginary roots.

In the case of meet the above conditions, we can get the roots as follows:

λ1,2 = −1
2
(r2 − µ

2G0 + c

G2
0

)±
√

r1
r2G0 − µ

G0

− 1
4
(r2 − µ

2G0 + c

G2
0

)2

= α(µ)± iω(µ),
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where

α(µ) = −1
2
(r2 − µ

2G0 + c

G2
0

),

iω(µ) =

√
r1

r2G0 − µ

G0

− α2(µ).

By calculating, we obtain

µ0 =
r2G

2
0

2G0 + c
, α′(µ0) =

2G0 + c

G2
0

> 0,

ω0 = ω(µ0) =

√
r1r2(

1
G0

− G0

2G0 + c
). (3.1)

Eq. (3.1) indicates that eq. (2.2) occurs Hopf bifurcation at µ0.

In order to calculate the Hopf bifurcation, we need to lead the normal form of system
(2.2) as follows

ẏ1 = α(µ)y1 − ω(µ)y2 +
1
2
a1

11y
2
1 + a1

12y1y2 +
1
2
a1

22y
2
2 +

1
6
a1

111y
3
1

+
1
2
a1

112y
2
1y2 +

1
2
a1

122y1y
2
2 +

1
6
a1

222y
3
2 + o(|Z̄|4),

ẏ2 = ω(µ)y1 + α(µ)y2 +
1
2
a2

11y
2
1 + a2

12y1y2 +
1
2
a2

22y
2
2 +

1
6
a2

111y
3
1

+
1
2
a2

112y
2
1y2 +

1
2
a2

122y1y
2
2 +

1
6
a2

222y
3
2 + o(|Z̄|4). (3.2)

From eq. (2.3), we have

f1(M, µ) = X(r1 − Y ),

f2(M, µ) = Y [r2 − Y

X
+ (

µ

G2
0

Y − Ē)
1

1 + βY
],

g(M, µ) = (Ē − µ

G2
0

Y )(
Y

1 + βY
− c)− µ.

Then we can easily obtain

DNf1(M, µ) = (r1 − Y,−X, 0),

DNf2(M, µ) = (
Y 2

X2
, r2 − 2Y

X
+ F,

−Y

1 + βY
),

DNg(M, µ) = (0,
µc

G2
0

− F,
Y

1 + βY
− c),

where

F =
µ

G2
0

· 2Y + βY 2

(1 + βY )2
− Ē

(1 + βY )2
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and

Dψ(Z̄, µ) =

(
DNg(M, µ)

UT
0

)−1



0 0
1 0
0 1




=




0 1 0
1 0 1

1+βY
G0

0 1+βY
Y−c(1+βY )

(F − µc
G2

0
)







0 0
1 0
0 1




=




1 0
0 1
0 1+βY

Y−c(1+βY )
(F − µc

G2
0
)


 .

Then we get

f1y1(M, µ) = DNf1(M, µ)Dy1ψ(Z̄, µ) = r1 − Y,

f1y2(M, µ) = DNf1(M, µ)Dy2ψ(Z̄, µ) = −X,

f2y1(M, µ) = DNf2(M, µ)Dy1ψ(Z̄, µ) =
Y 2

X2
,

f2y2(M, µ) = DNf2(M, µ)Dy2ψ(Z̄, µ) =
−Y

Y − c(1 + βY )
(F − µc

G2
0

) + r2 − 2Y

X
+ F.

Thus we have

DNf1y1(M, µ) = (0,−1, 0),

DNf1y2(M, µ) = (−1, 0, 0),

DNf2y1(M, µ) = (−2Y 2

X3
,
2Y

X2
, 0),

DNf2y2(M, µ) = (
2Y

X2
, · · · ,

c

[Y − c(1 + βY )](1 + βY )
).

