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Abstract: In this paper, we study Chen-Ricci inequalities for submanifolds of generalized

complex space forms endowed with a semi-symmetric metric connection. By using algebraic tech-

niques, we establish Chen-Ricci inequalities between the mean curvature associated with a semi-

symmetric metric connection and certain intrinsic invariants involving the Ricci curvature and

k-Ricci curvature of submanifolds, which generalize some of Mihai and Özgür’s results.
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1 Introduction

Since the celebrated theory of Nash [1] of isometric immersion of a Riemannian manifold
into a suitable Euclidean space gave very important and effective motivation to view each
Riemannian manifold as a submanifold in a Euclidean space, the problem of discovering
simple sharp relationships between intrinsic and extrinsic invariants of a Riemannian sub-
manifold becomes one of the most fundamental problems in submanifold theory. The main
extrinsic invariant of a submanifold is the squared mean curvature and the main intrinsic
invariants of a manifold include the Ricci curvature and the scalar curvature. There were
also many other important modern intrinsic invariants of (sub)manifolds introduced by Chen
such as k-Ricci curvature (see [2–4]).

In 1999, Chen [5] proved a basic inequality involving the Ricci curvature and the squared
mean curvature of submanifolds in a real space form Rm(C). This inequality is now called
Chen-Ricci inequality [6]. In [5], Chen also defined the k-Ricci curvature of a k-plane section
of TxMn, x ∈ M , where Mn is a submanifold of the real space form Rn+p(C). And he
proved a basic inequality involving the k-Ricci curvature and the squared mean curvature
of the submanifold Mn. These inequalities described relationships between the intrinsic
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invariants and the extrinsic invariants of a Riemannian submanifold and drew attentions of
many people. Similar inequalities are studied for different submanifolds in various ambient
manifolds (see [7–10]).

On the other hand, Hayden [11] introduced a notion of a semi-symmetric connection
on a Riemannian manifold. Yano [12] studied Riemannaian manifolds endowed with a semi-
symmetric connection. Nakao [13] studied submanifolds of Riemannian manifolds with a
semi-symmetric metric connection. Recently, Mihai and Özgür [14, 15] studied Chen in-
equalities for submanifolds of real space forms admitting a semi-symmetric metric connection
and Chen inequalities for submanifolds of complex space forms and Sasakian space forms
with a semi-symmetric metric connection, respectively. Motivated by studies of the above
authors, in this paper we establish Chen-Ricci inequalities for submanifolds in generalized
complex forms with a semi-symmetric metric connection.

2 Preliminaries

Let Nn+pbe an (n + p)-dimensional Riemannian manifold with Riemannian metric g

and a linear connection ∇ on Nn+p. If the torsion tensor T of ∇, defined by

T (X, Y ) = ∇XY −∇Y X − [X, Y ]

for any vector fields X and Y on Nn+p, satisfies

T (X, Y ) = φ(Y )X − φ(X)Y

for a 1-form φ, then the connection ∇ is called a semi-symmetric connection. Furthermore,
if ∇ satisfies ∇g = 0, then ∇ is called a semi-symmetric metric connection. Let ∇′ denote
the Levi-Civita connection with respect to the Riemannian metric g. In [12] Yano gave a
semi-symmetric metric connection ∇ which can be written as

∇XY = ∇′XY + φ(Y )X − g(X, Y )U (2.1)

for any vector field X, Y on Nn+p, where U is a vector field given by g(U,X) = φ(X).
Let Mn be an n-dimensional submanifold of Nn+p with a semi-symmetric metric con-

nection ∇ and the Levi-Civita connection ∇′. On the submanifold Mn we consider the
induced semi-symmetric metric connection denoted by ∇ and the induced Levi-Civita con-
nection denoted by ∇′. The Gauss formulas with respect to ∇ and ∇′, respectively, can be
written as

∇XY = ∇XY + h(X, Y ), ∇′XY = ∇′XY + h′(X, Y ) (2.2)

for any vector fields X, Y on Mn, where h′ is the second fundamental form of Mn in Nn+p

and h is a (0,2)-tensor on Mn. According to formula (7) in [13], h is also symmetric.
Let R be the curvature tensor of Nn+p with respect to ∇ and R

