CHEN－RICCI INEQUALITIES FOR SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS WITH SEMI－SYMMETRIC METRIC CONNECTIONS

HE Guo－qing
（School of Mathematics and Computer Science，Anhui Normal University，Wuhu 241000，China）

Abstract

In this paper，we study Chen－Ricci inequalities for submanifolds of generalized complex space forms endowed with a semi－symmetric metric connection．By using algebraic tech－ niques，we establish Chen－Ricci inequalities between the mean curvature associated with a semi－ symmetric metric connection and certain intrinsic invariants involving the Ricci curvature and k－Ricci curvature of submanifolds，which generalize some of Mihai and Özgür＇s results．

Keywords：Chen－Ricci inequality；k－Ricci curvature；generalized complex space form；semi－ symmetric metric connection

2010 MR Subject Classification：53C40
Document code：A Article ID：0255－7797（2016）06－1133－09

1 Introduction

Since the celebrated theory of Nash［1］of isometric immersion of a Riemannian manifold into a suitable Euclidean space gave very important and effective motivation to view each Riemannian manifold as a submanifold in a Euclidean space，the problem of discovering simple sharp relationships between intrinsic and extrinsic invariants of a Riemannian sub－ manifold becomes one of the most fundamental problems in submanifold theory．The main extrinsic invariant of a submanifold is the squared mean curvature and the main intrinsic invariants of a manifold include the Ricci curvature and the scalar curvature．There were also many other important modern intrinsic invariants of（sub）manifolds introduced by Chen such as k－Ricci curvature（see［2－4］）．

In 1999，Chen［5］proved a basic inequality involving the Ricci curvature and the squared mean curvature of submanifolds in a real space form $R^{m}(C)$ ．This inequality is now called Chen－Ricci inequality［6］．In［5］，Chen also defined the k－Ricci curvature of a k－plane section of $T_{x} M^{n}, x \in M$ ，where M^{n} is a submanifold of the real space form $R^{n+p}(C)$ ．And he proved a basic inequality involving the k－Ricci curvature and the squared mean curvature of the submanifold M^{n} ．These inequalities described relationships between the intrinsic

[^0]invariants and the extrinsic invariants of a Riemannian submanifold and drew attentions of many people. Similar inequalities are studied for different submanifolds in various ambient manifolds (see [7-10]).

On the other hand, Hayden [11] introduced a notion of a semi-symmetric connection on a Riemannian manifold. Yano [12] studied Riemannaian manifolds endowed with a semisymmetric connection. Nakao [13] studied submanifolds of Riemannian manifolds with a semi-symmetric metric connection. Recently, Mihai and Özgür [14, 15] studied Chen inequalities for submanifolds of real space forms admitting a semi-symmetric metric connection and Chen inequalities for submanifolds of complex space forms and Sasakian space forms with a semi-symmetric metric connection, respectively. Motivated by studies of the above authors, in this paper we establish Chen-Ricci inequalities for submanifolds in generalized complex forms with a semi-symmetric metric connection.

2 Preliminaries

Let N^{n+p} be an $(n+p)$-dimensional Riemannian manifold with Riemannian metric g and a linear connection $\bar{\nabla}$ on N^{n+p}. If the torsion tensor \bar{T} of $\bar{\nabla}$, defined by

$$
\bar{T}(\bar{X}, \bar{Y})=\bar{\nabla}_{\bar{X}} \bar{Y}-\bar{\nabla}_{\bar{Y}} \bar{X}-[\bar{X}, \bar{Y}]
$$

for any vector fields \bar{X} and \bar{Y} on N^{n+p}, satisfies

$$
\bar{T}(\bar{X}, \bar{Y})=\phi(\bar{Y}) \bar{X}-\phi(\bar{X}) \bar{Y}
$$

for a 1 -form ϕ, then the connection $\bar{\nabla}$ is called a semi-symmetric connection. Furthermore, if $\bar{\nabla}$ satisfies $\bar{\nabla} g=0$, then $\bar{\nabla}$ is called a semi-symmetric metric connection. Let $\bar{\nabla}^{\prime}$ denote the Levi-Civita connection with respect to the Riemannian metric g. In [12] Yano gave a semi-symmetric metric connection $\bar{\nabla}$ which can be written as

