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cal algebra theories, we get that two endomorphism algebras are isomorphic in the Yetter-Drinfel’d

module category, which generalizes the results of Panaite et al. in Hopf algebra case.

Keywords: multiplier Hopf algebra; Yetter-Drinfel’d module; Yetter-Drinfel’d module cat-

egory

2010 MR Subject Classification: 16T05; 16T99

Document code: A Article ID: 0255-7797(2016)06-1111-09

1 Introduction

Multiplier Hopf algebra, introduced by Van Daele [1], can be naturally considered as
a generalization of Hopf algebra when the underlying algebra is no longer assumed to have
a unit. Yetter-Drinfel’d module category, as an important content in Hopf algebras theory,
was also studied by Van Daele and his collaborators. All the objects they discussed are
(non-degenerate) algebras (see [2]).

However, in the well-known Hopf algebras case, the objects of Yetter-Drinfel’d module
category are only vector spaces satisfying some certain conditions. So in [3], the authors
gave a new category structure for regular multiplier Hopf algebra A: (α, β)-Yetter-Drinfel’d
module category AYDA(α, β), in which the objects were vector spaces, generalizing the
former notions.

In this paper, we focus our work on (α, β)-Yetter-Drinfel’d module, mainly consider
some algebras in Yetter-Drinfel’d modules category and get some isomorphisms.
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The paper is organized in the following way. In Section 2, we recall some notions which
we will use in the following, such as multiplier Hopf algebras, modules and complete modules
for a multiplier Hopf algebras, comodules and (α, β)-Yetter-Drinfel’d modules.

In Section 3, we consider algebras in AYDA(α, β). Let α, β ∈ Aut(A), and M ∈
AYDA(α, β) be finite dimensional. Consider the object M ′ ∈ AYDA(αβ−1α, α), coincid-
ing with M as left A-modules, and having a right A-comodule structure given by

Γ(m)(1⊗ a′) = m〈0〉 ⊗m〈1〉a
′ = m(0) ⊗ αβ−1(m(1))a′,

then End(M) ∼= End(M ′)op as algebras in AYDA. Let ¦M be the dual vector space M∗ with
certain left A-module and right A-comodule structures, then End(M)op ∼= End(¦M).

2 Preliminaries

Throughout this paper, all spaces we considered are over a fixed field k. We consider A

as an algebra with a nondegenerate product, it is possible to construct the multiplier algebra
M(A). M(A) is an algebra with identity such that A sits in M(A) as an essential two-sided
ideal, it can be also characterized as the largest algebra with identity containing A as an
essential ideal. More details about the concept of the multiplier algebra of an algebra, we
refer to [1].

An algebra morphism (or homomorphism) ∆ : A −→ M(A ⊗ A) is called a comul-
tiplication on A if T A

1 (a ⊗ b) = ∆(a)(1 ⊗ b) and T A
2 (a ⊗ b) = (a ⊗ 1)∆(b) are elements

of A ⊗ A for all a, b ∈ A and if ∆ is coassociative in the sense that the linear mappings
T A

1 , T A
2 : A⊗A −→ A⊗A obey the relation

(T A
2 ⊗ id) ◦ (id⊗ T A

1 ) = (id⊗ T A
1 ) ◦ (T A

2 ⊗ id),

where id denotes the identity map.
A pair (A,∆) of an algebra A with nondegenerate product and a comultiplication ∆ on

A is called a multiplier Hopf algebra if T A
1 and T A

2 are bijective (see [1]), (A,∆) is regular if
and only if the antipode of (A,∆cop) is bijective.

Let (A,∆, ε, S) be a regular multiplier Hopf algebra and M a vector space. Then M is
called a (left-right) (α, β)-Yetter-Drinfel’d module over regular multiplier Hopf algebra A, if

(1) (M, ·) is a left unital A-module, i.e., A ·M = M .
(2) (M, Γ) is a (right) A-comodule, where Γ : M → M0(M ⊗ A) denotes the right

coaction of A on M , M0(M ⊗A) denote the completed module.
(3) Γ and · satisfy the following compatible conditions

(a · v)(0) ⊗ (a · v)(1)a′ = a(2) · v(0) ⊗ β(a(3))v(1)α(S−1(a(1)))a′. (2.1)

By the definition of Yetter-Drinfel’d modules, we can define (left-right) Yetter-Drinfel’d
module category AYDA(α, β). The other three Yetter-Drinfel’d module categories are similar
(more details see [3–5]).
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AYDA(id, id) = AYDA, the left-right Yetter-Drinfel’d module category.