′
be the curvature tensor

of Nn+p with respect to ∇′. We also denote by R and R′ the curvature tensor of ∇ and
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∇′, respectively, on Mn. From [13], we know the curvature tensor R with respect to the
semi-symmetric metric ∇ on Nn+p can be written as

R(X, Y, Z, W ) =R
′
(X, Y, Z, W )− α(Y, Z)g(X, W ) + α(X, Z)g(Y, W )

− α(X, W )g(Y, Z) + α(Y, W )g(X, Z)
(2.3)

for any vector fields X, Y, Z, Won Mn, where α is a (0,2)-tensor field defined by

α(X, Y ) = (∇′Xφ)Y − φ(X)φ(Y ) +
1
2
φ(U)g(X, Y ).

Denote by λ the trace of α. The Gauss equation for the submanifold Mn in Nn+p is

R
′
(X, Y, Z, W ) = R′(X, Y, Z, W ) + g(h′(X, Z), h′(Y, W ))− g(h′(X, W ), h′(Y, Z)) (2.4)

for any vector fields X, Y, Z, Won Mn. In [13], the Gauss equation with respect to the
semi-symmetric metric connection is

R(X, Y, Z, W ) = R(X, Y, Z, W ) + g(h(X, Z), h(Y, W ))− g(h(X, W ), h(Y, Z)). (2.5)

In Nn+p we can choose a local orthonormal frame {e1, · · · , en, en+1, · · · , en+p} such
that restricting to Mn, e1, · · · , en are tangent to Mn. Setting hr

ij = g(h(ei, ej), er), then the
squared length of h is

||h||2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)) =
n+p∑

r=n+1

n∑
i,j=1

(hr
ij)

2.

The mean curvature vector of Mn associated to ∇ is H = 1
n

n∑
i=1

h(ei, ei) and the mean

curvature vector of Mn associated to ∇′ is H ′= 1
n

n∑
i=1

h′(ei, ei).

Let π ⊂ TxMn be a 2-plane section for any x ∈ Mn and K(π) be the sectional curvature
of π associated to the induced semi-symmetric metric connection ∇. The scalar curvature τ

at x with respect to ∇ is defined by

τ(x) =
∑

1≤i<j≤n

K(ei ∧ ej). (2.6)

The following lemmas will be used in the paper.
Lemma 2.1 (see [13]) If U is a tangent vector field on Mn, we have H = H ′, h = h′.
Lemma 2.2 (see [13]) Let Mn be an n-dimensional submanifold of an (n+p)-dimensional

Riemannian manifold Nn+p with the semi-symmetric metric connection ∇. Then
(i) Mn is totally geodesic with respect to the Levi-Civita connection and with respect

to the semi-symmetric metric connection if and only if U is tangent to Mn.
(ii) Mn is totally umbilical with respect to the Levi-Civita connection if and only if Mn

is totally umbilical with respect to the semi-symmetric metric connection.



1136 Journal of Mathematics Vol. 36

Lemma 2.3 (see [10]) Let f(x1, x2, · · · , xn) be a function on Rn defined by

f(x1, x2, · · · , xn) = x1

n∑
i=2

xi.

If x1 + x2 + · · ·+ xn = 2ε, then we have

f(x1, x2, · · · , xn) ≤ ε2

with the equality holding if and only if x1 = x2 + xn + · · ·+ xn = ε.
A 2m-dimensional almost Hermitian manifold (N, J, g) is said to be a generalized com-

plex space form (see [16, 17]) if there exists two functions F1 and F2 on N such that

R
′
(X, Y , Z, W ) =F1[g(Y ,Z)g(X, W )− g(X, Z)g(Y ,W )] + F2[g(X, JZ)g(JY ,W )

− g(Y , JZ)g(JX, W ) + 2g(X, JY )g(JZ, W )]
(2.7)

for any vector fields X, Y , Z, W on N , where R
′
is the curvature tensor of N with respect

to the Levi-Civita connection ∇′. In such a case, we will write N(F1, F2). If N(F1, F2) is
a generalized complex space form with a semi-symmetric metric connection ∇, using (2.3)
and (2.7), the curvature tensor R with respect to the semi-symmetric metric connection ∇
of N(F1, F2) can be written as

