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Abstract: In this paper, we study Chen-Ricci inequalities for submanifolds of generalized
complex space forms endowed with a semi-symmetric metric connection. By using algebraic tech-
niques, we establish Chen-Ricci inequalities between the mean curvature associated with a semi-
symmetric metric connection and certain intrinsic invariants involving the Ricci curvature and
k-Ricci curvature of submanifolds, which generalize some of Mihai and Ozgiir’s results.
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1 Introduction

Since the celebrated theory of Nash [1] of isometric immersion of a Riemannian manifold
into a suitable Euclidean space gave very important and effective motivation to view each
Riemannian manifold as a submanifold in a Euclidean space, the problem of discovering
simple sharp relationships between intrinsic and extrinsic invariants of a Riemannian sub-
manifold becomes one of the most fundamental problems in submanifold theory. The main
extrinsic invariant of a submanifold is the squared mean curvature and the main intrinsic
invariants of a manifold include the Ricci curvature and the scalar curvature. There were
also many other important modern intrinsic invariants of (sub)manifolds introduced by Chen
such as k-Ricci curvature (see [2-4]).

In 1999, Chen [5] proved a basic inequality involving the Ricci curvature and the squared
mean curvature of submanifolds in a real space form R™(C). This inequality is now called
Chen-Ricci inequality [6]. In [5], Chen also defined the k-Ricci curvature of a k-plane section
of T,M™ x € M, where M™ is a submanifold of the real space form R""?(C'). And he
proved a basic inequality involving the k-Ricci curvature and the squared mean curvature

of the submanifold M™. These inequalities described relationships between the intrinsic
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invariants and the extrinsic invariants of a Riemannian submanifold and drew attentions of
many people. Similar inequalities are studied for different submanifolds in various ambient
manifolds (see [7-10]).

On the other hand, Hayden [11] introduced a notion of a semi-symmetric connection
on a Riemannian manifold. Yano [12] studied Riemannaian manifolds endowed with a semi-
symmetric connection. Nakao [13] studied submanifolds of Riemannian manifolds with a
semi-symmetric metric connection. Recently, Mihai and Ozgiir [14, 15] studied Chen in-
equalities for submanifolds of real space forms admitting a semi-symmetric metric connection
and Chen inequalities for submanifolds of complex space forms and Sasakian space forms
with a semi-symmetric metric connection, respectively. Motivated by studies of the above
authors, in this paper we establish Chen-Ricci inequalities for submanifolds in generalized

complex forms with a semi-symmetric metric connection.

2 Preliminaries

Let N™*Pbe an (n + p)-dimensional Riemannian manifold with Riemannian metric g

and a linear connection V on N™*P. If the torsion tensor T of V, defined by

Y)=Vx

- VX_ [Xv?]

<

(

}.<

for any vector fields X and Y on N7, satisfies

|
.l

(X,Y)=o(Y)X - ¢(X)Y
for a 1-form ¢, then the connection V is called a semi-symmetric connection. Furthermore,
if V satisfies Vg = 0, then V is called a semi-symmetric metric connection. Let V' denote

the Levi-Civita connection with respect to the Riemannian metric g. In [12] Yano gave a

semi-symmetric metric connection V which can be written as
VxY = V5Y + (V)X — g(X,Y)U (2.1)

for any vector field X, Y on N"*?, where U is a vector field given by g(U, X) = ¢(X).

Let M™ be an n-dimensional submanifold of N"*? with a semi-symmetric metric con-
nection V and the Levi-Civita connection V. On the submanifold M" we consider the
induced semi-symmetric metric connection denoted by V and the induced Levi-Civita con-
nection denoted by V’. The Gauss formulas with respect to V and V’, respectively, can be
written as

VY = ViV +h(X,Y), VyY =ViYV +H(X,Y) (2.2)

for any vector fields X,Y on M", where A’ is the second fundamental form of M™ in N"*P
and h is a (0,2)-tensor on M". According to formula (7) in [13], h is also symmetric.

