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Abstract: In this paper, the complete moment convergence of weighted sums for sequences of
dependent random variables is investigated. By applying moment inequality and truncation meth-
ods, some sufficient conditions of complete moment convergence of weighted sums for sequences
of dependent random variables are established. We extend the results of Volodin et al. (2004)
and Chen et al. (2006) for independent random variables to negatively associated and negatively
dependent random variables, which improve and generalize the results of Sung (2011), Wu (2012)
and Guo and Zhu (2012).
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1 Introduction

Hsu and Robbins [1] introduced the concept of complete convergence of {X,,}. A se-

quence {X,,,n=1,2,---} is said to converge completely to a constant C' if

ZP(\X,L —C|>e€) < oo forall e >0.

n=1
Moreover, they proved that the sequence of arithmetic means of independent identically
distributed (i.i.d.) random variables converge completely to the expected value if the vari-
ance of the summands is finite. The converse theorem was proved by Erdos [2]. In view of
the Borel-Cantelli lemma, the complete convergence implies that almost sure convergence.
Therefore the complete convergence is very important tool in establishing almost sure con-
vergence. The result of Hsu-Robbins-Erdos is a fundamental theorem in probability theory

and was generalized and extended in several directions by many authors.
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We recall that the array {X,;,i > 1,n > 1} of random variables is said to be stochas-
tically dominated by a random variable X if there exists a positive constant C', such that
P{|X,;| >2} <CP{|X| >z} forallz >0,i>1and n > 1.

Volodin et al. [3] and Chen et al. [4] (8 > —1 and § = —1, respectively) obtained
complete convergence for weighted sums of arrays of rowwise independent Banach-space-
valued random elements.

Theorem 1.1 [3, 4] Suppose that § > —1. Let {X,;,i > 1,n > 1} be an array of
rowwise independent random elements in a real separable Banach space which are stochas-
tically dominated by a random variable X. Let {a,;,i > 1,n > 1} be an array of constants
satisfying

sup |an;| = O(n™") for some r >0 (1.1)
i>1

and

Z lani|” = O(n) (1.2)

for some 0 < @ < 2 and p such that @+ p/r < 2 and 1+ p+ 4 > 0. If B|X|0H0+0+0)/m < o0

and Y an; X, — 0 in probability, then
i=1

o0

E anani

i=1

inﬁP {
n=1

If 3 < —1, then (1.3) is immediate. Hence Theorem 1.1 is of interest only for 8 > —1.
Recently, Sung [5] extended Theorem 1.1 to negatively associated and negatively de-

> e} < oo for all € > 0. (1.3)

pendent random variables when § = 1. Moreover, similar results for sequences of p-mixing
and p*-mixing random variables are also established.

Theorem 1.2 [5] Suppose that > —1. Let {X,,;,7 > 1,n > 1} be an array of rowwise
negatively associated random variables which are stochastically dominated by a random
variable X. Let {a,;,7 > 1,n > 1} be an array of constants satisfying (1.1) and

Z |an:| = O(n") for some p <. (1.4)
i=1

If EX,; =0foralli>1,n>1 and

E|X|log|X|<oofor1+pu+ =0, (1.5)
E|X |0t/ < o0 for 14+ p+ 3> 0, (1.6)

then
k

Z anani

k21 |55

i n®Pp {Sup
n=1

> 6} < oo for all € > 0. (1.7)

Guo and Zhu [6] extended Theorem 1.2 to complete moment convergence of the supre-
mum of partial sums for arrays of negatively associated random variables when § > —1.

However, the proof of Guo and Zhu [6] does not work for the case of 3 = —1.
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Theorem 1.3 [6] Under the conditions of Theorem 1.2. If 8 > —1, then

i n°E (sup
n=1

k>1

k

Z anani

i=1

+
e) < oo for all € > 0. (1.8)

Wu [7] extended Theorem 1.1 to negatively dependent random variables when § > —1.
Wu [7] also considered the case of 14+ p+ 5 = 0(3 > —1). However, the proof of Wu [7] does
not work for the case of § = —1.