R(X, Y, Z, W ) =F1[g(Y, Z)g(X, W )− g(X, Z)g(Y, W )] + F2[g(X, JZ)g(JY, W )

− g(Y, JZ)g(JX,W ) + 2g(X, JY )g(JZ,W )]− α(Y, Z)g(X, W )

+ α(X, Z)g(Y, W )− α(X, W )g(Y, Z) + α(Y, W )g(X, Z)

(2.8)

for X, Y, Z, W on M , where M is a submanifold of N .
Let M be an n-dimensional submanifold of a 2m-dimensional generalized complex space

form N(F1, F2). We set JX = PX + FX for any vector field X tangent to M , where PX

and FX are tangential and normal components of JX, respectively.

3 Chen-Ricci Inequality

In this section, we establish a sharp relation between the Ricci curvature along the
direction of an unit tangent vector X and the mean curvature ||H|| with respect to the
semi-symmetric metric connect ∇.

Theorem 3.1 Let Mn, n ≥ 2, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N(F1, F2) endowed with the semi-symmetric metric connec-
tion ∇. For each unit vector X ∈ TxM , we have

(1)

Ric(X) ≤ (n− 1)F1 + 3F2||PX||2 − (n− 2)α(X, X)− λ +
n2

4
||H||2. (3.1)

(2) If H(x) = 0, then a unit tangent vector X at x satisfies the equality case of (3.1) if
and only if X ∈ N(x) = {X ∈ TxM : h(X, Y ) = 0, ∀Y ∈ TxM}.
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(3) The equality of inequality (3.1) holds identically for all unit tangent vectors at x if
and only if in the case of n 6= 2, hr

ij = 0, i, j = 1, 2 · · · , n; r = n + 1, · · · , 2m , or in the
case of n = 2, hr

11 = hr
22, hr

12 = hr
21 = 0, r = 3, · · · , 2m.

Proof (1) Let X ∈ TxM be an unit tangent vector at x. We choose an orthonormal
basis e1, · · · , en, en+1 · · · , e2m such that e1, · · · , en are tangent to M at x and e1 = X.

When we set X = W = ei, Y = Z = ej , i, j = 1, · · · , n, i 6= j in (2.5) and (2.8), we
have

Rijji = F1 + 3F2g
2(Jei, ej)− α(ei, ei)− α(ej , ej) +

2m∑
r=n+1

[hr
iih

r
jj − (hr

ij)
2]. (3.2)

Using (3.2), we get

Ric(X) =
n∑

j=2

R1jj1 = (n− 1)F1 +
n∑

j=2

3F2g
2(JX, ej)

− (n− 1)α(X, X)−
n∑

j=2

α(ej , ej) +
2m∑

r=n+1

n∑
i=2

[hr
11h

r
ii − (hr

1i)
2]

≤(n− 1)F1 + 3F2||PX||2 − (n− 2)α(X, X)− λ +
2m∑

r=n+1

n∑
i=2

hr
11h

r
ii.

(3.3)

We consider the maximum of the function

fr(hr
11, · · · , hr

nn) =
n∑

i=2

hr
11h

r
ii

under the condition hr
11 + hr

22 + · · ·+ hr
nn = kr, where kr is a real constant.

From Lemma 2.3 we know the solution (hr
11, · · · , hr

nn) of this problem must satisfy

hr
11 =

r∑
i=2

hr
ii =

kr

2
. (3.4)

So it follows that

fr ≤ (kr)2

4
=

1
4
(

n∑
i=1

hr
ii)

2. (3.5)

From (3.3) and (3.5) we have

Ric(X) ≤ (n− 1)F1 + 3F2||PX||2 − (n− 2)α(X, X)− λ +
2m∑

r=n+1

1
4
(

n∑
i=1

hr
ii)

2

= (n− 1)F1 + 3F2||PX||2 − (n− 2)α(X, X)− λ +
n2

4
||H||2.