Let R be the curvature tensor of N™*P with respect to V and R be the curvature tensor
of N™*P with respect to V'. We also denote by R and R’ the curvature tensor of V and
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V', respectively, on M™. From [13], we know the curvature tensor R with respect to the

semi-symmetric metric V on N™*? can be written as

RX.Y,Z,W) =R (X,Y,Z,W) — (Y, 2)g(X, W) + (X, Z)g(Y, W)

(2.3)
—a(X,W)g(Y,Z) 4+ a(Y,W)g(X, Z)

for any vector fields X, Y, Z, Won M™, where « is a (0,2)-tensor field defined by

= 1
a(X,Y) = (V@)Y — ¢(X)p(Y) + 36()g(X,Y).
Denote by X the trace of . The Gauss equation for the submanifold M™ in N"*? is
R(X,Y,2,W) = R(X,Y. Z,W) + gl (X, 2), W (Y,W)) = g(' (X, W), W'(Y. Z)) ~ (24)

for any vector fields X,Y,Z, Won M"™. In [13], the Gauss equation with respect to the

semi-symmetric metric connection is
R(X,Y,Z,W) = R(X.Y, Z,W) + g(h(X, Z), h(Y, W) - g(h(X,W),h(Y. Z)).  (25)

In N™*P we can choose a local orthonormal frame {ei, - ,en,€n41, " ,€nspt such
that restricting to M™, e1,--- e, are tangent to M". Setting hj; = g(h(ei, ¢;),e,), then the
squared length of h is

n n

n+p
1812 =Y glhleie;), hlene)) = > Y (hl

1,7=1 r=n+11,j=1

n
The mean curvature vector of M™ associated to V is H 1 h(e;,e;) and the mean
n 19
=1

. =/ .
curvature vector of M" associated to V' is H'= Z h (e, e;).

Let m C T, M™ be a 2-plane section for any x E M " and K () be the sectional curvature
of 7 associated to the induced semi-symmetric metric connection V. The scalar curvature 7
at x with respect to V is defined by

@)= Y Kleihe). (2.6)
1<i<j<n

The following lemmas will be used in the paper.

Lemma 2.1 (see [13]) If U is a tangent vector field on M", we have H = H', h=h.

Lemma 2.2 (see [13]) Let M™ be an n-dimensional submanifold of an (n+p)-dimensional
Riemannian manifold N"*? with the semi-symmetric metric connection V. Then

(i) M™ is totally geodesic with respect to the Levi-Civita connection and with respect
to the semi-symmetric metric connection if and only if U is tangent to M™.

(ii) M™ is totally umbilical with respect to the Levi-Civita connection if and only if M™

is totally umbilical with respect to the semi-symmetric metric connection.
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Lemma 2.3 (see [10]) Let f(x1,x2, - ,z,) be a function on R™ defined by

f(xlam%"' 7xn) =T Zmi-
i=2
If 21 + 29+ -+ x, = 2¢, then we have

f(fEl,.’l?g,"' 73771) §52

with the equality holding if and only if x1 = 29 + 2z, +--- + x, = €.
A 2m-dimensional almost Hermitian manifold (N, J, g) is said to be a generalized com-

plex space form (see [16, 17]) if there exists two functions F; and F, on N such that

R (Yv Y, ZvW) =F [g(?a 7)9()(7 W) - g(Y 7)9(?7 W)] + Fy [g(y7 J?)g(J?, W)

— (Y, JZ)g(JX, W) +29(X, JY)g(JZ,W)] @7

for any vector fields X,Y,Z, W on N, where R is the curvature tensor of N with respect
to the Levi-Civita connection V'. In such a case, we will write N(Fy, Fy). If N(Fy, F,) is
a generalized complex space form with a semi-symmetric metric connection V, using (2.3)
and (2.7), the curvature tensor R with respect to the semi-symmetric metric connection V
of N(F}, F,) can be written as

R(X,)Y, Z,W) =Fi[g(Y, 2)g(X, W) — g(X, Z)g(Y,W)] + Fa[g(X, T Z)g(JY, W)
—g(Y, JZ)g(JX, W) +29(X,JY)g(JZ,W)] —a(Y, Z)g(X, W) (2.8)
+a(X, 2)g(Y, W) — (X, W)g(Y,Z) + a(Y,W)g(X, Z)
for X,Y, Z, W on M, where M is a submanifold of N.
Let M be an n-dimensional submanifold of a 2m-dimensional generalized complex space

form N(Fy, Fy). We set JX = PX + FX for any vector field X tangent to M, where PX

and F'X are tangential and normal components of JX, respectively.

3 Chen-Ricci Inequality

In this section, we establish a sharp relation between the Ricci curvature along the
direction of an unit tangent vector X and the mean curvature ||H|| with respect to the
semi-symmetric metric connect V.