Theorem 1.4 [7] Suppose that § > —1. Let {X,,;,7 > 1,n > 1} be an array of rowwise
negatively dependent random variables which are stochastically dominated by a random
variable X. Let {a,;,7 > 1,n > 1} be an array of constants satisfying (1.1) and (1.2) for
some 6 and g such that p < 2r and 0 < § < min{2,2 — p/r}. Furthermore, assume that
EX,,=0foralli>1landn>1if0+ (1+pu+p)/r>1.1If

E|X|%log|X| < oo for 1+ p+ =0,
E|X|P+AHB/T < o6 for 14 p+ 6> 0,

then

o0

E anani

i=1

in'@P {
n=1

In this paper, We deal with more general weights and establish some weaker sufficient

> e} < oo for all € > 0. (1.9)

conditions for complete moment convergence of weighted sums for arrays of negatively asso-
ciated and negatively dependent random variables. Similar results for sequences of p*-mixing
random variables are also obtained. The results of Volodin et al. [3], Chen et al. [4], Sung
[5], Wu [7] and Guo and Zhu [6] are improved and generalized.

For the proofs of the main results, we need to restate a few lemmas for easy reference.
Throughout this paper, the symbol C denotes a positive constant which is not necessarily
the same one in each appearance, I(A) denotes the indicator function of A. For a finite set
B, the symbol #B denotes the number of elements in the set B. Let a, < b, denote that
there exists a constant C' > 0 such that a,, < Cb,, for sufficiently large n. Also, let logx
denote In max(e, x).

Lemma 1.1 [5] Let the sequence {X,,,n > 1} of random variables be stochastically
dominated by a random variable X. Then for any p > 0,2 > 0,

EIXn[PI(|Xn| < 2) < C|EXPI(|X] < 2) + 2P P{|X]| >z}, (1.10)

E\X,|PI(|X,| > x) < CE|X|PI(|X]| > x). (1.11)

The following lemma is well known, and its proof is standard.
Lemma 1.2 Let X be a random variable. For any o > 0,r > 0, the following statements
hold: -
(i) S nPE|X|°I(|X| > n") < E|X|*5 for any 8> —1,
n=1
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(ii) Zn5E|X|°‘I(\X| <n") < E|X|*+% for any 8 < —1.

One of the most interesting inequalities to probability theory is the Rosenthal-type
inequality. The Rosenthal-type inequality plays an important role in establishing complete
convergence. The Rosenthal-type inequalities for sequences of dependent random variables
were established by many authors.

The concept of negatively associated random variables was introduced by Alam and
Saxena [8] and was carefully studied by Joag-Dev and Proschan [9]. A finite family of
random variables {X;,1 < i < n}is said to be negatively associated, if for every pair disjoint
subset A and B of {1,2,---,n} and any real nondecreasing coordinate-wise functions f; on

4 and f, on R?,
Cov(fi(X;,i € A), f2(X;,i € B)) <0,

whenever the covariance exists. An infinite family of random variables {X;, —oo < i < oo}
is negatively associated if every finite subfamily is negatively associated.

The following lemma is a Rosenthal-type inequality for negatively associated random
variables.

Lemma 1.3 [10] Let {X,,n > 1} be a sequence of negatively associated random
variables with £X,, = 0 and F|X,|? < oo for any n > 1,p > 1. Then there exist constants
Cp > 0 and D, > 0 depending only on p such that,

ZX

P

E max
1<k<n

<C, ZE|X|p for 1 <p<2

=1

and

FE max
1<k<n

k p n n p/2
dXi| <D, | D BIXiP+ (Z EX?) for p > 2.
i=1 i=1 i=1

The concept of negatively dependent random variables was given by Lehmann [11]. A

finite family of random variables {X;,1 < i < n} is said to be negatively dependent (or
negatively orthant dependent) if for all real numbers x1,zo,- - , x,,

P{ﬁ(Xigxz }<HP{X <z}, (1.12)

i=1

i=1

An infinite family of random variables is negatively dependent if every finite subfamily is
negatively dependent.

Obviously, negatively associated implies negatively dependent from the definition of
negatively associated and negatively dependent. But negatively dependent does not imply

negatively associated, so negatively dependent is much weaker than negatively associated.
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The following lemma is a Rosenthal-type inequality for negatively dependent random vari-
ables.

