THE LOCUS OF POINTS WITH EQUAL SUM OF RELATIVE DISTANCES TO THREE POINTS

LI Xiao-ling ${ }^{1}$, ZHANG Su-mei ${ }^{2}$, ZHANG Geng-sheng ${ }^{1}$, SHEN Jian ${ }^{3}$
(1.School of Mathematics and Information Sciences, Hebei Normal University, Shijiazhuang 050024, China)
(2.School of Mathematics and Physics, Handan College, Handan 056005, China)
(3.Department of Mathematics, Texas State University, San Marcos TX 78666 , USA)

Abstract

In this paper, we study the problem about relative distance in the relative metric space. By mass point geometry, we get the result that for any given real number $\tau>4$, the locus of the points P satisfying the condition, $d_{\mathscr{T}}(P, A)+d_{\mathscr{T}}(P, B)+d_{\mathscr{T}}(P, C)=\tau$, is a convex dodecagon or nonagon (where $\mathscr{T} \equiv A B C$ is a triangle formed by the three fixed points A, B, and C), which enriches the field of relative distance.

Keywords: relative distance; plane convex body; dodecagon
2010 MR Subject Classification: 52A10; 52A38
Document code: A Article ID: 0255-7797(2016)04-0759-08

1 Introduction

Let $k(\geq 2)$ be an integer, to find k points on the sphere or in the ball of a Euclidean n-space E^{n} such that their pairwise distances are as large as possible is a long-standing problem in geometry. Let \mathcal{C} be a plane convex body. Many authors considered this problem in the sense of the following notion of \mathcal{C}-distance of points in a plane convex body [3]. Some results concerning this kind of distance appeared in [1, 2, 4] and [6-10].

We recall the following definitions. For arbitrary different points $A, B \in E^{2}$, denote by $A B$ the line-segment connecting the points A and B, by $|A B|$ the Euclidean length of the line-segment $A B$, by $\overrightarrow{A B}$ the ray starting at the point A and passing through the point B, and by $\overline{A B}$ the straight line passing through the points A and B. Let \mathcal{C} be a plane convex body and let $A_{1} B_{1}$ be a longest chord of \mathcal{C} parallel to $A B$. The \mathcal{C}-distance $d_{\mathcal{C}}(A, B)$ between the points A and B is defined by the ratio of $|A B|$ to $\frac{1}{2}\left|A_{1} B_{1}\right|$. If there is no confusion about \mathcal{C}, we may use the term relative distance between A and B. Observe that for arbitrary points $A, B \in E^{2}$ the \mathcal{C}-distance between A and B is equal to their $\left[\frac{1}{2}(\mathcal{C}+(-\mathcal{C}))\right]$-distance. Thus the metric $d_{\mathcal{C}}(A, B)$ is the metric of E^{2} whose unit ball is $\frac{1}{2}(\mathcal{C}+(-\mathcal{C}))$.

[^0]In this paper we consider the related problem. That is, let A, B, C be three fixed points in the plane and let $\mathscr{T}:=A B C$ be the triangle formed by the points A, B, and C. We prove that, for any given real number $\tau>4$, the locus of the points P satisfying the condition $d_{\mathscr{T}}(P, A)+d_{\mathscr{T}}(P, B)+d_{\mathscr{T}}(P, C)=\tau$, is a convex dodecagon (or nonagon) (that is, Theorem 2.4).

For simplicity, if two lines $\overline{P Q}$ and $\overline{R S}$ are parallel, we write $\overline{P Q} \| \overline{R S}$. Denote by $A(\mathcal{P})$ the area of the polygon \mathcal{P}. For a plane convex body \mathcal{C}, a chord $P Q$ of \mathcal{C} is called an affine diameter if there is no longer chord parallel to $P Q$ in \mathcal{C}.

2 The Main Results

We first apply mass point geometry [5] to prove the following lemma. A mass point is a pair (α, P), where α is a positive number (the mass) and P is a point in the plane. By the Archimedes principle of the lever, one can have the following addition rule for mass points.

Addition rule: $(\varphi, A)+(\mu, B)=(\varphi+\mu, C)$, where point C is on $A B$ with $|A C|:|C B|=$ $\mu: \varphi$.

