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Abstract: In this paper, we study the problem about relative distance in the relative metric

space. By mass point geometry, we get the result that for any given real number τ > 4, the locus of

the points P satisfying the condition, dT (P, A)+dT (P, B)+dT (P, C) = τ, is a convex dodecagon

or nonagon (where T ≡ ABC is a triangle formed by the three fixed points A, B, and C), which

enriches the field of relative distance.
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1 Introduction

Let k (≥ 2) be an integer, to find k points on the sphere or in the ball of a Euclidean
n-space En such that their pairwise distances are as large as possible is a long-standing
problem in geometry. Let C be a plane convex body. Many authors considered this problem
in the sense of the following notion of C-distance of points in a plane convex body [3]. Some
results concerning this kind of distance appeared in [1, 2, 4] and [6–10].

We recall the following definitions. For arbitrary different points A,B ∈ E2, denote by
AB the line-segment connecting the points A and B, by |AB| the Euclidean length of the
line-segment AB, by

−−→
AB the ray starting at the point A and passing through the point B,

and by AB the straight line passing through the points A and B. Let C be a plane convex
body and let A1B1 be a longest chord of C parallel to AB. The C-distance dC(A,B) between
the points A and B is defined by the ratio of |AB| to 1

2
|A1B1|. If there is no confusion about

C, we may use the term relative distance between A and B. Observe that for arbitrary points
A,B ∈ E2 the C-distance between A and B is equal to their [1

2
(C + (−C))]-distance. Thus

the metric dC(A,B) is the metric of E2 whose unit ball is 1
2
(C + (−C)).
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In this paper we consider the related problem. That is, let A, B, C be three fixed points
in the plane and let T := ABC be the triangle formed by the points A, B, and C. We prove
that, for any given real number τ > 4, the locus of the points P satisfying the condition
dT (P, A)+dT (P, B)+dT (P, C) = τ , is a convex dodecagon (or nonagon) (that is, Theorem
2.4).

For simplicity, if two lines PQ and RS are parallel, we write PQ‖RS. Denote by A(P)
the area of the polygon P. For a plane convex body C, a chord PQ of C is called an affine
diameter if there is no longer chord parallel to PQ in C.

2 The Main Results

We first apply mass point geometry [5] to prove the following lemma. A mass point is
a pair (α, P ), where α is a positive number (the mass) and P is a point in the plane. By the
Archimedes principle of the lever, one can have the following addition rule for mass points.

Addition rule: (ϕ,A)+(µ,B) = (ϕ+µ,C), where point C is on AB with |AC| : |CB| =
µ : ϕ.

Lemma 2.1 Let T := PAB be a triangle. Suppose that X ∈ −→PA, Y ∈ −−→PB, and Z ∈
XY with Z = λ ·X +(1−λ) ·Y , 0 ≤ λ ≤ 1. Then dT (P, Z) = λ ·dT (P, X)+(1−λ) ·dT (P, Y ).

Figure 1

Proof Denote by C the intersection point of the lines PZ and AB. If X /∈ PA or
Y /∈ PB, one may take X ′ ∈ PA, Y ′ ∈ PB, and Z ′ ∈ PC with |PX′|

|PX| = |PY ′|
|PY | = |PZ′|

|PZ| (see
the right picture in Figure 1), thus XY ‖X ′Y ′ and Z ′ = λ ·X ′ + (1− λ) · Y ′, which implies
that dT (P, Z) = λ · dT (P, X) + (1 − λ) · dT (P, Y ) if and only if dT (P, Z ′) = λ · dT (P, X ′) +
(1−λ) ·dT (P, Y ′). So without loss of generality, we may assume that X ∈ PA and Y ∈ PB.
Let |PX| = α1, |PY | = α2, |PA| = β1, and |PB| = β2. We assign masses α1ϕ, α2µ,
and (β1 − α1)ϕ + (β2 − α2)µ to points A, B, and P , respectively, where ϕ and µ satisfy
β1ϕ : β2µ = λ : (1− λ). Now we apply the addition rule in mass point geometry and prove
that Z is the center of the mass system PAB:

(α1ϕ,A) + ((β1 − α1)ϕ + (β2 − α2)µ, P ) + (α2µ,B)

= [(α1ϕ,A) + ((β1 − α1)ϕ,P )] + [(β2 − α2)µ, P ) + (α2µ,B)]

= (β1ϕ,X) + (β2µ, Y ) = (β1ϕ + β2µ,Z).

Since Z is the center of the mass system, the mass at C can be obtained by adding the
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mass points of A and B:

(α1ϕ,A) + (α2µ,B) = (α1ϕ + α2µ,C),

|PZ| : |ZC| = (α1ϕ + α2µ) : [(β1 − α1)ϕ + (β2 − α2)µ].