$$
\begin{equation*}
\bar{\nabla}_{\bar{X}} \bar{Y}=\bar{\nabla}_{\bar{X}}^{\prime} \bar{Y}+\phi(\bar{Y}) \bar{X}-g(\bar{X}, \bar{Y}) U \tag{2.1}
\end{equation*}
$$

for any vector field \bar{X}, \bar{Y} on N^{n+p}, where U is a vector field given by $g(U, \bar{X})=\phi(\bar{X})$.
Let M^{n} be an n-dimensional submanifold of N^{n+p} with a semi-symmetric metric connection $\bar{\nabla}$ and the Levi-Civita connection $\bar{\nabla}^{\prime}$. On the submanifold M^{n} we consider the induced semi-symmetric metric connection denoted by ∇ and the induced Levi-Civita connection denoted by ∇^{\prime}. The Gauss formulas with respect to ∇ and ∇^{\prime}, respectively, can be written as

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \bar{\nabla}_{X}^{\prime} Y=\nabla_{X}^{\prime} Y+h^{\prime}(X, Y) \tag{2.2}
\end{equation*}
$$

for any vector fields X, Y on M^{n}, where h^{\prime} is the second fundamental form of M^{n} in N^{n+p} and h is a $(0,2)$-tensor on M^{n}. According to formula (7) in [13], h is also symmetric.

Let \bar{R} be the curvature tensor of N^{n+p} with respect to $\bar{\nabla}$ and \bar{R} be the curvature tensor of N^{n+p} with respect to $\bar{\nabla}^{\prime}$. We also denote by R and R^{\prime} the curvature tensor of ∇ and
∇^{\prime}, respectively, on M^{n}. From [13], we know the curvature tensor \bar{R} with respect to the semi-symmetric metric $\bar{\nabla}$ on N^{n+p} can be written as

$$
\begin{align*}
\bar{R}(X, Y, Z, W)= & \bar{R}^{\prime}(X, Y, Z, W)-\alpha(Y, Z) g(X, W)+\alpha(X, Z) g(Y, W) \tag{2.3}\\
& -\alpha(X, W) g(Y, Z)+\alpha(Y, W) g(X, Z)
\end{align*}
$$

for any vector fields X, Y, Z, W on M^{n}, where α is a (0,2)-tensor field defined by

$$
\alpha(X, Y)=\left(\bar{\nabla}_{X}^{\prime} \phi\right) Y-\phi(X) \phi(Y)+\frac{1}{2} \phi(U) g(X, Y) .
$$

Denote by λ the trace of α. The Gauss equation for the submanifold M^{n} in N^{n+p} is

$$
\begin{equation*}
\bar{R}^{\prime}(X, Y, Z, W)=R^{\prime}(X, Y, Z, W)+g\left(h^{\prime}(X, Z), h^{\prime}(Y, W)\right)-g\left(h^{\prime}(X, W), h^{\prime}(Y, Z)\right) \tag{2.4}
\end{equation*}
$$

for any vector fields X, Y, Z, W on M^{n}. In [13], the Gauss equation with respect to the semi-symmetric metric connection is

$$
\begin{equation*}
\bar{R}(X, Y, Z, W)=R(X, Y, Z, W)+g(h(X, Z), h(Y, W))-g(h(X, W), h(Y, Z)) . \tag{2.5}
\end{equation*}
$$

In N^{n+p} we can choose a local orthonormal frame $\left\{e_{1}, \cdots, e_{n}, e_{n+1}, \cdots, e_{n+p}\right\}$ such that restricting to $M^{n}, e_{1}, \cdots, e_{n}$ are tangent to M^{n}. Setting $h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right)$, then the squared length of h is

$$
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right)=\sum_{r=n+1}^{n+p} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} .
$$

The mean curvature vector of M^{n} associated to $\bar{\nabla}$ is $H=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right)$ and the mean curvature vector of M^{n} associated to $\bar{\nabla}^{\prime}$ is $H^{\prime}=\frac{1}{n} \sum_{i=1}^{n} h^{\prime}\left(e_{i}, e_{i}\right)$.