Lemma 2.1 Let $T:=P A B$ be a triangle. Suppose that $X \in \overrightarrow{P A}, Y \in \overrightarrow{P B}$, and $Z \in$ $X Y$ with $Z=\lambda \cdot X+(1-\lambda) \cdot Y, 0 \leq \lambda \leq 1$. Then $d_{T}(P, Z)=\lambda \cdot d_{T}(P, X)+(1-\lambda) \cdot d_{T}(P, Y)$.

Figure 1

Proof Denote by C the intersection point of the lines $\overline{P Z}$ and $\overline{A B}$. If $X \notin P A$ or $Y \notin P B$, one may take $X^{\prime} \in P A, Y^{\prime} \in P B$, and $Z^{\prime} \in P C$ with $\frac{\left|P X^{\prime}\right|}{|P X|}=\frac{\left|P Y^{\prime}\right|}{|P Y|}=\frac{\left|P Z^{\prime}\right|}{|P Z|}$ (see the right picture in Figure 1), thus $\overline{X Y} \| \overline{X^{\prime} Y^{\prime}}$ and $Z^{\prime}=\lambda \cdot X^{\prime}+(1-\lambda) \cdot Y^{\prime}$, which implies that $d_{T}(P, Z)=\lambda \cdot d_{T}(P, X)+(1-\lambda) \cdot d_{T}(P, Y)$ if and only if $d_{T}\left(P, Z^{\prime}\right)=\lambda \cdot d_{T}\left(P, X^{\prime}\right)+$ $(1-\lambda) \cdot d_{T}\left(P, Y^{\prime}\right)$. So without loss of generality, we may assume that $X \in P A$ and $Y \in P B$. Let $|P X|=\alpha_{1},|P Y|=\alpha_{2},|P A|=\beta_{1}$, and $|P B|=\beta_{2}$. We assign masses $\alpha_{1} \varphi, \alpha_{2} \mu$, and $\left(\beta_{1}-\alpha_{1}\right) \varphi+\left(\beta_{2}-\alpha_{2}\right) \mu$ to points A, B, and P, respectively, where φ and μ satisfy $\beta_{1} \varphi: \beta_{2} \mu=\lambda:(1-\lambda)$. Now we apply the addition rule in mass point geometry and prove that Z is the center of the mass system $P A B$:

$$
\begin{aligned}
& \left(\alpha_{1} \varphi, A\right)+\left(\left(\beta_{1}-\alpha_{1}\right) \varphi+\left(\beta_{2}-\alpha_{2}\right) \mu, P\right)+\left(\alpha_{2} \mu, B\right) \\
= & {\left.\left[\left(\alpha_{1} \varphi, A\right)+\left(\left(\beta_{1}-\alpha_{1}\right) \varphi, P\right)\right]+\left[\left(\beta_{2}-\alpha_{2}\right) \mu, P\right)+\left(\alpha_{2} \mu, B\right)\right] } \\
= & \left(\beta_{1} \varphi, X\right)+\left(\beta_{2} \mu, Y\right)=\left(\beta_{1} \varphi+\beta_{2} \mu, Z\right)
\end{aligned}
$$

Since Z is the center of the mass system, the mass at C can be obtained by adding the
mass points of A and B :

$$
\begin{aligned}
& \left(\alpha_{1} \varphi, A\right)+\left(\alpha_{2} \mu, B\right)=\left(\alpha_{1} \varphi+\alpha_{2} \mu, C\right) \\
& |P Z|:|Z C|=\left(\alpha_{1} \varphi+\alpha_{2} \mu\right):\left[\left(\beta_{1}-\alpha_{1}\right) \varphi+\left(\beta_{2}-\alpha_{2}\right) \mu\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
d_{T}(P, Z) & =\frac{2|P Z|}{|P C|}=\frac{2|P Z|}{|P Z|+|Z C|}=2 \cdot \frac{\alpha_{1} \varphi+\alpha_{2} \mu}{\beta_{1} \varphi+\beta_{2} \mu} \\
& =\lambda \cdot \frac{2 \alpha_{1}}{\beta_{1}}+(1-\lambda) \cdot \frac{2 \alpha_{2}}{\beta_{2}}=\lambda \cdot d_{T}(P, X)+(1-\lambda) \cdot d_{T}(P, Y)
\end{aligned}
$$

where the second last equality holds since $\lambda \beta_{2} \mu=(1-\lambda) \beta_{1} \varphi$.