(2) For the unit vector X at x, if the equality case of inequality (3.1) holds, using (3.3),
(3.4) and (3.5) we have

hr
1i = 0, i 6= 1,∀r; (3.6)

hr
11 + hr

22 + · · ·+ hr
nn − 2hr

11 = 0,∀r. (3.7)
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From H(x) = 0, we have hr
11 = 0, then hr

1j = 0, ∀j, r. So we get X∈ N(x) = {X ∈ TxM :
h(X, Y ) = 0, ∀Y ∈ TxM}.

The converse is obvious.
(3) For all unit vector X at x, the equality case of inequality (3.1) holds. Let X =

ei, i = 1, 2 · · ·n, as in (2), we have

hr
ij = 0, i 6= j, ∀r;

hr
11 + hr

22 + · · ·+ hr
nn − 2hr

ii = 0, ∀i = 1, · · · , n; r = n + 1, · · · , 2m.

We can distinguish two cases:
(a) in the case of n 6= 2, we have hr

ij = 0, i, j = 1, 2, · · · , n, r = n + 1, · · · , 2m.
(b) in the case of n = 2, we have hr

11 = hr
22, hr

12 = hr
21 = 0, r = 3, · · · , 2m.

The converse is trivial.
Corollary 3.2 If the equality case of inequality (3.1) holds for all unit tangent vector

X of Mn, then we have
(1) the equality case of inequality (3.1) holds for all unit tangent vector X of Mn if and

only if Mn is a totally umbilical submanifold;
(2) if U is a tangent field on Mn and n ≥ 3, Mn is a totally geodesic submanifold.
Proof (1) For n = 2, from Theorem 3.1 we know the equality case of inequality (3.1)

holds for all unit tangent vector X of M2 if and only if M2 is a totally umbilical submanifold
with respect to the semi-symmetric metric connection. Then from Lemma 2.2, M2 is a totally
umbilical submanifold with respect to the Levi-Civita connection.

For n ≥ 3, from Theorem 3.1 we know the equality case of inequality (3.1) holds for all
unit tangent vector X of Mn if and only hr

ij = 0, ∀i, j, r. According to formula (7) from
[13], we have h

′r
ij = hr

ij + krgij , where kr are real-valued functions on M . Thus we have
h
′r
ij = krgij . So Mn is a totally umbilical submanifold.

(2) If U is a tangent vector field on Mn, from Lemma 2.1 we have h′ = h. For n ≥ 3,
from Theorem 3.1 the equality case of inequality (3.1) holds for all unit tangent vector X

of Mn if and only if hr
ij = 0, ∀i, j, r. Thus we have h

′r
ij = 0, ∀i, j, r. So Mn is a totally

geodesic submanifold.

4 k-Ricci Curvature

In this section, we establish a sharp relation between the k-Ricci curvature and the
mean curvature ||H|| with respect to the semi-symmetric metric connect ∇.

Let L be a k-plane section of TxMn, x ∈ Mn, and X be a unit vector in L. We choose
an orthonormal frame e1, · · · , ek of L such that e1 = X. In [5] the k-Ricci curvature of L at
X is defined by

RicL(X) = K12 + K13 + · · ·+ K1k. (4.1)

The scalar curvature of a k-plane section L is given by

τ(L) =
∑

1≤i<j≤k

Kij . (4.2)
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For an integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk on Mn at x ∈ Mn defined by

Θk(x) =
1

k − 1
inf{RicL(X) : L,X}, (4.3)

where L runs over all k-plane sections in TxM and X runs over all unit vectors in L. From
(2.6), (4.1) and (4.2) for any k-plane section Li1···ik

spanned by {ei1 , · · · , eik}, it follows that

τ(Li1···ik
) =

1
2

∑

i∈{i1,···ik}
Rici1,···ik

(ei) (4.4)

and
τ(x) =

1
Ck−2

n−2

∑
1≤i1<···<ik≤n

τ(Li1···ik
). (4.5)

From (4.3), (4.4) and (4.5), we have

τ(x) ≥ n(n− 1)
2

Θk(x). (4.6)

Theorem 4.1 Let Mn, n ≥ 3, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N(F1, F2) endowed with a semi-symmetric connection ∇.
Then we have

||H||2 ≥ 2τ

n(n− 1)
+

2
n

λ− F1 − 3F2

n(n− 1)
‖P‖2.