Then we obtain

f1y1y1(M, µ) = DNf1y1(M, µ)Dy1ψ(Z̄, µ) = 0,

f1y1y2(M, µ) = DNf1y1(M, µ)Dy2ψ(Z̄, µ) = −1,

f1y2y2(M, µ) = DNf1y2(M, µ)Dy2ψ(Z̄, µ) = 0,

f2y1y1(M, µ) = DNf2y1(M, µ)Dy1ψ(Z̄, µ) = −2Y 2

X3
,

f2y1y2(M, µ) = DNf2y1(M, µ)Dy2ψ(Z̄, µ) =
2Y

X2
,

f2y2y2(M, µ) = DNf2y2(M, µ)Dy2ψ(Z̄, µ) =
2c

G2
0

(F + βF − µc

G2
0

− µ

G2
0

)− 2
X

.
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Substituting M0, µ0 into above, we have

f1y1(M0, µ0) = 0, f1y2(M0, µ0) = −X0, f2y1(M0, µ0) =
Y 2

0

X2
0

,

f1y1y2(M0, µ0) = −1, f2y1y1(M0, µ0) = −2Y 2
0

X3
0

, f2y1y2(M0, µ0) =
2Y0

X2
0

,

f2y2y2(M0, µ0) =
2cµ

G4
0

(βc− 1) +
2

X0

.

Now, we get

DNf2y1y1(M, µ) = (
6Y 2

X4
,−4Y

X3
, 0),

DNf2y1y2(M, µ) = (−4Y

X3
,

2
X2

, 0),

DNf2y2y1(M, µ) =
2

X2
,

G0

1 + βY
· ( 2µ

G2
0

− F (1− cβ)),− c(1 + β)
G2

0(1 + βY )2
).

Finally, we obtain

f2y1y1y1 = DNf2y1y1(M, µ)Dy1ψ(Z̄, µ) =
6Y 2

X4
,

f2y1y1y2 = DNf2y1y1(M, µ)Dy2ψ(Z̄, µ) = −4Y

X3
,

f2y2y2y1 = DNf2y2y2(M, µ)Dy1ψ(Z̄, µ) =
2

X2
,

f2y2y2y2 = DNf2y2y2(M, µ)Dy2ψ(Z̄, µ) =
1− βc

G2
0

(
2µG0

1 + βY0

− µc).

Thus we have eq. (3.3)

ẏ1 = −X0y2 − y1y2,

ẏ2 =
Y 2

0

X2
0

y1 − Y 2
0

X3
0

y2
1 +

2Y0

X2
0

y1y2 + [
cµ

G4
0

(βc− 1) +
1

X0

]y2
2 +

Y 2
0

X4
0

y3
1 −

2Y

X3
y2
1y2 +

1
X2

y1y
2
2

+
1
6
· 1− βc

G2
0

(
2µG0

1 + βY0

− µc)y3
2 + o(|Z̄|4). (3.3)

Comparing with the normal form (3.2), we chosse the nonsingular matrix

N =

(
X0

√
X0 0

0 Y0

)
,

then we use the linear transformation H = NZ̄, noticing ω0 = Y0√
X0

, we derive the normal
form as follows

u̇1 = −ω0u2 − Y0u1u2,

u̇2 = ω0u1 − Y0u
2
1 +

2Y0√
X0

u1u2 + [
cµ

G4
0

(βc− 1) +
1

X0

]Y0u
2
2 + Y0

√
X0u

3
1 − 2Y0u

2
1u2

+
Y0√
X0

u1u
2
2 +

1
6
· 1− βc

G2
0

(
2µG0

1 + βY0

− µc)Y 2
0 u3

2 + o(|Z̄|4), (3.4)
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where H = (u1, u2)T . Then

a1
11 = a1

22 = 0,

a1
12 = −Y0 a2

11 = −Y0, a2
12 =

2Y0√
X0

,

a2
22 = [

cµ

G4
0

(βc− 1) +
1

X0

]Y0,

a1
111 = a1

122 = 0,

a2
111 = Y0

√
X0, a2

112 = −2Y0, a2
122 =

Y0√
X0

,

a2
222 =

1
6
· 1− βc

G2
0

(
2µG0

1 + βY0

− µc)Y 2
0 .

According to the Hopf bifurcation theorem in [19], now we only need to calculate the
value of a

16a = [a1
12(a

1
11 + a1

22)− a2
12(a

2
11 + a2

22)− a1
11a

2
11 + a1

22a
2
22]/ω + (a1

111 + a1
122 + a2

112 + a2
222)

= (−a2
12a

2
11 − a2

12a
2
22)/ω + a2

112 + a2
222

= −2Y0

X0

+ 2Y0
cµ

G4
0

(1− β +
1
6
· 1− βc

G2
0

(
2µG0

1 + βY0

− µc)Y 2
0 .

Next, there are two cases should be discussed. That is a > 0 and a < 0. Based on the
Hopf bifurcation theorem in [19], we obtain Theorem 3.1.