Let $\pi \subset T_{x} M^{n}$ be a 2-plane section for any $x \in M^{n}$ and $K(\pi)$ be the sectional curvature of π associated to the induced semi-symmetric metric connection ∇. The scalar curvature τ at x with respect to ∇ is defined by

$$
\begin{equation*}
\tau(x)=\sum_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right) \tag{2.6}
\end{equation*}
$$

The following lemmas will be used in the paper.
Lemma 2.1 (see [13]) If U is a tangent vector field on M^{n}, we have $H=H^{\prime}, \quad h=h^{\prime}$.
Lemma 2.2 (see [13]) Let M^{n} be an n-dimensional submanifold of an ($n+p$)-dimensional Riemannian manifold N^{n+p} with the semi-symmetric metric connection $\bar{\nabla}$. Then
(i) M^{n} is totally geodesic with respect to the Levi-Civita connection and with respect to the semi-symmetric metric connection if and only if U is tangent to M^{n}.
(ii) M^{n} is totally umbilical with respect to the Levi-Civita connection if and only if M^{n} is totally umbilical with respect to the semi-symmetric metric connection.

Lemma 2.3 (see [10]) Let $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a function on R^{n} defined by

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1} \sum_{i=2}^{n} x_{i} .
$$

If $x_{1}+x_{2}+\cdots+x_{n}=2 \varepsilon$, then we have

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right) \leq \varepsilon^{2}
$$

with the equality holding if and only if $x_{1}=x_{2}+x_{n}+\cdots+x_{n}=\varepsilon$.
A $2 m$-dimensional almost Hermitian manifold (N, J, g) is said to be a generalized complex space form (see $[16,17]$) if there exists two functions F_{1} and F_{2} on N such that

$$
\begin{align*}
\bar{R}^{\prime}(\bar{X}, \bar{Y}, \bar{Z}, \bar{W})= & F_{1}[g(\bar{Y}, \bar{Z}) g(\bar{X}, \bar{W})-g(\bar{X}, \bar{Z}) g(\bar{Y}, \bar{W})]+F_{2}[g(\bar{X}, J \bar{Z}) g(J \bar{Y}, \bar{W}) \\
& -g(\bar{Y}, J \bar{Z}) g(J \bar{X}, \bar{W})+2 g(\bar{X}, J \bar{Y}) g(J \bar{Z}, \bar{W})] \tag{2.7}
\end{align*}
$$

for any vector fields $\bar{X}, \bar{Y}, \bar{Z}, \bar{W}$ on N, where \bar{R}^{\prime} is the curvature tensor of N with respect to the Levi-Civita connection $\bar{\nabla}^{\prime}$. In such a case, we will write $N\left(F_{1}, F_{2}\right)$. If $N\left(F_{1}, F_{2}\right)$ is a generalized complex space form with a semi-symmetric metric connection $\bar{\nabla}$, using (2.3) and (2.7), the curvature tensor \bar{R} with respect to the semi-symmetric metric connection $\bar{\nabla}$ of $N\left(F_{1}, F_{2}\right)$ can be written as

$$
\begin{align*}
\bar{R}(X, Y, Z, W)= & F_{1}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]+F_{2}[g(X, J Z) g(J Y, W) \\
& -g(Y, J Z) g(J X, W)+2 g(X, J Y) g(J Z, W)]-\alpha(Y, Z) g(X, W) \tag{2.8}\\
& +\alpha(X, Z) g(Y, W)-\alpha(X, W) g(Y, Z)+\alpha(Y, W) g(X, Z)
\end{align*}
$$

for X, Y, Z, W on M, where M is a submanifold of N.
Let M be an n-dimensional submanifold of a $2 m$-dimensional generalized complex space form $N\left(F_{1}, F_{2}\right)$. We set $J X=P X+F X$ for any vector field X tangent to M, where $P X$ and $F X$ are tangential and normal components of $J X$, respectively.