Figure 2
Lemma 2.2 Let $A B D C$ be a parallelogram and let $\mathscr{T}:=A B C$ be the triangle formed by the points A, B, and C. Suppose $U \in B D$ and $V \in \overrightarrow{A B}$ with $d_{\mathscr{T}}(U, A)+d_{\mathscr{T}}(U, B)+$ $d_{\mathscr{T}}(U, C)=d_{\mathscr{T}}(V, A)+d_{\mathscr{T}}(V, B)+d_{\mathscr{T}}(V, C)=\tau$ (see Figure 2), then $d_{\mathscr{T}}(W, A)+d_{\mathscr{T}}(W, B)+$ $d_{\mathscr{T}}(W, C)=\tau$ for any point $W \in U V$ with $W=\lambda \cdot U+(1-\lambda) \cdot V, 0 \leq \lambda \leq 1$.

Proof Since this lemma satisfies the conditions of Lemma 2.1 (translate some triangle if necessary), we obtain that

$$
\begin{aligned}
& d_{\mathscr{T}}(A, W)=\lambda \cdot d_{\mathscr{T}}(A, U)+(1-\lambda) \cdot d_{\mathscr{T}}(A, V) \\
& d_{\mathscr{T}}(B, W)=\lambda \cdot d_{\mathscr{T}}(B, U)+(1-\lambda) \cdot d_{\mathscr{T}}(B, V), \\
& d_{\mathscr{T}}(C, W)=\lambda \cdot d_{\mathscr{T}}(C, U)+(1-\lambda) \cdot d_{\mathscr{T}}(C, V)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& d_{\mathscr{T}}(W, A)+d_{\mathscr{T}}(W, B)+d_{\mathscr{T}}(W, C) \\
= & \lambda \cdot\left(d_{\mathscr{T}}(A, U)+d_{\mathscr{T}}(B, U)+d_{\mathscr{T}}(C, U)\right)+(1-\lambda) \cdot\left(d_{\mathscr{T}}(A, V)+d_{T}(B, V)+d_{\mathscr{T}}(C, V)\right) \\
= & \lambda \cdot \tau+(1-\lambda) \cdot \tau=\tau .
\end{aligned}
$$

Theorem 2.3 Let $\mathscr{T}:=A B C$ be a triangle. If a point P lies in the interior of \mathscr{T}, then $d_{\mathscr{T}}(P, A)+d_{\mathscr{T}}(P, B)+d_{\mathscr{T}}(P, C)=4$.

Figure 3

Proof Denote by D the intersection point of the lines $\overline{A P}$ and $\overline{B C}$, and denote by θ the angle formed by the lines $\overline{A D}$ and $\overline{B C}$, as shown in Figure 3. Then we have
$d_{\mathscr{T}}(P, A)=\frac{2|P A|}{|A D|}=2 \cdot\left(1-\frac{|P D|}{|A D|}\right)=2 \cdot\left(1-\frac{|P D| \cdot|B C| \cdot \sin (\theta) / 2}{|A D| \cdot|B C| \cdot \sin (\theta) / 2}\right)=2 \cdot\left(1-\frac{A(P B C)}{A(A B C)}\right)$.
Similarly, we get $d_{\mathscr{T}}(P, B)=2 \cdot\left(1-\frac{A(P A C)}{A(A B C)}\right)$, and $d_{\mathscr{T}}(P, C)=2 \cdot\left(1-\frac{A(P A B)}{A(A B C)}\right)$. Hence

$$
\begin{aligned}
d_{\mathscr{T}}(P, A)+d_{\mathscr{T}}(P, B)+d_{\mathscr{T}}(P, C) & =2 \cdot\left(3-\frac{A(P B C)+A(P A C)+A(P A B)}{A(A B C)}\right) \\
& =2 \cdot(3-1)=4 .
\end{aligned}
$$

Theorem 2.4 Let $\mathscr{T}:=A B C$ be a triangle. Then for any real number $\tau>4$, the locus of the points P satisfying the condition $d_{\mathscr{T}}(P, A)+d_{\mathscr{T}}(P, B)+d_{\mathscr{T}}(P, C)=\tau$, is either a convex dodecagon (when $\tau \neq 8$) or a nonagon (when $\tau=8$).