Thus

dT (P, Z) =
2|PZ|
|PC| =

2|PZ|
|PZ|+ |ZC| = 2 · α1ϕ + α2µ

β1ϕ + β2µ

= λ · 2α1

β1

+ (1− λ) · 2α2

β2

= λ · dT (P, X) + (1− λ) · dT (P, Y ),

where the second last equality holds since λβ2µ = (1− λ)β1ϕ.

Figure 2

Lemma 2.2 Let ABDC be a parallelogram and let T := ABC be the triangle formed
by the points A, B, and C. Suppose U ∈ BD and V ∈ −−→AB with dT (U,A) + dT (U,B) +
dT (U,C) = dT (V, A)+dT (V, B)+dT (V, C) = τ (see Figure 2), then dT (W,A)+dT (W,B)+
dT (W,C) = τ for any point W ∈ UV with W = λ · U + (1− λ) · V , 0 ≤ λ ≤ 1.

Proof Since this lemma satisfies the conditions of Lemma 2.1 (translate some triangle
if necessary), we obtain that

dT (A,W ) = λ · dT (A,U) + (1− λ) · dT (A, V ),

dT (B,W ) = λ · dT (B,U) + (1− λ) · dT (B, V ),

dT (C, W ) = λ · dT (C, U) + (1− λ) · dT (C, V ).

Thus

dT (W,A) + dT (W,B) + dT (W,C)

= λ · (dT (A,U) + dT (B,U) + dT (C, U)) + (1− λ) · (dT (A, V ) + dT (B, V ) + dT (C, V ))

= λ · τ + (1− λ) · τ = τ.

Theorem 2.3 Let T := ABC be a triangle. If a point P lies in the interior of T ,
then dT (P, A) + dT (P, B) + dT (P, C) = 4.
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Figure 3

Proof Denote by D the intersection point of the lines AP and BC, and denote by θ

the angle formed by the lines AD and BC, as shown in Figure 3. Then we have

dT (P, A) =
2|PA|
|AD| = 2 · (1− |PD|

|AD| ) = 2 · (1− |PD| · |BC| · sin(θ)/2
|AD| · |BC| · sin(θ)/2

) = 2 · (1− A(PBC)
A(ABC)

).

Similarly, we get dT (P, B) = 2 · (1− A(PAC)
A(ABC)

), and dT (P, C) = 2 · (1− A(PAB)
A(ABC)

). Hence

dT (P, A) + dT (P, B) + dT (P, C) = 2 · (3− A(PBC) + A(PAC) + A(PAB)
A(ABC)

)

= 2 · (3− 1) = 4.

Theorem 2.4 Let T := ABC be a triangle. Then for any real number τ > 4, the
locus of the points P satisfying the condition dT (P, A)+ dT (P, B)+ dT (P, C) = τ , is either
a convex dodecagon (when τ 6= 8) or a nonagon (when τ = 8).

Proof The proof follows from the following steps.
Step 1 Draw a line-segment CA1 with CA1‖AB, and draw a line-segment BA1 with

BA1‖AC (see the left in Figure 4). Let P be an arbitrary point in the triangle A1BC, and let
D the be the intersection point of AP and BC. Then dT (P, A) = 2|PA|

|AD| = 2 · A(ABC)+A(PBC)
A(ABC)

.
Similarly, one can have

dT (P, B) = 2 · A(PAB)
A(ABC)

,

dT (P, C) = 2 · A(PAC)
A(ABC)

.

Thus

dT (P, A) + dT (P, B) + dT (P, C) = 4 · A(ABC) + A(PBC)
A(ABC)

= 4 + 4 · A(PBC)
A(ABC)

.

So in this case the locus of points P must be a line-segment XY parallel to BC.
Step 2 Let P belong to the unbounded angular region MCN bounded by the lines AC

and BC, see the right in Figure 4. Then we get

dT (P, A) = 2 · A(PAB)
A(ABC)

,

dT (P, B) = 2 · A(PBA)
A(ABC)

,

dT (P, C) = 2 · A(PAB)−A(ABC)
A(ABC)

.
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Figure 4

And thus
dT (P, A) + dT (P, B) + dT (P, C) = 6 · A(PAB)

A(ABC)
− 2.

So in this case the locus of points P must be a line-segment UV parallel to AB.

Figure 5

Step 3 Take lines BE and CF such that BE‖AC, CF‖AB, respectively. Denote by
A1 the intersection point of the lines BE and CF (see the left in Figure 5). Let P lie in the
angular region EA1F . Then

dT (P, A) = 2 · A(ABC) + A(PBC)
A(ABC)

,

dT (P, B) = 2 · A(PBC)
A(ABC)

,

dT (P, C) = 2 · A(PCB)
A(ABC)

.