3 Chen-Ricci Inequality

In this section, we establish a sharp relation between the Ricci curvature along the direction of an unit tangent vector X and the mean curvature $\|H\|$ with respect to the semi-symmetric metric connect $\bar{\nabla}$.

Theorem 3.1 Let $M^{n}, \quad n \geq 2$, be an n-dimensional submanifold of a $2 m$-dimensional generalized complex space form $N\left(F_{1}, F_{2}\right)$ endowed with the semi-symmetric metric connection $\bar{\nabla}$. For each unit vector $X \in T_{x} M$, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq(n-1) F_{1}+3 F_{2}\|P X\|^{2}-(n-2) \alpha(X, X)-\lambda+\frac{n^{2}}{4}\|H\|^{2} \tag{1}
\end{equation*}
$$

(2) If $H(x)=0$, then a unit tangent vector X at x satisfies the equality case of (3.1) if and only if $X \in N(x)=\left\{X \in T_{x} M: h(X, Y)=0, \forall Y \in T_{x} M\right\}$.
(3) The equality of inequality (3.1) holds identically for all unit tangent vectors at x if and only if in the case of $n \neq 2, h_{i j}^{r}=0, \quad i, j=1,2 \cdots, n ; r=n+1, \cdots, 2 m$, or in the case of $n=2, \quad h_{11}^{r}=h_{22}^{r}, \quad h_{12}^{r}=h_{21}^{r}=0, r=3, \cdots, 2 m$.

Proof (1) Let $X \in T_{x} M$ be an unit tangent vector at x. We choose an orthonormal basis $e_{1}, \cdots, e_{n}, e_{n+1} \cdots, e_{2 m}$ such that e_{1}, \cdots, e_{n} are tangent to M at x and $e_{1}=X$.

When we set $X=W=e_{i}, \quad Y=Z=e_{j}, \quad i, j=1, \cdots, n, \quad i \neq j$ in (2.5) and (2.8), we have

$$
\begin{equation*}
R_{i j j i}=F_{1}+3 F_{2} g^{2}\left(J e_{i}, e_{j}\right)-\alpha\left(e_{i}, e_{i}\right)-\alpha\left(e_{j}, e_{j}\right)+\sum_{r=n+1}^{2 m}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right] \tag{3.2}
\end{equation*}
$$

Using (3.2), we get

$$
\begin{align*}
\operatorname{Ric}(X)= & \sum_{j=2}^{n} R_{1 j j 1}=(n-1) F_{1}+\sum_{j=2}^{n} 3 F_{2} g^{2}\left(J X, e_{j}\right) \\
& -(n-1) \alpha(X, X)-\sum_{j=2}^{n} \alpha\left(e_{j}, e_{j}\right)+\sum_{r=n+1}^{2 m} \sum_{i=2}^{n}\left[h_{11}^{r} h_{i i}^{r}-\left(h_{1 i}^{r}\right)^{2}\right] \tag{3.3}\\
\leq & (n-1) F_{1}+3 F_{2}\|P X\|^{2}-(n-2) \alpha(X, X)-\lambda+\sum_{r=n+1}^{2 m} \sum_{i=2}^{n} h_{11}^{r} h_{i i}^{r} .
\end{align*}
$$