Theorem 3.1 Let M™, n > 2, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N (F}, F) endowed with the semi-symmetric metric connec-

tion V. For each unit vector X € T, M, we have

(1)
Ric(X) < (n — 1)F) + 3B||PX|2 — (n — 2)a(X, X) — A + %2||H||2. (3.1)

(2) If H(x) =0, then a unit tangent vector X at x satisfies the equality case of (3.1) if
and only if X € N(z) ={X € T,M : h(X,Y)=0, VY € T,M}.
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(3) The equality of inequality (3.1) holds identically for all unit tangent vectors at x if
and only if in the case of n # 2, hj; =0, 4,5 =1,2---,n; r=n+1,---,2m , or in the
case of n =2, hYy =hl,, hi;,=h5, =0, r=3,---,2m.

Proof (1) Let X € T, M be an unit tangent vector at . We choose an orthonormal
basis €1, -+, €n,€ni1-- €2, such that ey,--- , e, are tangent to M at x and e; = X.

When we set X =W =e¢;,, Y =2Z=¢;, i,j=1,---,n, i # jin (2.5) and (2.8), we

have

2m
Rijji = Fy + 3Fag?(Jei,e)) — ales, e0) — alej,eg) + > Wk, — (hi)?). (3.2)
r=n+1
Using (3.2), we get

Ric(X) = Rijjn=(n—1)F + Y 3R (JX,¢;)

j=2 j=2

—(n=Da(X,X) =Y alej,e;) Z Z hiyhy = (h)?) (3.3)

Jj=2 r=n+1 1=2
<(n—1)F, 4+ 3B||PX|]? — (n — 2)a(X, X) — A + Z ZhT hl..
r=n+1 1=2

We consider the maximum of the function
fo(hiy, - Z i by

under the condition hi; + h4, + -+ h,,, = k", where k" is a real constant.

From Lemma 2.3 we know the solution (h%,,--- , k], ) of this problem must satisfy
hiy = i:h? = E (3.4)
— (2 2

So it follows that

£ < ("’T Z B2, (3.5)

From (3.3) and (3.5) we have

Ric(X) < (n — 1)Fy + 3B[[PX|? — (n — 2)a(X, X) = A+ %(Z h)2

r=n+1 =1

2
= (n— DF + 3B|[PX|* = (n— 2)a(X, X) = A+ || H|

(2) For the unit vector X at x, if the equality case of inequality (3.1) holds, using (3.3),
(3.4) and (3.5) we have

Ry, =0, # 1,Vr; (3.6)
hiy + hye + -+ hy,,, — 2h7; = 0,7 (3.7)
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From H(z) = 0, we have hy; = 0, then hj; = 0, Vj,7. So we get Xe N(z) = {X € T, M :
WMX,Y)=0, VY € T,M}.

The converse is obvious.

(3) For all unit vector X at z, the equality case of inequality (3.1) holds. Let X =

e, i=1,2---n, as in (2), we have
hiy+hos+---+h,, —2h,=0, Vi=1,---,n; r=n+1,---,2m.

We can distinguish two cases:

(a) in the case of n # 2, we have hf; =0, 4,j=1,2,---,n, r=n+1,---,2m.

(b) in the case of n = 2, we have hi, = h},, hi, =h5 =0, r=3,---,2m.

The converse is trivial.

Corollary 3.2 If the equality case of inequality (3.1) holds for all unit tangent vector
X of M™, then we have

(1) the equality case of inequality (3.1) holds for all unit tangent vector X of M™ if and
only if M™ is a totally umbilical submanifold;

(2) if U is a tangent field on M™ and n > 3, M™ is a totally geodesic submanifold.

Proof (1) For n = 2, from Theorem 3.1 we know the equality case of inequality (3.1)
holds for all unit tangent vector X of M? if and only if M? is a totally umbilical submanifold
with respect to the semi-symmetric metric connection. Then from Lemma 2.2, M? is a totally
umbilical submanifold with respect to the Levi-Civita connection.

For n > 3, from Theorem 3.1 we know the equality case of inequality (3.1) holds for all
unit tangent vector X of M™ if and only h}; = 0, Vi,j,r. According to formula (7) from
[13], we have h;g = hi; + k"gij, where k" are real-valued functions on M. Thus we have
h = k"g;;. So M™ is a totally umbilical submanifold.