Proof For x ∈ Mn, let {e1, · · · , en} and {en+1, · · · , e2m} be an orthonormal basis of
T M

x and T⊥x M , respectively, where en+1 is parallel to the mean curvature vector H.
From (3.2), we have

Rijji = F1 + 3F2g
2(Jei, ej)− α(ei, ei)− α(ej , ej) +

2m∑
r=n+1

[hr
iih

r
jj − (hr

ij)
2]. (4.7)

Setting ||P ||2 =
n∑

i,j=1

g2(Jei, ej). From (2.6), it follows that

2τ(x) = n(n− 1)F1 + 3F2||P ||2 − 2(n− 1)λ + n2||H||2 − ||h||2. (4.8)

Then equation (4.8) can be also written as

n2||H||2 = 2τ + ||h||2 + 2(n− 1)λ− n(n− 1)F1 − 3F2||P ||2. (4.9)

We choose an orthonormal basis {e1, · · · , en, en+1, · · · , e2m} such that e1, · · · , en diago-
nalize the shape operator Aen+1, i.e.,

Aen+1 =




a1 0 · · · 0
0 a2 · · · 0
...

...
...

...
0 0 · · · an
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and Aer = (hr
ij), i, j = 1 · · · · · ·n; r = n + 2, · · · , 2m, traceAer = 0. So (4.9) turns into

n2||H||2 = 2τ +
n∑

i=1

a2
i +

2m∑
r=n+2

n∑
i,j=1

(hr
ij)

2 + 2(n− 1)λ− n(n− 1)F1 − 3F2||P ||2. (4.10)

On the other hand, we get

(n||H||)2 = (
n∑

i=1

ai)2 ≤ n

n∑
i=1

a2
i ,

which implies
n∑

i=1

a2
i ≥ n||H||2. (4.11)

From (4.10) and (4.11), it follows that

n2||H||2 ≥ 2τ + n||H||2 + 2(n− 1)λ− n(n− 1)F1 − 3F2||P ||2,

which means
||H||2 ≥ 2τ

n(n− 1)
+

2
n

λ− F1 − 3F2

n(n− 1)
||P ||2. (4.12)

Using Theorem 4.1 and (4.6) we can obtain the following theorem.
Theorem 4.2 Let Mn, n ≥ 3, be an n-dimensional submanifold of a 2m-dimensional

generalized complex space form N(F1, F2) endowed with a semi-symmetric connection ∇.
Then for any integer k, 2 ≤ k ≤ n, and for any point x ∈ M , we have

||H||2(x) ≥ Θk(x) +
2
n

λ− F1 − 3F2

n(n− 1)
||P ||2.

Proof Let {e1, · · · , en} be an orthonormal basis of TxMn at x ∈ Mn. The k-plane
section spanned by ei1 , · · · , eik

is denoted by Li1···ik
.

Then from (4.6) and (4.12), we have

||H||2(x) ≥ Θk(x) +
2
n

λ− F1 − 3F2

n(n− 1)
||P ||2.

Remark 4.3 For F1 = F2 = C (C is constant) in Theorem 3.1, we obtain a Chen-Ricci
inequality for submanifolds of complex space forms with a semi-symmetric metric connection.

For F1 = F2 = C (C is constant) in Theorem 4.1 and Theorem 4.2, the results can be
found in [15].
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容有半对称度量联络的广义复空间中子流形上的

Chen-Ricci不等式

何国庆

(安徽师范大学数学计算机科学学院,安徽芜湖 241000)

摘要: 本文研究了容有半对称度量联络的广义复空间中的子流形上的Chen-Ricci不等式. 利用代数技

巧, 建立了子流形上的Chen-Ricci不等式. 这些不等式给出了子流形的外在几何量―关于半对称联络的平均

曲率与内在几何量―Ricci曲率及k-Ricci曲率之间的关系, 推广了Mihai 和Özgür的一些结果.
关键词: Chen-Ricci不等式; k-Ricci曲率; 广义复空间; 半对称度量联络
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