We consider the maximum of the function

$$
f_{r}\left(h_{11}^{r}, \cdots, h_{n n}^{r}\right)=\sum_{i=2}^{n} h_{11}^{r} h_{i i}^{r}
$$

under the condition $h_{11}^{r}+h_{22}^{r}+\cdots+h_{n n}^{r}=k^{r}$, where k^{r} is a real constant.
From Lemma 2.3 we know the solution $\left(h_{11}^{r}, \cdots, h_{n n}^{r}\right)$ of this problem must satisfy

$$
\begin{equation*}
h_{11}^{r}=\sum_{i=2}^{r} h_{i i}^{r}=\frac{k^{r}}{2} . \tag{3.4}
\end{equation*}
$$

So it follows that

$$
\begin{equation*}
f_{r} \leq \frac{\left(k^{r}\right)^{2}}{4}=\frac{1}{4}\left(\sum_{i=1}^{n} h_{i i}^{r}\right)^{2} \tag{3.5}
\end{equation*}
$$

From (3.3) and (3.5) we have

$$
\begin{aligned}
\operatorname{Ric}(X) & \leq(n-1) F_{1}+3 F_{2}\|P X\|^{2}-(n-2) \alpha(X, X)-\lambda+\sum_{r=n+1}^{2 m} \frac{1}{4}\left(\sum_{i=1}^{n} h_{i i}^{r}\right)^{2} \\
& =(n-1) F_{1}+3 F_{2}\|P X\|^{2}-(n-2) \alpha(X, X)-\lambda+\frac{n^{2}}{4}\|H\|^{2}
\end{aligned}
$$

(2) For the unit vector X at x, if the equality case of inequality (3.1) holds, using (3.3), (3.4) and (3.5) we have

$$
\begin{align*}
& h_{1 i}^{r}=0, i \neq 1, \forall r \tag{3.6}\\
& h_{11}^{r}+h_{22}^{r}+\cdots+h_{n n}^{r}-2 h_{11}^{r}=0, \forall r \tag{3.7}
\end{align*}
$$

From $H(x)=0$, we have $h_{11}^{r}=0$, then $h_{1 j}^{r}=0, \forall j, r$. So we get $\mathrm{X} \in N(x)=\left\{X \in T_{x} M\right.$: $\left.h(X, Y)=0, \quad \forall Y \in T_{x} M\right\}$.

The converse is obvious.
(3) For all unit vector X at x, the equality case of inequality (3.1) holds. Let $X=$ $e_{i}, \quad i=1,2 \cdots n$, as in (2), we have

$$
\begin{aligned}
& h_{i j}^{r}=0, \quad i \neq j, \quad \forall r ; \\
& h_{11}^{r}+h_{22}^{r}+\cdots+h_{n n}^{r}-2 h_{i i}^{r}=0, \quad \forall i=1, \cdots, n ; \quad r=n+1, \cdots, 2 m
\end{aligned}
$$

We can distinguish two cases:
(a) in the case of $n \neq 2$, we have $h_{i j}^{r}=0, i, j=1,2, \cdots, n, r=n+1, \cdots, 2 m$.
(b) in the case of $n=2$, we have $h_{11}^{r}=h_{22}^{r}, h_{12}^{r}=h_{21}^{r}=0, r=3, \cdots, 2 m$.

The converse is trivial.
Corollary 3.2 If the equality case of inequality (3.1) holds for all unit tangent vector X of M^{n}, then we have
(1) the equality case of inequality (3.1) holds for all unit tangent vector X of M^{n} if and only if M^{n} is a totally umbilical submanifold;
(2) if U is a tangent field on M^{n} and $n \geq 3, M^{n}$ is a totally geodesic submanifold.

Proof (1) For $n=2$, from Theorem 3.1 we know the equality case of inequality (3.1) holds for all unit tangent vector X of M^{2} if and only if M^{2} is a totally umbilical submanifold with respect to the semi-symmetric metric connection. Then from Lemma 2.2, M^{2} is a totally umbilical submanifold with respect to the Levi-Civita connection.