3 Endomorphism Algebras

Let A be a regular multiplier Hopf algebra, in this section, we mainly consider (left-right)
Yetter-Drinfel’d module category AYDA over regular multiplier Hopf algebra A.

Definition 3.1 Let A be a multiplier Hopf algebra and C a unital algebra. C is called
a left A-module algebra, if

(1) (C, ·) is a left unital A-module,
(2) the module action satisfies

a · (cc′) = (a(1) · c)(a(2) · c′), a · 1C = ε(a)1C ,

C is called right A-comodule algebra, if
(1) (C, ρ) is a right A-comodule,
(2) the comodule structure map ρ satisfies: for all a ∈ A,

ρ(cc′)(1⊗ a) = c(0)c
′
(0) ⊗ c(1)c

′
(1)a,

ρ(1C) = 1C ⊗ 1A, 1A is the unit of M(A).

Let C be a unital associative algebra in AYDA. That means C is an object in AYDA,
and the multiplication C ⊗ C → C and a unit map ι : k → C satisfying associativity and
unit axioms.

Proposition 3.2 C is a unital algebra in AYDA if and only if C is an object in AYDA

and C is a left A-module algebra and a right Aop-comodule algebra.
We denote by Cop the usual opposite algebra, with the multiplication c • c′ = c′c for all

c, c′ ∈ C, and by C the A-opposite algebra, which means C as an object in AYDA, but with
the multiplication c ∗ c′ = c′(0)(c

′
(1) · c) for all c, c′ ∈ C, i.e., the opposite of C in the category

AYDA.
Proposition 3.3 By above notation, if C is an algebra in AYDA, then C is an algebra

in AYDA.
Proof For c, c′ ∈ C and any a ∈ A,

a · (c ∗ c′) = a · (c′(0)(c′(1) · c)) = (a(1) · c′(0))(a(2) · (c′(1) · c))
= (a(1) · c′(0))(a(2)c

′
(1) · c),

(a(1) · c) ∗ (a(2) · c′) = (a(2) · c′)(0)((a(2) · c′)(1) · (a(1) · c))
= (a(2)(2) · c′(0))((a(2)(3)c

′
(1)S

−1(a(2)(1))) · (a(1) · c))
= (a(1) · c′(0))(a(2)c

′
(1) · c),

ρ(c ∗ c′)(1⊗ a) = ρ(c′(0)(c
′
(1) · c))(1⊗ a) = c′(0)(0)(c

′
(1) · c)(0) ⊗ (c′(1) · c))(1)c′(0)(1)a

= c′(0)(0)(c
′
(1)(2) · c(0))⊗ c′(1)(3)c(1)S

−1(c′(1)(1))c
′
(0)(1)a

= c′(0)(c
′
(1) · c(0))⊗ c′(2)c(1)a

= c(0) ∗ c′(0) ⊗ c′(1)c(1)a.
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Proposition 3.4 If C, D are algebras in AYDA, then C⊗D is also an algebra in AYDA

with the following structures

a · (c⊗ d) = a(1) · c⊗ a(2) · d,

ρ(c⊗ d)(1⊗ a′) = (c(0) ⊗ d(0))⊗ d(1)c(1)a
′ for all a′ ∈ A,

(c⊗ d)(c′ ⊗ d′) = cc′(0) ⊗ (c′(1) · d)d′.

Proof It is obvious. Indeed, this algebra structure on C ⊗ D given above is just the
braided tensor product of C and D in the braided tensor category AYDA.

We now introduce the endomorphism algebras associated to (α, β)-Yetter-Drinfel’d mod-
ules.