Proof The proof follows from the following steps.
Step 1 Draw a line-segment $C A_{1}$ with $C A_{1} \| A B$, and draw a line-segment $B A_{1}$ with $B A_{1} \| A C$ (see the left in Figure 4). Let P be an arbitrary point in the triangle $A_{1} B C$, and let D the be the intersection point of $A P$ and $B C$. Then $d_{\mathscr{T}}(P, A)=\frac{2|P A|}{|A D|}=2 \cdot \frac{A(A B C)+A(P B C)}{A(A B C)}$. Similarly, one can have

$$
\begin{aligned}
d_{\mathscr{T}}(P, B) & =2 \cdot \frac{A(P A B)}{A(A B C)}, \\
d_{\mathscr{T}}(P, C) & =2 \cdot \frac{A(P A C)}{A(A B C)}
\end{aligned}
$$

Thus

$$
d_{\mathscr{T}}(P, A)+d_{\mathscr{T}}(P, B)+d_{\mathscr{T}}(P, C)=4 \cdot \frac{A(A B C)+A(P B C)}{A(A B C)}=4+4 \cdot \frac{A(P B C)}{A(A B C)} .
$$

So in this case the locus of points P must be a line-segment $X Y$ parallel to $B C$.
Step 2 Let P belong to the unbounded angular region $M C N$ bounded by the lines $\overline{A C}$ and $\overline{B C}$, see the right in Figure 4. Then we get

$$
\begin{aligned}
d_{\mathscr{T}}(P, A) & =2 \cdot \frac{A(P A B)}{A(A B C)} \\
d_{\mathscr{T}}(P, B) & =2 \cdot \frac{A(P B A)}{A(A B C)}, \\
d_{\mathscr{T}}(P, C) & =2 \cdot \frac{A(P A B)-A(A B C)}{A(A B C)} .
\end{aligned}
$$

Figure 4

And thus

$$
d_{\mathscr{T}}(P, A)+d_{\mathscr{T}}(P, B)+d_{\mathscr{T}}(P, C)=6 \cdot \frac{A(P A B)}{A(A B C)}-2 .
$$

So in this case the locus of points P must be a line-segment $U V$ parallel to $A B$.

Figure 5
Step 3 Take lines $\overline{B E}$ and $\overline{C F}$ such that $\overline{B E}\|\overline{A C}, \overline{C F}\| \overline{A B}$, respectively. Denote by A_{1} the intersection point of the lines $\overline{B E}$ and $\overline{C F}$ (see the left in Figure 5). Let P lie in the angular region $E A_{1} F$. Then

$$
\begin{aligned}
& d_{\mathscr{T}}(P, A)=2 \cdot \frac{A(A B C)+A(P B C)}{A(A B C)} \\
& d_{\mathscr{T}}(P, B)=2 \cdot \frac{A(P B C)}{A(A B C)} \\
& d_{\mathscr{T}}(P, C)=2 \cdot \frac{A(P C B)}{A(A B C)}
\end{aligned}
$$

And thus

$$
d_{\mathscr{T}}(P, A)+d_{\mathscr{T}}(P, B)+d_{\mathscr{T}}(P, C)=2+6 \cdot \frac{A(P B C)}{A(A B C)} .
$$

So in this case the locus of points P must be a line-segment $S T$ parallel to $B C$.
By symmetry and by Lemma 2.2, from the three steps above we conclude that the locus of the points P satisfying the condition, $d_{\mathscr{T}}(P, A)+d_{\mathscr{T}}(P, B)+d_{\mathscr{T}}(P, C)=\tau$, is a convex dodecagon (when $\tau \neq 8$), (see the right in Figure 5) or a nonagon (when $\tau=8$). The proof is completed.