For $n \geq 3$, from Theorem 3.1 we know the equality case of inequality (3.1) holds for all unit tangent vector X of M^{n} if and only $h_{i j}^{r}=0, \forall i, j, r$. According to formula (7) from [13], we have $h_{i j}^{r}=h_{i j}^{r}+k^{r} g_{i j}$, where k^{r} are real-valued functions on M. Thus we have $h_{i j}^{r}=k^{r} g_{i j}$. So M^{n} is a totally umbilical submanifold.
(2) If U is a tangent vector field on M^{n}, from Lemma 2.1 we have $h^{\prime}=h$. For $n \geq 3$, from Theorem 3.1 the equality case of inequality (3.1) holds for all unit tangent vector X of M^{n} if and only if $h_{i j}^{r}=0, \forall i, j, r$. Thus we have $h_{i j}^{r}=0, \forall i, j, r$. So M^{n} is a totally geodesic submanifold.

4 -Ricci Curvature

In this section, we establish a sharp relation between the k-Ricci curvature and the mean curvature $\|H\|$ with respect to the semi-symmetric metric connect $\bar{\nabla}$.

Let L be a k-plane section of $T_{x} M^{n}, x \in M^{n}$, and X be a unit vector in L. We choose an orthonormal frame e_{1}, \cdots, e_{k} of L such that $e_{1}=X$. In [5] the k-Ricci curvature of L at X is defined by

$$
\begin{equation*}
\operatorname{Ric}_{L}(X)=K_{12}+K_{13}+\cdots+K_{1 k} \tag{4.1}
\end{equation*}
$$

The scalar curvature of a k-plane section L is given by

$$
\begin{equation*}
\tau(L)=\sum_{1 \leq i<j \leq k} K_{i j} \tag{4.2}
\end{equation*}
$$

For an integer $k, 2 \leq k \leq n$, the Riemannian invariant Θ_{k} on M^{n} at $x \in M^{n}$ defined by

$$
\begin{equation*}
\Theta_{k}(x)=\frac{1}{k-1} \inf \left\{\operatorname{Ric}_{L}(X): L, X\right\} \tag{4.3}
\end{equation*}
$$

where L runs over all k-plane sections in $T_{x} M$ and X runs over all unit vectors in L. From (2.6), (4.1) and (4.2) for any k-plane section $L_{i_{1} \cdots i_{k}}$ spanned by $\left\{e_{i_{1}}, \cdots, e_{\left.i_{k}\right\}}\right.$, it follows that

$$
\begin{equation*}
\tau\left(L_{i_{1} \cdots i_{k}}\right)=\frac{1}{2} \sum_{i \in\left\{i_{1}, \cdots i_{k}\right\}} \operatorname{Ric}_{i_{1}, \cdots i_{k}}\left(e_{i}\right) \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau(x)=\frac{1}{C_{n-2}^{k-2}} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \tau\left(L_{i_{1} \cdots i_{k}}\right) \tag{4.5}
\end{equation*}
$$

From (4.3), (4.4) and (4.5), we have

$$
\begin{equation*}
\tau(x) \geq \frac{n(n-1)}{2} \Theta_{k}(x) \tag{4.6}
\end{equation*}
$$

Theorem 4.1 Let $M^{n}, n \geq 3$, be an n-dimensional submanifold of a $2 m$-dimensional generalized complex space form $N\left(F_{1}, F_{2}\right)$ endowed with a semi-symmetric connection $\bar{\nabla}$. Then we have

$$
\|H\|^{2} \geq \frac{2 \tau}{n(n-1)}+\frac{2}{n} \lambda-F_{1}-\frac{3 F_{2}}{n(n-1)}\|P\|^{2}
$$

Proof For $x \in M^{n}$, let $\left\{e_{1}, \cdots, e_{n}\right\}$ and $\left\{e_{n+1}, \cdots, e_{2 m}\right\}$ be an orthonormal basis of T_{x}^{M} and $T_{x}^{\perp} M$, respectively, where e_{n+1} is parallel to the mean curvature vector H.