Proposition 3.5 Let α, β ∈ Aut(A) and M ∈ AYDA(α, β) be finite dimensional. Then
(1) End(M) is an algebra in AYDA with structures

(a · u)(m) = α−1(a(1)) · u(α−1S(a(2)) ·m),

u(0)(m)⊗ a′u(1) = u(m(0))(0) ⊗ a′S−1(m(1))u(m(0))(1)

for all a, a′ ∈ A, u ∈ End(M) and m ∈ M .
(2) End(M)op is an algebra in AYDA with structures

(a · u)(m) = β−1(a(2)) · u(β−1S−1(a(1)) ·m),

u(0)(m)⊗ u(1)a
′ = u(m(0))(0) ⊗ u(m(0))(1)S(m(1))a′

for all a, a′ ∈ A, u ∈ End(M)op and m ∈ M .
Proof We only prove (1) here, (2) is similar. For (1), we first show that End(M) is an

object in AYDA. In the following, we show the main process: the compatible condition of

AYDA, i.e.,

(a · u)(0)(m)⊗ a′(a · u)(1) = (a(2) · u(0))(m)⊗ a′(a(3)u(1)S
−1(a(1))).

It holds, since

(a · u)(0)(m)⊗ a′(a · u)(1)

= (a · u)(m(0))(0) ⊗ a′S−1(m(1))(a · u)(m(0))(1)

= (α−1(a(1)) · u(α−1S(a(2)) ·m(0)))(0)

⊗a′S−1(m(1))(α−1(a(1)) · u(α−1S(a(2)) ·m(0)))(1)

= α−1(a(1)(2)) · u(α−1S(a(2)) ·m(0))(0)

⊗a′S−1(m(1))β(α−1(a(1)(3)))u(α−1S(a(2)) ·m(0))(1)αS−1(α−1(a(1)(1)))

= α−1(a(2)) · u(α−1S(a(4)) ·m(0))(0)

⊗a′S−1(m(1))βα−1(a(3))u(α−1S(a(2)) ·m(0))(1)S−1(a(1))
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and

(a(2) · u(0))(m)⊗ a′(a(3)u(1)S
−1(a(1)))

= α−1(a(2)(1)) · u(0)(α−1S(a(2)(2)) ·m)⊗ a′(a(3)u(1)S
−1(a(1)))

= α−1(a(2)(1)) · u((α−1S(a(2)(2)) ·m)(0))(0)

⊗a′(a(3)S
−1((α−1S(a(2)(2)) ·m)(1))u((α−1S(a(2)(2)) ·m)(0))(1)S−1(a(1)))

= α−1(a(2)(1)) · u(α−1S(a(2)(2)(2)) ·m(0))(0)

⊗a′(a(3)S
−1(βα−1S(a(2)(2)(1))m(1)a(2)(2)(3))u(α−1S(a(2)(2)(2)) ·m(0))(1)S−1(a(1)))

= α−1(a(2)) · u(α−1S(a(4)) ·m(0))(0)

⊗a′S−1(m(1))βα−1(a(3))u(α−1S(a(2)) ·m(0))(1)S−1(a(1)).

Then we need to show that the product defined in (1) is A-linear and A-colinear.

((a(1) · u)(a(2) · u′))(m)

= (a(1) · u)α−1(a(2)(1)) · u′(α−1S(a(2)(2)) ·m)

= α−1(a(1)(1)) · u(α−1S(a(1)(2)) · α−1(a(2)(1)) · u′(α−1S(a(2)(2)) ·m))

= α−1(a(1)) · u(u′(α−1S(a(2)) ·m))

= α−1(a(1)) · (uu′)(α−1S(a(2)) ·m))

= (a · (uu′))(m)

and

u(0)u
′
(0)(m)⊗ a′u′(1)u(1)

= u(0)(u′(m(0))(0))⊗ a′S−1(m(1))u′(m(0))(1)u(1)

= u(u′(m(0))(0)(0))(0) ⊗ a′S−1(m(1))u′(m(0))(1)S−1(u′(m(0))(0)(1))u(u′(m(0))(0)(0))(1)

= u(u′(m(0)))(0) ⊗ a′S−1(m(1))u(u′(m(0)))(1)

= (uu′)(m(0))(0) ⊗ a′S−1(m(1))(uu′)(m(0))(1)

= (uu′)(0)(m)⊗ a′(uu′)(1).