We now generalize the result of Theorem 2.3 as follows.
Theorem 2.5 Let $\mathcal{Q}:=A B C D$ be any convex quadrangle. If a point P lies in the interior of \mathcal{Q}, then

$$
4 \leq d_{\mathcal{Q}}(P, A)+d_{\mathcal{Q}}(P, B)+d_{\mathcal{Q}}(P, C)+d_{\mathcal{Q}}(P, D) \leq 6
$$

Proof Denote by O the intersection point of the line-segments $A C$ and $B D$. The point P must be in at least one of the four triangles $O A B, O B C, O C D$, and $O D A$. We suppose without loss of generality that P lies in the interior of $O A B$ (see Figure 6). Since $d_{\mathcal{Q}}(A, C)=d_{\mathcal{Q}}(B, D)=2$, by the triangle inequality, we have

$$
\begin{aligned}
& d_{\mathcal{Q}}(P, A)+d_{\mathcal{Q}}(P, C) \geq d_{\mathcal{Q}}(A, C)=2 \\
& d_{\mathcal{Q}}(P, B)+d_{\mathcal{Q}}(P, D) \geq d_{\mathcal{Q}}(B, D)=2
\end{aligned}
$$

So

$$
d_{\mathcal{Q}}(P, A)+d_{\mathcal{Q}}(P, B)+d_{\mathcal{Q}}(P, C)+d_{\mathcal{Q}}(P, D) \geq 4
$$

Figure 6
Let $\mathscr{T}:=A B C$. Since P lies in the interior of T, by Theorem 2.3 we have $d_{\mathscr{T}}(P, A)+$ $d_{\mathscr{T}}(P, B)+d_{\mathscr{T}}(P, C)=4$. Since $\mathscr{T} \subset \mathcal{Q}$, we get $d_{\mathcal{Q}}(P, A)+d_{\mathcal{Q}}(P, B)+d_{\mathcal{Q}}(P, C) \leq 4$. From $d_{\mathcal{Q}}(P, D) \leq 2$, we conclude that

$$
d_{\mathcal{Q}}(P, A)+d_{\mathcal{Q}}(P, B)+d_{\mathcal{Q}}(P, C)+d_{Q}(P, D) \leq 6 .
$$

We also have the following proposition.
Corollary 2.6 Let $\mathcal{S}:=A B C D$ be a unit square. Then the locus of the points P satisfying the condition,

$$
d_{\mathcal{S}}(P, A)+d_{\mathcal{S}}(P, B)+d_{\mathcal{S}}(P, C)+d_{\mathcal{S}}(P, D)=\tau, 4 \leq \tau \leq 6
$$

is also a square.
Proof We take a Cartesian coordinate system such that the coordinates of the points A, B, C, and D are $(0,0),(1,0),(1,1),(0,1)$, respectively. Denote by E the intersection point of the line-segments $A C$ and $B D$. Let $P=(x, y)$ and let P lie in the triangle $E B C$ (see the left in Figure 7). Then

$$
\begin{aligned}
& d_{\mathcal{S}}(P, A)=\frac{x}{\frac{1}{2} \cdot 1}=2 x, d_{\mathcal{S}}(P, B)=\frac{y}{\frac{1}{2} \cdot 1}=2 y \\
& d_{\mathcal{S}}(P, C)=\frac{1-y}{\frac{1}{2} \cdot 1}=2-2 y, d_{\mathcal{S}}(P, D)=\frac{x}{\frac{1}{2} \cdot 1}=2 x .
\end{aligned}
$$

So

$$
d_{\mathcal{S}}(P, A)+d_{\mathcal{S}}(P, B)+d_{\mathcal{S}}(P, C)+d_{\mathcal{S}}(P, D)=4 x+2
$$

Thus we obtain that $4 x+2=\tau$, that is, $x=\frac{\tau-2}{4}$.

Figure 7
Similarly, when $P \in E C D$, we have $y=\frac{\tau-2}{4}$. When $P \in E A B$, we get

$$
\begin{aligned}
& d_{\mathcal{S}}(P, A)=\frac{x}{\frac{1}{2} \cdot 1}=2 x, d_{\mathcal{S}}(P, B)=\frac{1-x}{\frac{1}{2} \cdot 1}=2-2 x \\
& d_{\mathcal{S}}(P, C)=\frac{1-y}{\frac{1}{2} \cdot 1}=2-2 y, d_{\mathcal{S}}(P, D)=\frac{1-y}{\frac{1}{2} \cdot 1}=2-2 y
\end{aligned}
$$

So

$$
d_{\mathcal{S}}(P, A)+d_{S}(P, B)+d_{\mathcal{S}}(P, C)+d_{\mathcal{S}}(P, D)=6-4 y
$$

