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Abstract: In this paper, we study the problem about relative distance in the relative metric
space. By mass point geometry, we get the result that for any given real number 7 > 4, the locus of
the points P satisfying the condition, dz (P, A) +dz (P, B) +d & (P,C) = 1, is a convex dodecagon
or nonagon (where = ABC is a triangle formed by the three fixed points A, B, and C), which
enriches the field of relative distance.
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1 Introduction

Let k (> 2) be an integer, to find k points on the sphere or in the ball of a Euclidean
n-space E™ such that their pairwise distances are as large as possible is a long-standing
problem in geometry. Let C be a plane convex body. Many authors considered this problem
in the sense of the following notion of C-distance of points in a plane convex body [3]. Some
results concerning this kind of distance appeared in [1, 2, 4] and [6-10].

We recall the following definitions. For arbitrary different points A, B € E?, denote by
AB the line-segment connecting the points A and B, by |AB| the Euclidean length of the
line-segment AB, by AB the ray starting at the point A and passing through the point B,
and by AB the straight line passing through the points A and B. Let C be a plane convex
body and let A; By be a longest chord of C parallel to AB. The C-distance dc (A, B) between
the points A and B is defined by the ratio of [AB| to 1| A; B;|. If there is no confusion about
C, we may use the term relative distance between A and B. Observe that for arbitrary points
A, B € E? the C-distance between A and B is equal to their [£(C 4 (—C))]-distance. Thus
the metric de(A, B) is the metric of E? whose unit ball is $(C + (—C)).
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In this paper we consider the related problem. That is, let A, B, C be three fixed points
in the plane and let .7 := ABC be the triangle formed by the points A, B, and C. We prove
that, for any given real number 7 > 4, the locus of the points P satisfying the condition
d7(P,A)+ds(P,B)+ds(P,C) =T, is a convex dodecagon (or nonagon) (that is, Theorem
2.4).

For simplicity, if two lines PQ and RS are parallel, we write PQ||RS. Denote by A(P)
the area of the polygon P. For a plane convex body C, a chord PQ of C is called an affine
diameter if there is no longer chord parallel to PQ in C.

2 The Main Results

We first apply mass point geometry [5] to prove the following lemma. A mass point is
a pair (a, P), where « is a positive number (the mass) and P is a point in the plane. By the
Archimedes principle of the lever, one can have the following addition rule for mass points.

Addition rule: (¢, A)+ (u, B) = (¢+u, C), where point C'is on AB with |[AC| : |CB| =
1.

— —_—

Lemma 2.1 Let T := PAB be a triangle. Suppose that X € PA,Y € PB, and Z €

XY withZ=XA-X4+(1-X)-Y,0<A<1. Thendp(P,Z) = A-dr(P,X)+(1=)\)-dr(P,Y).

c X z

P vy P Y B
Figure 1

Proof Denote by C' the intersection point of the lines PZ and AB. If X ¢ PA or
Y ¢ PB, one may take X' € PA,Y' € PB, and Z' € PC with ‘IIID’};I‘ = I‘I;};‘l = \llj;Zz'll (see
the right picture in Figure 1), thus XY || X'Y" and Z’ = A- X' + (1 — A) - Y, which implies
that dp(P,Z) = X -dr(P, X))+ (1 = X\) -dp(P,Y) if and only if dp(P,Z’) = X - dr(P, X') +
(1—=X)-dr(P,Y’). So without loss of generality, we may assume that X € PA and Y € PB.
Let |PX| = aq, |PY| = ag, |PA| = (1, and |PB| = (2. We assign masses aj¢, asp,

and (01 — a1)@ + (B2 — as)p to points A, B, and P, respectively, where ¢ and p satisfy

Bip: Bapp =X : (1 —XN). Now we apply the addition rule in mass point geometry and prove
that Z is the center of the mass system PAB:

(1p, A) + ((B1 — 1) + (B2 — az), P) + (azp, B)
(a1, A) + ((B1 — a1)p, P)] + [(B2 — a2)p, P) + (ap, B)]
(Bro, X) + (o, Y') = (Brp + Popt, Z).