It is easy to get a · id = ε(a)id and ρ(id) = id ⊗ 1, where id is the unit in End(M). This
completes the proof.

Remark here that

u(0)(m)⊗ a′u(1) = u(m(0))(0) ⊗ a′S−1(m(1))u(m(0))(1),

u(m)(0) ⊗ a′u(m)(1) = u(0)(m(0))⊗ a′m(1)u(1)

are equivalent.
Proposition 3.6 Let α, β ∈ Aut(A), and M ∈ AYDA(α, β). Define a new object M ′

as follows: M ′ coincides with M as left A-modules, and has a right A-comodule structure
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given by

Γ(m)(1⊗ a′) = m〈0〉 ⊗m〈1〉a
′

:= m(0) ⊗ αβ−1(m(1))a′ = m(0) ⊗ αβ−1(m(1)βα−1(a′))

for all a′ ∈ A and m ∈ M , where

m(0) ⊗m(1)βα−1(a′) = ρ(m)(1⊗ βα−1(a′)),

and ρ is the comodule structure of M . Then

M ′ ∈ AYDA(αβ−1α, α).

Proof We can get the conclusion by direct computation.

(a ·m)<0> ⊗ (a ·m)<1>a′ = (a ·m)(0) ⊗ αβ−1((a ·m)(1))a′

= a(2) ·m(0) ⊗ αβ−1(β(a(3))m(1)αS−1(a(1)))a′

= a(2) ·m(0) ⊗ α(a(3))αβ−1(m(1))αβ−1αS−1(a(1)))a′

= a(2) ·m<0> ⊗ α(a(3))m<1>αβ−1αS−1(a(1)))a′,

this implies M ′ ∈ AYDA(αβ−1α, α).
Theorem 3.7 Let α, β ∈ Aut(A), and M ∈ AYDA(α, β) be finite dimensional. Consider

the object M ′ ∈ AYDA(αβ−1α, α) as above. Define the map

τ : End(M) → End(M ′)op,

τ(u)(m) = u(0)(α−1(u(1)) ·m)

for all u ∈ End(M) and m ∈ M ′. Then τ is an isomorphism of algebras in AYDA.
Proof Similar to the proof of Proposition 4.10 in [6].
First, τ is a homomorphism, since for u, v ∈ End(M),

τ(u ∗ v)(m) = τ(v(0)(v(1) · u))(m)

= (v(0)(v(1) · u))(0)(α−1((v(0)(v(1) · u))(1)) ·m)

= (v(0)(0)(v(1) · u)(0))(α−1((v(1) · u)(1)v(0)(1)) ·m)

= v(0)(0)(v(1)(2) · u(0))(α−1(v(1)(3)u(1)S
−1(v(1)(1))v(0)(1)) ·m)

= v(0)(v(1) · u(0))(α−1(v(2)u(1)) ·m)

= v(0)(α−1(v(1)(1)) · u(0)(α−1S−1(v(1)(2))α−1(v(2)u(1)) ·m))

= v(0)(α−1(v(1)) · u(0)(α−1(u(1)) ·m))

= τ(v)(u(0)(α−1(u(1)) ·m))

= τ(v)(τ(u)(m))

= (τ(u) • τ(v))(m).
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Second, τ is A-linear, since

τ(a · u)(m) = (a · u)(0)(α−1((a · u)(1)) ·m)

= (a(2) · u(0))(α−1(a(3)u(1)S
−1(a(1))) ·m)

= α−1(a(2)(1)) · u(0)(α−1S(a(2)(2)) · (α−1(a(3)u(1)S
−1(a(1))) ·m))

= α−1(a(2)) · u(0)(α−1(u(1)S
−1(a(1))) ·m)

= α−1(a(2)) · u(0)(α−1(u(1))α−1S−1(a(1))) ·m)

= α−1(a(2)) · τ(u)(α−1S−1(a(1))) ·m)

= (a · τ(u))(m).