Thus $6-4 y=\tau$, that is, $y=\frac{6-\tau}{4}$. Similarly, when $P \in E A D$, we have $x=\frac{6-\tau}{4}$. It is clear that if P lies in the boundary of \mathcal{S}, then

$$
d_{\mathcal{S}}(P, A)+d_{\mathcal{S}}(P, B)+d_{\mathcal{S}}(P, C)+d_{\mathcal{S}}(P, D)=6
$$

and if $P=E$, then

$$
d_{\mathcal{S}}(P, A)+d_{\mathcal{S}}(P, B)+d_{\mathcal{S}}(P, C)+d_{\mathcal{S}}(P, D)=4
$$

Then from the discussions above we conclude that the locus of the points P satisfying the condition,

$$
d_{\mathcal{S}}(P, A)+d_{\mathcal{S}}(P, B)+d_{\mathcal{S}}(P, C)+d_{\mathcal{S}}(P, D)=\tau, 4<\tau \leq 6
$$

is a square, whose center is the same as that of \mathcal{S} (see the right in Figure 7). The proof is completed.

References

[1] Böröczky K, Lángi Z. On the relative distances of six points in a plane convex body[J]. Studia Scientiarum Math. Hungarica, 2005, 42: 253-264.
[2] Doliwka K. On five points in the boundary of a plane convex body pairwise in at least unit relative distances[J]. J. Geom., 1995, 53: 76-78.
［3］Doliwka K，Lassak M．On relatively short and long sides of convex pentagons［J］．Geom．Dedicata， 1995，56：221－224．
［4］Joós A，Lángi Z．On the relative distances of seven points in a plane convex body［J］．J．Geom．， 2007，87：83－95．
［5］Hausner M．The center of mass and affine geometry［J］．Amer．Math．Month．，1962，69：724－737．
［6］Lan Wenhua，Su Zhanjun．On a conjecture about nine points in the boundary of a plane convex body at pairwise relative distances not greater than $4 \sin \frac{\pi}{18}[\mathrm{~J}]$ ．J．Geometry，2009，96：119－123．
［7］Lángi Z，Lassak M．On four points of a convex body in large relative distances［J］．Geomb．，2003， 12：184－190．
［8］Lassak M．On five points in a plane convex body in at least unit relative distances［J］．Colloquia Math．Societatis János Bolyai，1991，63：245－247．
［9］Su Zhanjun，Li Sipeng，Shen Jian，Yuan Liping．On the relative distances of eleven points in the boundary of a plane convex body［J］．Disc．Appl．Math．，2012，160：303－305．
［10］Su Zhanjun，Wei Xianglin，Li Sipeng，Shen Jian．On the relative distances of nine or ten points in the boundary of a plane convex body［J］．Disc．Math．，2014，317：14－18．

到三定点相对距离的和等于定数的点的轨迹

> 李晓玲 ${ }^{1}$ ，张素梅 ${ }^{2}$ ，张更生 ${ }^{1}$ ，沈 建 ${ }^{3}$
> （1．河北师范大学数学与信息科学学院，河北石家庄 050024）
> （2．邯単学院数理学院，河北 甘阝単 056005）
> （2．德克萨斯州立大学数学系，德克萨斯 圣马科斯 TX78666）

摘要：本文研究了相对测度空间中的距离问题。利用质点几何的理论方法获得如下结果：对任意给定的实数，满足条件 $d_{\mathscr{T}}(P, A)+d_{\mathscr{T}}(P, B)+d_{\mathscr{T}}(P, C)=\tau$ 的点 P 的轨迹是凸十二边形或九边形（其中 $\mathscr{T}:=A B C$ 是由给定的不同三点 A, B, C 构成的三角形），所得结果丰富了相对距离研究领域的内容。

关键词：相对距离；平面凸体；十二边形
$\operatorname{MR}(2010)$ 主题分类号：52A10；52A38 中图分类号：O157．3

[^0]: ${ }^{*}$ Received date: 2014-04-09 Accepted date: 2014-06-11
 Foundation item: Supported by National Natural Science Foundation of China (11371121); National Natural Science Foundation of USA (CNS 0835834; DMS 1005206); Natural Science Foundation of Hebei Province (A2013205073); Science Foundation of Hebei Normal University (L2013Z01).

 Biography: Li Xiaoling (1988-), female, born at Handan, Hebei, master degree candidate, major in discrete and combinatorical geometry.