Lemma 1.4 [12] Let {X,,n > 1} be a sequence of negatively dependent random
variables with EX,, = 0 and E|X,|P < oo for any n > 1,p > 1. Then there exist constants
Cp > 0 and D, > 0 depending only on p such that,

>

=1

p n
<C, Y E|Xi|P for 1<p<2

i=1

E

and

n p

>

i=1

E

n n p/2
<D, | Y EIXiIF+ <Z EXE) for p > 2.
=1 i=1

Let {X,, n > 1} be a sequence of random variables defined on probability space
(Q,#,P). For any S C N, let Fg = o(Xy,k € 5). Define the p*-mixing coefficients
by

o < Cov(X,Y) )
5 (k) = sup sup |
8T \ XeL?(Fs), YEL2(Fr) \/Var(X) - Var(Y')
where S, T are the finite subsets of positive integers such that dist(S,T) > k. We call
{X,, n > 1} a p*-mixing sequence if there exists k > 1 such that p*(k) < 1.
Note that if {X,,, n > 1} is a sequence of independent random variables, then p*(n) = 0
for all n > 1.
The following lemma is a Rosenthal-type inequality for p*-mixing random variables.
Lemma 1.5 [13, 14] Let {X,,n > 1} be a sequence of p*-mixing random variables,
Y, € 0(X,), EY, =0, E|Y,|P <oo,n > 1, p> 1. Then there exist constants C,, > 0 and
D,, > 0 depending only on p, k and p*(k) where p*(k) < 1 such that,

i=1

k p n
| < |P <
E max Z_;Y —CPZ;EIKI for1<p<2
and
k P n n P/2
i P 42
E max > Y| <D, ;E\XA + (;Ey> for p > 2.

2 Main Results

Theorem 2.1 Suppose that § > —1. Let {X,;,i > 1,n > 1} be an array of rowwise
negatively associated random variables which are stochastically dominated by a random
variable X satisfying F|X|P < oo for some p > 1. Let {a,;,i > 1,n > 1} be an array of
constants satisfying (1.1) and

o0
Z |api|? < n~1PHTP=D for some ¢ < p. (2.1)

i=1
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Furthermore, assume that

o0

Z a2, < n~® for some a > 0 (2.2)

i=1
if p>2. Let EX,; =0for alli>1and n > 1. Then

k

Z anani

AE

+
— 6) < oo for all € > 0. (2.3)

i n°E (sup
n=1

Proof Without loss of generality, we can assume that a,; > 0,1 < i < n,n > 1

(otherwise, we use a;, and a,, instead of a,;, resp., and note that a,; = a, — a,,). From
(1.1) and (2.1), without loss of generality, we can assume that
sup an; <n- ", Z lani]? < p-l=Atre—a), (2.4)

izl i=1

For any ¢ > 1,n > 1, let
X = —a  1(an Xni < —1) 4+ Xpid (ans| Xpil < 1) 4 a1 1(0ni X0 > 1), X! = X — X0,

Noting that FX,; =0, | X/| <|X,i|I(ani| Xni| > 1) for any i > 1, n > 1, we have

ni

k +
< E (Sup > an(X), — EX},)| - e) + Esup | an(X), - EX]))

k2115

k + 0
< E (Sup ani(X); — BX),)| - e) + > ani B X i H(ani| Xni] > 1),

i=1 i=1
Therefore
oo k +
Z n’FE sup Z ApiXpi| — €
n—=1 k21155

+ o0 o
- e) + 3 0P i B X (il X > 1)

n=1 1=1

o k
< ZnﬁE (sup Zam:(an- - EX,,)
i—1

n=1 k=1

= Il-f-IQ.

Hence, in order to prove (2.3), it suffices to prove that I; < oo and I < co. Take § > 0 such
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that p — 6 > max(1, ¢q). By Lemma 1.1, Lemma 1.2 and (2.4), we get that

L < Zn[’ZEag;5|Xni|P*51(ani|Xm|>1)

IN

Z ﬂZEa | X P I(| X i| > n7)
< Znﬁw(?**q) > L EIXPTI(IX] > n")

< Y nTHEXPI(X] > ") < BIXPP < oo, (2.5)

n=1

Next, we will prove I; < oo. Noting that p > 1, for any M > p, we obtain by Markov’s

x} dx
) dx
) . (2.6)

is monotonic on X,,;. Therefore {a,; X}, — Fa,;X},,i > 1,n > 1} is also an

am;(X;n - EX};)| >

inequality that
L = su
- [Crfmly
00 o) k
> nf / aME (sup > aw(X), — EX},)
n=1 € k=21 i=1
< ZnﬁE (sup