Theorem 3.1 For the system (2.2), there exist an ε > 0 and two small enough neigh-
borhoods P1 and P2 of χ0(µ), where P1 ⊂ P2.

(i) If

2Y0
cµ

G4
0

(1− βc) +
1
6
· 1− βc

G2
0

(
2µG0

1 + βY0

− µc)Y 2
0 >

2Y0

X0

,

then
(1) when µ0 < µ < µ0 + ε, χ0(µ) is unstable, and repels all the points in P2;
(2) when µ0 − ε < µ < µ0, there exist at least one periodic solution in P̄1, which is

the closure of P1, one of them repel all the points in P̄1\{χ0(µ)}, and also have another
periodic solution (may be the same that) repels all the points in P2\P̄1,and χ0(µ) is locally
asymptotically stable.

(ii) If

2Y0
cµ

G4
0

(1− βc) +
1
6
· 1− βc

G2
0

(
2µG0

1 + βY0

− µc)Y 2
0 <

2Y0

X0

,

then
(1) when µ0−ε < µ < µ0, χ0(µ) is locally asymptotically stable,and repels all the points

in P2;
(2) when µ0 < µ < µ0 + ε, there exist at least one periodic solution in P̄1, one of them

repel all the points in P̄1\{χ0(µ)}, and also have another periodic solution (may be the same
that) repels all the points in P2\P̄1, and χ0(µ) is unstable.
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Proof Theorem 3.1 can be similarly proved as the Hopf bifurcation theorem in [19], so
we omit the process here.

4 Numerical Simulations

In this section, we give a numerical example of system (1.4) with the parameters r1 =
3, r2 = 1, c = 1, β = 0.195, then system (1.4) becomes





ẋ = x(3− y),
ẏ = y(1− y

x
)− E y

1+0.195y
,

0 = E( y
1+0.195y

− q)− µ.

(4.1)

By simple computing, the only positive equilibrium point of above system is

χ(µ0) = (4.7578, 3, 0.5856),

and the Hopf bifurcation value µ0 = r2G2
0

2G0+c
= 2.0002225

3.83
.

Therefore, by Theorem 3.1, we can easily show that the positive equilibrium point χ0(µ)
of system (4.1) is locally asymptitically stable when µ = 0.505 < µ0 as is illustrated by
computer simulations in Fig. 1; periodic solutions occur from χ0(µ) when µ = 0.5195 < µ0

as is illustrated in Fig. 2; the positive equilibrium point χ0(µ) of system (4.1) is unstable
when µ = 0.535 > µ0 as is illustrated in Fig. 3.
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Figure 1: When µ = 0.505 < µ0, that show the positive equilibrium point χ0(µ) is locally
asymptotically stable.
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Figure 2: Periodic solutions bifurcating from χ0(µ) whenµ = 0.5195 < µ0.
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Figure 3: When µ = 0.535 > µ0, that show the positive equilibrium point χ0(µ) is unstable.
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5 Conclusions

Based on the above inference and calculation, we find that economic effect will influence
the stability of differential-algebraic biological economic system. For instance, according
to those statistics and graphs, if people fix the economic index at a high level, over the
bifurcation value of Hopf-bifurcation, the system will become unstable that means people
have destroyed the economic balance even led to the extinction of ecologic species. Therefore,
with an aim to realize the harmonious sustainable development co-existence between man
and nature, we should not seek economic effect blindly and control it within a certain limit,
such as less than bifurcation value.

In addition, we can make some improvements in our model. For example, we do not
consider the influence of time delays and double harvesting that is, human harvesting will
harvest predator and prey at the same time. So it is necessary for us to go on with our
research in these aspects in the future.
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一类捕食食饵微分经济系统的稳定性与Hopf分支

刘 炜,李必文,李震威,汪 淦

(湖北师范学院数学与统计学院,湖北黄石 435002)

摘要: 本文主要研究了一个带有对捕食者进行捕获的微分代数经济系统的稳定性和Hopf分支问题. 利

用了动力系统和微分代数系统中的稳定性理论和分支理论的方法, 得到了稳定性和Hopf分支稳定性的相关

结论. 本文对Ratio-Dependent捕食食饵模型进行了一定程度的完善, 并且选取经济效益µ 为分支参数进行

研究, 最后利用Matlab 进行数值模拟, 这样使得到的结论更符合现实意义.
关键词: 稳定性; 经济系统; Hopf分支; 捕获
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