And thus
dT (P, A) + dT (P, B) + dT (P, C) = 2 + 6 · A(PBC)

A(ABC)
.

So in this case the locus of points P must be a line-segment ST parallel to BC.
By symmetry and by Lemma 2.2, from the three steps above we conclude that the locus

of the points P satisfying the condition, dT (P, A) + dT (P, B) + dT (P, C) = τ , is a convex
dodecagon (when τ 6= 8), (see the right in Figure 5) or a nonagon (when τ = 8). The proof
is completed.
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We now generalize the result of Theorem 2.3 as follows.
Theorem 2.5 Let Q := ABCD be any convex quadrangle. If a point P lies in the

interior of Q, then

4 ≤ dQ(P, A) + dQ(P, B) + dQ(P, C) + dQ(P, D) ≤ 6.

Proof Denote by O the intersection point of the line-segments AC and BD. The
point P must be in at least one of the four triangles OAB, OBC, OCD, and ODA. We
suppose without loss of generality that P lies in the interior of OAB (see Figure 6). Since
dQ(A,C) = dQ(B,D) = 2, by the triangle inequality, we have

dQ(P, A) + dQ(P, C) ≥ dQ(A,C) = 2,

dQ(P, B) + dQ(P, D) ≥ dQ(B,D) = 2.

So
dQ(P, A) + dQ(P, B) + dQ(P, C) + dQ(P, D) ≥ 4.

Figure 6

Let T := ABC. Since P lies in the interior of T , by Theorem 2.3 we have dT (P, A) +
dT (P, B) + dT (P, C) = 4. Since T ⊂ Q, we get dQ(P, A) + dQ(P, B) + dQ(P, C) ≤ 4. From
dQ(P, D) ≤ 2, we conclude that

dQ(P, A) + dQ(P, B) + dQ(P, C) + dQ(P, D) ≤ 6.

We also have the following proposition.
Corollary 2.6 Let S := ABCD be a unit square. Then the locus of the points P

satisfying the condition,

dS(P, A) + dS(P, B) + dS(P, C) + dS(P, D) = τ, 4 ≤ τ ≤ 6

is also a square.
Proof We take a Cartesian coordinate system such that the coordinates of the points

A, B, C, and D are (0, 0), (1, 0), (1, 1), (0, 1), respectively. Denote by E the intersection
point of the line-segments AC and BD. Let P = (x, y) and let P lie in the triangle EBC

(see the left in Figure 7). Then

dS(P, A) =
x

1
2
· 1 = 2x, dS(P, B) =

y
1
2
· 1 = 2y,

dS(P, C) =
1− y
1
2
· 1 = 2− 2y, dS(P, D) =

x
1
2
· 1 = 2x.
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So
dS(P, A) + dS(P, B) + dS(P, C) + dS(P, D) = 4x + 2.

Thus we obtain that 4x + 2 = τ , that is, x = τ−2
4

.

Figure 7

Similarly, when P ∈ ECD, we have y = τ−2
4

. When P ∈ EAB, we get

dS(P, A) =
x

1
2
· 1 = 2x, dS(P, B) =

1− x
1
2
· 1 = 2− 2x,

dS(P, C) =
1− y
1
2
· 1 = 2− 2y, dS(P, D) =

1− y
1
2
· 1 = 2− 2y.

So
dS(P, A) + dS(P, B) + dS(P, C) + dS(P, D) = 6− 4y.

Thus 6− 4y = τ , that is, y = 6−τ
4

. Similarly, when P ∈ EAD, we have x = 6−τ
4

. It is clear
that if P lies in the boundary of S, then

dS(P, A) + dS(P, B) + dS(P, C) + dS(P, D) = 6,

and if P = E, then

dS(P, A) + dS(P, B) + dS(P, C) + dS(P, D) = 4.

Then from the discussions above we conclude that the locus of the points P satisfying the
condition,

dS(P, A) + dS(P, B) + dS(P, C) + dS(P, D) = τ, 4 < τ ≤ 6

is a square, whose center is the same as that of S (see the right in Figure 7). The proof is
completed.
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到三定点相对距离的和等于定数的点的轨迹

李晓玲1,张素梅2,张更生1,沈 建3
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摘要: 本文研究了相对测度空间中的距离问题. 利用质点几何的理论方法获得如下结果: 对任意

给定的实数, 满足条件dT (P, A) + dT (P, B) + dT (P, C) = τ 的点P的轨迹是凸十二边形或九边形 (其

中T := ABC 是由给定的不同三点A, B, C构成的三角形), 所得结果丰富了相对距离研究领域的内容.
关键词: 相对距离; 平面凸体; 十二边形
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