Since Z is the center of the mass system, the mass at C' can be obtained by adding the
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mass points of A and B:

(a1907 A) + (062/% B) = (041%0 + agf, C)7
[PZ]: 120 = (arp + azp) : [(Br — o) + (B2 — az)p].

Thus
2\PZ| 2\PZ| a1 + asp
dr (P, Z - _g. Q1T p
v 2) = el TPz 11200 = Bt B
9 9
- A-%+(1—A)-%:A-dT(P,X)+(1—A)-dT(P,Y),
1 2

where the second last equality holds since A\Gapt = (1 — X)Br .

Figure 2

Lemma 2.2 Let ABDC be a parallelogram and let .7 := ABC be the triangle formed
by the points A, B, and C. Suppose U € BD and V € AB with d7(U,A) +d=(U,B) +
dz(U,C) =ds(V,A)+dz(V,B)+dz(V,C) = 7 (see Figure 2), then d& (W, A)+d (W, B)+
da(W,C) =7 for any point W e UV with W=A-U+(1—-X)-V,0< A< 1.

Proof Since this lemma satisfies the conditions of Lemma 2.1 (translate some triangle

if necessary), we obtain that

dg(ALW)=X-dz(A,U)+(1—=X)-ds(A,V),
dg(B,W)=X-ds(B,U)+ (1= \)-dz(B,V),
dg(C,W)=X-da(C,U)+ (1= )X)-do(C, V).

Thus

dz(W,A) +dz(W,B) +d7(W,C)
A (dg(AU)+dz(B,U)+da(C,U))+ (1 —=A) - (dz(A, V) +dr(B,V)+d=(C,V))
AT+A=N)-T=T.

Theorem 2.3 Let J := ABC be a triangle. If a point P lies in the interior of .7,
then d#(P,A) +ds(P,B) + do(P,C) = 4.
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Figure 3

Proof Denote by D the intersection point of the lines AP and BC, and denote by @
the angle formed by the lines AD and BC, as shown in Figure 3. Then we have
2|PA| _ |PD]| _ |PD|-|BC|-sin(6)/2 A(PBCQC)

ap) 2 U ap) =2 U Ep e sn2) ~ 2 U Ao

d(P,A) =

.. A(PAC A(PAB
Similarly, we get d (P, B) = 2 (1 - 5928), and d7(P,C) = 2- (1 — 3458)). Hence

A(PBC) + A(PAC) + A(PAB)

do(P,A)+ds(P,B)+dz(P,C) = 2-(3— A(ABC) )

= 2.3-1)=4.

Theorem 2.4 Let .7 := ABC be a triangle. Then for any real number 7 > 4, the
locus of the points P satisfying the condition d& (P, A) + d& (P, B)+d#(P,C) = 7, is either
a convex dodecagon (when 7 # 8) or a nonagon (when 7 = 8).

Proof The proof follows from the following steps.

Step 1 Draw a line-segment C'A; with CA;||AB, and draw a line-segment BA; with
BA,||AC (see the left in Figure 4). Let P be an arbitrary point in the triangle A; BC, and let

D the be the intersection point of AP and BC. Then do (P, A) = QIKBL‘I' =2 A(ABAC&;AC%DBC).

Similarly, one can have

bs(p.p) =2 ATAD)
-2 240
Thus
dﬂ(Pa A) + dﬂ(P7B) + dﬂ(Pv C) =4 A(ABE()A—FBIQ’()PBC) R ﬁgigg’;

So in this case the locus of points P must be a line-segment XY parallel to BC.
Step 2 Let P belong to the unbounded angular region M CN bounded by the lines AC
and BC, see the right in Figure 4. Then we get

ds(P,A)=2- jggg;y
ds(P,B) =2 ﬁigé;’
i (P.C) = 9. APAB) — A(ABC)
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Figure 4

And thus
A(PAB)

A(ABC)

So in this case the locus of points P must be a line-segment UV parallel to AB.

de(P,A)+ds(P,B)+ds(P,C) =6 - 2.