From (3.2), we have

$$
\begin{equation*}
R_{i j j i}=F_{1}+3 F_{2} g^{2}\left(J e_{i}, e_{j}\right)-\alpha\left(e_{i}, e_{i}\right)-\alpha\left(e_{j}, e_{j}\right)+\sum_{r=n+1}^{2 m}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right] . \tag{4.7}
\end{equation*}
$$

Setting $\|P\|^{2}=\sum_{i, j=1}^{n} g^{2}\left(J e_{i}, e_{j}\right)$. From (2.6), it follows that

$$
\begin{equation*}
2 \tau(x)=n(n-1) F_{1}+3 F_{2}\|P\|^{2}-2(n-1) \lambda+n^{2}\|H\|^{2}-\|h\|^{2} . \tag{4.8}
\end{equation*}
$$

Then equation (4.8) can be also written as

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau+\|h\|^{2}+2(n-1) \lambda-n(n-1) F_{1}-3 F_{2}\|P\|^{2} \tag{4.9}
\end{equation*}
$$

We choose an orthonormal basis $\left\{e_{1}, \cdots, e_{n}, e_{n+1}, \cdots, e_{2 m}\right\}$ such that e_{1}, \cdots, e_{n} diagonalize the shape operator $A e_{n+1}$, i.e.,

$$
A e_{n+1}=\left(\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & a_{n}
\end{array}\right)
$$

and $A e_{r}=\left(h_{i j}^{r}\right), \quad i, j=1 \cdots \cdots n ; \quad r=n+2, \cdots, 2 m, \quad$ trace $A e_{r}=0$. So (4.9) turns into

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau+\sum_{i=1}^{n} a_{i}^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+2(n-1) \lambda-n(n-1) F_{1}-3 F_{2}\|P\|^{2} . \tag{4.10}
\end{equation*}
$$

On the other hand, we get

$$
(n\|H\|)^{2}=\left(\sum_{i=1}^{n} a_{i}\right)^{2} \leq n \sum_{i=1}^{n} a_{i}^{2},
$$

which implies

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{2} \geq n\|H\|^{2} \tag{4.11}
\end{equation*}
$$

From (4.10) and (4.11), it follows that

$$
n^{2}\|H\|^{2} \geq 2 \tau+n\|H\|^{2}+2(n-1) \lambda-n(n-1) F_{1}-3 F_{2}\|P\|^{2},
$$

which means

$$
\begin{equation*}
\|H\|^{2} \geq \frac{2 \tau}{n(n-1)}+\frac{2}{n} \lambda-F_{1}-\frac{3 F_{2}}{n(n-1)}\|P\|^{2} . \tag{4.12}
\end{equation*}
$$

Using Theorem 4.1 and (4.6) we can obtain the following theorem.
Theorem 4.2 Let $M^{n}, n \geq 3$, be an n-dimensional submanifold of a $2 m$-dimensional generalized complex space form $N\left(F_{1}, F_{2}\right)$ endowed with a semi-symmetric connection $\bar{\nabla}$. Then for any integer $k, 2 \leq k \leq n$, and for any point $x \in M$, we have

$$
\|H\|^{2}(x) \geq \Theta_{k}(x)+\frac{2}{n} \lambda-F_{1}-\frac{3 F_{2}}{n(n-1)}\|P\|^{2} .
$$

Proof Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be an orthonormal basis of $T_{x} M^{n}$ at $x \in M^{n}$. The k-plane section spanned by $e_{i_{1}}, \cdots, e_{i_{k}}$ is denoted by $L_{i_{1} \cdots i_{k}}$.

Then from (4.6) and (4.12), we have

$$
\|H\|^{2}(x) \geq \Theta_{k}(x)+\frac{2}{n} \lambda-F_{1}-\frac{3 F_{2}}{n(n-1)}\|P\|^{2} .
$$

Remark 4.3 For $F_{1}=F_{2}=C$ (C is constant) in Theorem 3.1, we obtain a Chen-Ricci inequality for submanifolds of complex space forms with a semi-symmetric metric connection.