IN

Zam(X — EX.)

k>1

Obviously, X .
array of rowwise negatively associated mean zero random variables.
Case 1 (1 < p < 2). Taking 6 > 0 such that p + 6 < 2, we get by Lemma 1.1, Lemma

1.3, C, inequality, (2.5) and (2.6) that

k

p+4
L < n’E | su ani (X, — EX); :
! ; ( 3 ot
< Z g Z PRBIX, P (by Lemma 1.3 and C, inequality)
n=1
§
< Z ﬁz A B X | T (s Xl < 1)+ > 0 Y P{an| Xl > 1}
n=1 n=1 =1
< ZnﬂZagj6E|Xm|P+5f(am|Xm| S+ Y 0 ani BIX il I (@il Xni| > 1)
n=1 =1 n=1 =1
< > 0P AP EIXP (e X <)+ Y 0’ PlanlX|>1}+C
n=1 =1 n=1 =1
< D P a P EIX P (g X] < 1)+ C. (2.7)

n=1 =1
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Set I, ={i,(n(j+1))" <an <(nj)"}, j=1,2,---. Then U;>11,,; = {1,2,--- , }. Note
also that forall k > 1,n > 1, M > ¢,

n-l=B+rr—a) > Z Z Z Z 81,,)(n(j +1))7"

j=1i€ly;
> 1S ()4 1)V G+ 1)
=k
Hence we have
S (tly)i M ), (2:8)
j=k
Note that for any p > 1,6 > 0,
> BZEaP+5|X|P+5I(am|X| <1) Z BZ > Bl IX [P (an] X| < 1)
n=1 i=1 n=1 Jj=11i€ly;

IN

I M8 EMS

Zﬁf (ng) T PHIBIX[PRI(IX] < (n(f + 1))

Z §(ng) T BIX PRI X] < (20)7)

n(j+1)
+Znﬂ Zﬂ[nj(nj)*r(p”) > EIXPRI(k-1)" < [X|<E) = Ji+ Ja (29)
n=1 j=1 k=2n+1
By Lemma 1.2 and (2.8), we obtain that
Jio= Y 0P iLng) TP EIX PRI X] < (2n)7)
n=1 j=1
< Y _nTUUEIXPRI(X] < (20)7) < BIX[ < oc. (2.10)
n=1
By (2.8),
00 00 n(j+1)
Jo=> 0> 4L,;(ng) " N BIXPRI((k— 1) < | X[ <K
n=1 j=1 k=2n+1
<Y TR N BXPRI((k— 1) < |X| < E) > )
n=1 k=2n+1 j=[£-1]

< Zn —r(p+9) Z n=1- B+Tp ) T(p+6—q)E|X|p+6I((k —1)" < |X| <k
k=2n+1
o [k/2]
< Zk—r(p+6—q)E|X|p+BI((k —1)" < |X| < k") Z - ttre—a)

k=2 n=1
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<D ETBIXPRI((k 1) < |X| < F) < E|X|P < oo, (2.11)
k=2

By (2.9), (2.10) and (2.11), for any p > 1,0 > 0, we have
> 0 Eal X [P (a0 X| < 1) < E|X|P < oo. (2.12)
n=1 =1

Combining with (2.7), we get that I; < oco.
Case 2 (p > 2). Taking sufficient large 6 > 0 such that § — a(p + 9)/2 < —1, we get
by Lemma 1.3, (2.6) and C,. inequality that
) p+6

0 o 0o (p+0)/2
< Znﬁ Z Elan X! ,|PT + Z nP <Z E(an.: X)) ) (by Lemma 1.3)
n=1 =1

n=1

k

Z ani X, — Ban X!,

i=1

L < Zn[}E (sup

k>1

= 111+I12.

From the proof of (2.7) and (2.12), we see that I;; < co. Since E|X|P < oo,p > 2 implies
EX? < oo, by (2.2), we obtain that

o (p+6)/2 0
I, < Zn <Z m) < Znﬁ_a(p+5)/2 < 00.

i=1 n=1

Thus Il < 0.