(2) If U is a tangent vector field on M™, from Lemma 2.1 we have h’ = h. For n > 3,
from Theorem 3.1 the equality case of inequality (3.1) holds for all unit tangent vector X
of M™ if and only if hj; = 0, Vi, j,r. Thus we have h;; =0, Vi,j,r. So M™ is a totally
geodesic submanifold.

4 k-Ricci Curvature

In this section, we establish a sharp relation between the k-Ricci curvature and the
mean curvature ||H|| with respect to the semi-symmetric metric connect V.

Let L be a k-plane section of T,M"™, x € M™, and X be a unit vector in L. We choose
an orthonormal frame ey, --- , e, of L such that e; = X. In [5] the k-Ricci curvature of L at
X is defined by

Ricp(X) = Kio + K13+ -+ - + K. (4.1)

The scalar curvature of a k-plane section L is given by

T(L)= > K (4.2)

1<i<j<k
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For an integer k, 2 < k < n, the Riemannian invariant O, on M"™ at x € M"™ defined by

Ou() inf{Ricy, (X) : L, X}, (4.3)

1
k-1
where L runs over all k-plane sections in T, M and X runs over all unit vectors in L. From

(2.6), (4.1) and (4.2) for any k-plane section L;,...;, spanned by {e;,,--- ,e€;,3, it follows that
1 :
T(Lil-uik) = 5 Z Rlcil,---ik (61) (44)

and

7(z) = # Z T(Liy iy, (4.5)

n=2 1<) < <ip<n

From (4.3), (4.4) and (4.5), we have

o). (4.6)

Theorem 4.1 Let M™, n > 3, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N (Fy, Fy) endowed with a semi-symmetric connection V.

Then we have
2T 3F,

n(n —1) n(n — 1)||PH ’

Proof For x € M", let {e1, -+ ,e,} and {e 11, - ,€2,} be an orthonormal basis of

2
15> > T oA
n

TM and T+ M, respectively, where e, is parallel to the mean curvature vector H.
From (3.2), we have

2m
Rijji = Fy + 3Fyg*(Jei,e)) — alei ) — aleje) + . [hihl; — (h)?). (4.7)
r=n-+1
Setting ||P||*> = > g¢*(Je;, e;). From (2.6), it follows that
ij=1
27(x) = n(n — 1)Fy + 3F||P||? — 2(n — D)X +n?||H||* — ||n||?. (4.8)
Then equation (4.8) can be also written as
n?||H||?> =27 + ||h|]? + 2(n — D)X — n(n — 1)F| — 35,||P||% (4.9)
We choose an orthonormal basis {e1, -+ ,en, €n41, " ,€am } such that ey, --- e, diago-

nalize the shape operator Ae, 1, i.e.,
ap 0 - 0

Aen—i—l =
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and Ae, = (hj;), 4,j=1----- n; r=n+2---,2m, tracede, =0. So (4.9) turns into
n?||H||? = 27 + Za + Z Z 242(n— DA —n(n—1)F, —3K[|P|>.  (4.10)
r=n+21,j=1

On the other hand, we get

n

n
) = (> a) <ndd
=1

i=1

which implies

> a2 > n||H|]%. (4.11)

i=1

From (4.10) and (4.11), it follows that
n?||H|* > 27 +n||H|]> +2(n — 1)\ — n(n — 1)F} — 3F||P||?,

which means
27 2 3F,

n(n—l)+ﬁ>\_Fl_n(n—1)

Using Theorem 4.1 and (4.6) we can obtain the following theorem.

IH[]* = 1P (4.12)

Theorem 4.2 Let M™, n > 3, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N(Fi, Fy) endowed with a semi-symmetric connection V.
Then for any integer k, 2 < k < n, and for any point x € M, we have

3F,
n(n —1)

Proof Let {ej,---,e,} be an orthonormal basis of T, M™ at z € M". The k-plane
section spanned by e;,, - ,e;, is denoted by L;,...;, .
Then from (4.6) and (4.12), we have

2
|H|[*(z) = Ox(w) + ~A = F1 — 1P

3F,
n(n —1)
Remark 4.3 For I} = F, = C (C is constant) in Theorem 3.1, we obtain a Chen-Ricci

inequality for submanifolds of complex space forms with a semi-symmetric metric connection.
For F} = F» = C (C is constant) in Theorem 4.1 and Theorem 4.2, the results can be
found in [15].

2
|H|]*(z) = Ox(w) + ~A = F1 = [1P][%.
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