For $F_{1}=F_{2}=C$ (C is constant) in Theorem 4.1 and Theorem 4.2, the results can be found in [15].

References

[1] Nash J F. The imbedding problem for Riemannian manifolds[J]. Ann. Math., 1956, 63: 20-63.
[2] Chen B Y. Some pinching and classification theorems for minimal submanifolds[J]. Arch. Math. (Basel), 1993, 60(6): 568-578.
［3］Chen B Y．Strings of Riemannian invariants，inequalities，ideal immersions and their applications［J］． Third Pacific Rim Geom．Conf．（Seoul），1996：7－60．
［4］Chen B Y．Riemannian submanifolds［M］．North－Holland，Amsterdam：Handbook Diff．Geom．，2000， 1：187－418．
［5］Chen B Y．Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions［J］．Glasg．Math．J．，1999，41（1）：33－41．
［6］Tripathi M M．Chen－Ricci inequality for submanifolds of contact metric manifolds［J］．J．Adv．Math． Studies，2008，1（1－2）：111－135．
［7］Chen B Y．On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms［J］． Arch．Math．（Basel），2000，74：154－160．
［8］Matsumoto K，Mihai I，Oiaga A．Ricci curvature of submanifolds in complex space forms［J］．Rev． Roumaine Math．Pures Appl．，2001，46：775－782．
［9］Mihai I．Ricci curvature of submanifolds in Sasakian space forms［J］．J．Aust．Math．Soc．，2002， 72（2）：247－256．
［10］Zhang Pan，Zhang Liang，Song Wei－dong．Some remarks on geometric inequalities for submanifolds of a riemannian manifold of quasi－constant curvature［J］．J．Math．，2016，36（3）：445－457．
［11］Haydan H A．Subspaces of a space with torsion［J］．Proc．London Math．Soc．，1932，34：27－50．
［12］Yano K．On semi－symmetric metric connection［J］．Rev．Roumaine Math．Pures Appl．，1970，15： 1579－1586．
［13］Nakao Z．Submanifolds of a Riemanian with semi－symmetric metric connections［J］．Proc．Amer． Math．Soc．，1976，54：261－266．
［14］Mihai A，Özgür C．Chen inequalities for submanifolds of real space forms with a semi－symmetric metric connection［J］．Taiwanese J．Math．，2010， 14 （4）：1465－1477．
［15］Mihai A，Özgür C．Chen inequalities for submanifolds of complex space forms and Sasakian space forms endowed with semi－symmetric metric connections［J］．Rocky Mountain J．Math．，2011，5（41）： 1653－1673．
［16］Tricerri F，Vanhecke L．Curvature tensors on almost Hermitian manifolds［J］．Trans．Amer．Math． Soc．，1981，267（2）：365－397．
［17］Vanhecke L．Almost Hermitian manifolds with J－invariant Riemann curvature tensor［J］．Rend．Sem． Mat．Univ．Politec．Torino，1975，34：487－498．

容有半对称度量联络的广义复空间中子流形上的 Chen－Ricci不等式

何国庆

（安徽师范大学数学计算机科学学院，安徽芜湖 241000）
摘要：本文研究了容有半对称度量联络的广义复空间中的子流形上的Chen－Ricci不等式．利用代数技巧，建立了子流形上的Chen－Ricci不等式。这些不等式给出了子流形的外在几何量一关于半对称联络的平均曲率与内在几何量—Ricci曲率及 k－Ricci曲率之间的关系，推广了Mihai 和Özgür的一些结果．

关键词：Chen－Ricci不等式；k－Ricci曲率；广义复空间；半对称度量联络
MR（2010）主题分类号：53C40 中图分类号：O186．12

[^0]: ＊Received date：2014－09－13 Accepted date：2015－11－09
 Foundation item：Supported by the Foundation for Excellent Young Talents of Higher Education of Anhui Province（2011SQRL021ZD）．

 Biography：He Guoqing（1979－），female，born at Chaohu，Anhui，lecturer，major in differential geometry．