Remark 2.1 As in Remark 2.3 of Guo and Zhu [6], (2.3) implies (1.7). Hence, when
0+(1+p+3)/r > 1, Theorem 1.1 follows from Theorem 2.1 by taking p = 0+(1+pu+05)/r, ¢ =
0, since

Za up|am|2 62|am|9<<n (r(2=0)—p)
i=1

i=1

Hence conditions (1.1) and (2.1) are weaker than conditions (1.1) and (1.2). Theorem 2.1
not only extends the result of Volodin et al. [3] and Chen et al. [4] for independent random
variables to negatively associated case, but also obtains the weaker sufficient condition of
complete moment convergence of the supremum of partial sums for arrays of negatively
associated random variables.

Remark 2.2 If 1 4+ p+ 8 > 0, Theorem 1.2, Theorem 1.3 follow from Theorem 2.1
by taking p = 1+ (1 4+ u+ 8)/r, ¢ = 1. Theorem 2.1 extends the result of Sung [5] and
Guo and Zhu [6]. Moreover, the method used for proving our main results is different from
that of Sung [5]. Our method can be used efficiently to the field of the complete moment

convergence for sequences of dependent random variables.
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Note that conditions (1.1) and (2.1) together imply
D awl? <n 0 (2.13)
i=1

The following theorem shows that if the moment condition of Theorem 2.1 is replaced by a
stronger condition E|X|?log|X| < oo, then condition (2.1) can be replaced by the weaker
condition (2.13).

Theorem 2.2 Suppose that § > —1. Let {X,;,7 > 1,n > 1} be an array of rowwise
negatively associated random variables which are stochastically dominated by a random
variable X satisfying E|X | log|X| < oo for some p > 1. Let {an;,i > 1,n > 1} be an array
of constants satisfying (1.1) and (2.13). Furthermore, assume that (2.2) holds for some o > 0
if p>2. Let EX,; =0 for all i > 1 and n > 1. Then (2.3) holds.

Proof Applying the same notation and method of Theorem 2.1, we need only to give

k
the different parts. Noting that Y n™!' < logk and p > 1, we have

n=1

L < Z ﬁZEa X P 1 (a0i] X > 1) <Z BZaP E|X|PI(X] > n")

n=1 n=1 =1

< Zn PRIXPI(X] > n") Zn*ZEmplkr |X] < (k+1)")

n=1
= Y EIXPIK <|X| < (k+1)) Zn—l
k=1 n=1
< D logkE|IX|PI(k" < |X| < (k+1)") < E|X[Plog |X] < 0. (2.14)

k=1
Set I,; ={i,(n(j+1))" <an <(nj)~"}, j=1,2,--- . Notethat forall k > 1,n>1, M >
p,

WY = 30 T 2 S )G )
i=1

j=1i€l,; =k

Hence we have Z(tt[nj)j*TM <« n AP =r(M=P) Gimilar to the corresponding part of
j=k
the proof of (2.12), for any p > 1,0 > 0, we can obtain that

> 0PN Eal X [P (a0 X| < 1)
n=1 i=1

< D nTUEIXPRI(IX] < (20)7)
n=1

—|—Zn —r(+9) Z noimAte( ) PEIX[PI((k—1)" < |X| < k")
k=2n+1
< E\X|p + E|X|Plog | X| < occ. (2.15)
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The rest of the proof is the same as that of Theorem 2.1 and is omitted.

Corollary 2.1 Suppose that 3 > —1. Let {X,;,i > 1,n > 1} be an array of rowwise
negatively associated random variables which are stochastically dominated by a random
variable X. Let {a,;,7 > 1,n > 1} be an array of constants satisfying (1.1) and (1.2) for
some 6 and g such that p < 2r and 1 < 6 < min{2,2 — p/r}. Furthermore, assume that
EX,;=0foralli>1andn>1.If

E|X|?log|X| < oo for 14+ p+ =0,
E|X |0 Hm+8/m < oo for 14 p+ 4> 0,

then (2.3) holds.

Proof If 1 + u+ 8 = 0, we take p = 6 in Theorem 2.2. If 1 + u+ 8 > 0, we take
p=0+(14+pu+p)/r, ¢=0in Theorem 2.1. Hence (2.3) holds by Theorem 2.1 and Theorem
2.2.