Figure 5

Step 3 Take lines BE and CF such that BE||AC, CF||AB, respectively. Denote by
A, the intersection point of the lines BE and C'F (see the left in Figure 5). Let P lie in the
angular region FA;F. Then

A(ABC) + A(PBC)

dz (P, A) =2 A(ABC) ’
d(PB) =2 G000,
dy(P,C) =2 fm
And thus A(PBC)
d(P,A)+ds(P,B)+ds(P,C) =2+6- A(ABO)"

So in this case the locus of points P must be a line-segment ST parallel to BC.

By symmetry and by Lemma 2.2, from the three steps above we conclude that the locus
of the points P satisfying the condition, do (P, A) + do (P, B) + d(P,C) = 7, is a convex
dodecagon (when 7 # 8), (see the right in Figure 5) or a nonagon (when 7 = 8). The proof

is completed.
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We now generalize the result of Theorem 2.3 as follows.

Theorem 2.5 Let Q := ABCD be any convex quadrangle. If a point P lies in the
interior of Q, then

4 < do(P,A)+do(P,B) + do(P,C) + do(P, D) < 6.

Proof Denote by O the intersection point of the line-segments AC' and BD. The
point P must be in at least one of the four triangles OAB, OBC, OCD, and ODA. We
suppose without loss of generality that P lies in the interior of OAB (see Figure 6). Since
do(A,C) =dg(B, D) =2, by the triangle inequality, we have

dQ(Pa A) + dQ(Pa C) 2 dQ(Aa C) =2,
dQ(PaB) +dQ(P7D) = dQ(B>D) =2
So
do(P. A) + do(P, B) + do(P,C) + do(P. D) > 4.

Figure 6

Let .7 := ABC'. Since P lies in the interior of T', by Theorem 2.3 we have do (P, A) +
d7(P,B)+dz(P,C) =4. Since 7 C Q, we get dgo(P, A) +dgo(P,B) +dgo(P,C) < 4. From
do(P, D) < 2, we conclude that

dQ(P, A) + dQ(P,B) + dQ(P, C) + dQ(P, D) < 6.

We also have the following proposition.

Corollary 2.6 Let S := ABCD be a unit square. Then the locus of the points P
satisfying the condition,

ds(P,A) +ds(P,B) +ds(P,C) + ds(P,D) =7,4 <7 <6

is also a square.
Proof We take a Cartesian coordinate system such that the coordinates of the points
A, B, C, and D are (0,0), (1,0), (1,1), (0,1), respectively. Denote by E the intersection
point of the line-segments AC and BD. Let P = (z,y) and let P lie in the triangle EBC
(see the left in Figure 7). Then
ds(P, A) = ‘Tl = 2z,ds(P,B) = 1y1 =2y,
2

_1y —92-2y,ds(P,D) =

= ol

X

dS(P7C): 1

= 2x.

1
2

N =
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So
ds(P,A) +ds(P,B)+ds(P,C) +ds(P,D) = 4z + 2.

Thus we obtain that 4x + 2 = 7, that is, x = TT_Q.

Figure 7

Similarly, when P € ECD, we have y = 772, When P € EAB, we get

1—
ds(P, A) = flzmds(P,B): l.15'“’:2—2:@
2 2
1- 1-
ds(P,C) = l_lyzrzy,ds(P,D): l_fz2—2y.
2 2

So
ds(P,A) +ds(P,B) 4+ ds(P,C) +ds(P,D) = 6 — 4y.

Thus 6 — 4y = 7, that is, y = 6777. Similarly, when P € EAD, we have x = 6777. It is clear

that if P lies in the boundary of S, then
dS(P7A) +dS(PaB) +dS(P70) +dS(P7D) = 67
and if P = E, then

ds(P,A) +ds(P,B)+ds(P,C) +ds(P,D) = 4.

Then from the discussions above we conclude that the locus of the points P satisfying the

condition,
dS(P, A) + ds(P,B) + ds(P, C) + ds(P,D) =7,4<7<6

is a square, whose center is the same as that of S (see the right in Figure 7). The proof is

completed.
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