Third, τ is A-colinear. To prove this, we have to show that ρτ = (τ ⊗ l)ρ, where ρ is the
A-comodule structure of End(M ′)op. Denote ρ(v)(1⊗ a) = v(0) ⊗ v(1)a, we have to prove

τ(u)(0)(m)⊗ τ(u)(1)a = τ(u(0))(m)⊗ u(1)a

for all a ∈ A,

τ(u)(0)(m)⊗ τ(u)(1)a

= τ(u)(m<0>)<0> ⊗ τ(u)(m<0>)<1>S(m<1>)a

= τ(u)(m(0))(0) ⊗ αβ−1(τ(u)(m(0))(1))S(αβ−1(m(1)))a

= τ(u)(m(0))(0) ⊗ αβ−1(τ(u)(m(0))(1)S(m(1)))a

= (u(0)(α−1(u(1)) ·m(0)))(0) ⊗ αβ−1((u(0)(α−1(u(1)) ·m(0)))(1)S(m(1)))a

= u(0)(0)((α−1(u(1)) ·m(0))(0))⊗ αβ−1((α−1(u(1)) ·m(0))(1)u(0)(1)S(m(1)))a

= u(0)(0)(α−1(u(1)(2)) ·m(0)(0))

⊗αβ−1((β(α−1(u(1)(3)))m(0)(1)α(S−1(α−1(u(1)(1)))))u(0)(1)S(m(1)))a

= u(0)(0)(α−1(u(0)(1)) ·m)⊗ u(1)a

= τ(u(0))(m)⊗ u(1)a.

Finally, we will show that τ is bijective, we define

τ−1 : End(M ′)op → End(M),

τ−1(v)(m) = v(0)(α−1(S(v(1))) ·m)

for v ∈ End(M ′)op. We can check that ττ−1 = τ−1τ = id and τ−1 is A-linear and A-colinear.
This completes the proof.

Remark that m =
n∑

i=1

ai ·mi, since M is a unital A-module.

τ(u)(m) = u(0)(α−1(u(1)) ·m) =
n∑

i=1

u(0)(α−1(u(1)) · (ai ·mi))

=
n∑

i=1

u(0)(α−1(u(1)α(ai)) ·mi).
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The definition of τ is meaningful. Because for finite i, there is an e ∈ A such that eai = ai

for all i = 1, · · · , n. Here

n∑
i=1

u(0) ⊗ u(1)α(ai)) = ρ(u)(1⊗ e)(1⊗
n∑

i=1

ai),

where ρ is the right A-comodule structure of End(M).
From Proposition 3.5 and the notion ¦M defined in Section 3 of [5], we can get the

following results:
Proposition 3.8 Let α, β ∈ Aut(A), and M ∈ AYDA(α, β) be finite dimensional. Then

End(M)op ∼= End(¦M) as algebras in AYDA.
Proof Denote the map ı : End(M)op −→ End(¦M) by ı(u) = u∗ for u ∈ End(M)op. It

is an algebra isomorphism.
The map ı is A-linear, the proof is similar as in Proposition 4.11 in [6]. Then we need to

show ı is A-colinear. Indeed, by Proposition 3.5 and the structures of ¦M , we can compute
as follows: for all u ∈ End(M)op, f ∈ ¦M , m ∈ M , and a ∈ A,

(ρ(ı(u))(1⊗ a))(f)(m) = ı(u)(0)(f)(m)⊗ ı(u)(0)a

= ı(u)(f(0))(0)(m)⊗ S−1(f(1))ı(u)(f(0))(1)a

= ı(u)(f(0))(m(0))⊗ S−1(f(1))S(m(1))a

= f(0)(u(m(0)))⊗ S−1(f(1))S(m(1))a

= f(u(m(0))(0))⊗ S−1(S(u(m(0))(1)))S(m(1))a

= f(u(m(0))(0))⊗ (u(m(0))(1))S(m(1))a

and

((ı⊗ 1)ρ(u)(1⊗ a))(f)(m) = ı(u(0))(f)(m)⊗ u(1)a

= f(u(0)(m))⊗ u(1)a

= f(u(m(0))(0))⊗ (u(m(0))(1))S(m(1))a.

From all above, we use the adapted Sweedler notation, it seems that the definitions and
proofs are similar as in the (weak) Hopf algebra case (see, e.g. [7]). However, we should
notice the‘cover’technique introduced in [8].
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