Remark 2.3 Corollary 2.1 extends the result of Sung [5] and Guo and Zhu [6] for =1
tol1 <6 <2.

The following theorems extend Theorem 1.1 to negatively dependent random variables.
The proof is the same as that of Theorem 2.1 and Theorem 2.2 except that we use Lemma
1.4 instead of Lemma 1.3.

Theorem 2.3 Suppose that § > —1. Let {X,,;,7 > 1,n > 1} be an array of rowwise
negatively dependent random variables which are stochastically dominated by a random
variable X satisfying F|X|? < oo for some p > 1. Let {a;,i > 1,n > 1} be an array of
constants satisfying (1.1) and (2.1). Furthermore, assume that (2.2) holds for some o > 0 if
p>2 Let EX,; =0foralli>1and n>1. Then

i nﬂE ( i ananz'
i=1

n=1
Theorem 2.4 Suppose that 3 > —1. Let {X,;,i > 1,n > 1} be an array of rowwise

negatively dependent random variables which are stochastically dominated by a random

+
— e) < oo for all € > 0. (2.16)

variable X satisfying F|X|Plog|X| < oo for some p > 1. Let {an;,i > 1,n > 1} be an array
of constants satisfying (1.1) and (2.13). Furthermore, assume that (2.2) holds for some o > 0
if p>2. Let EX,; =0 for all i > 1 and n > 1. Then (2.16) holds.

Remark 2.4 If 1+ p+ 3 =0, we take p = 6 in Theorem 2.4. If 1 4+ u+ 8 > 0, we take
p=60+ (14 p+p8)/r, ¢g=0in Theorem 2.3. Therefore Theorem 1.4 follows from Theorem
2.3 and Theorem 2.4. However, Theorem 1.4 does not deal with the case of § = —1. Our
result covers the case of 3 = —1.

If the array {X,;,7 > 1,n > 1} in Theorem 2.1 and Theorem 2.2 is replaced by the
sequence {X,,n > 1} then we can extend Theorem 1.1 to p*-mixing random variables.

Theorem 2.5 Suppose that 3 > —1. Let {X;,i > 1} be a sequence of rowwise

p*-mixing random variables which are stochastically dominated by a random variable X
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satisfying E|X|P < oo for some p > 1. Let {an;,¢ > 1,n > 1} be an array of constants
satisfying (1.1) and (2.1). Furthermore, assume that (2.2) holds for some a > 0 if p > 2.
Let EX; =0 for all ¢ > 1. Then

Z n°E (sup

k>1

Z Wi Xi| —

Proof For any i > 1,n > 1, let X,,; = X;I(]a,:X;| < 1). Note that

& +
ZnﬁE (sup Zam-Xi e)

k21|
< ZnﬂE (sup ni(Xni — EXp;)

n=1 k1 i=1

+
e> < oo for all € > 0. (2.17)

=

+ o0 oo
- e> +3 0> Elani Xi| I(|anXi| > 1).
n=1 =1

The rest of the proof is the same as that of Theorem 2.1 except that we use Lemma 1.5

instead of Lemma 1.3 and it is omitted.

Theorem 2.6 Suppose that 3 > —1. Let {X;,i > 1} be a sequence of rowwise
p*-mixing random variables which are stochastically dominated by a random variable X
satisfying F|X|Plog|X| < oo for some p > 1. Let {an;,¢ > 1,n > 1} be an array of
constants satisfying (1.1) and (2.13). Furthermore, assume that (2.2) holds for some o > 0
if p>2. Let EX; =0 for all 4 > 1. Then (2.17) holds.

Proof For any i > 1,n > 1, let X,;; = X;1(]a,; X;| < 1). Note that

. +
B _
Zn E (?clirl) ;asz 6)
k
< ZnﬁE (sup Zam-(Xm' - EX,;)
i—1

el k>1

+ oo o0
- e> +) 0 Elan XilI(JanXi| > 1).
n=1 =1

The rest of the proof is the same as that of Theorem 2.2 except that we use Lemma 1.5

instead of Lemma 1.3 and it is omitted.

Remark 2.5 As in Remark 3.7 of Sung [5], Theorem 2.5 and Theorem 2.6 can not be
extended to the array {X,;,i > 1,n > 1} of rowwise p*-mixing random variables by using
the method of the proof of Theorem 2.1 and Theorem 2.2.
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