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A GENERAL LAW OF PRECISE ASYMPTOTICS FOR
MOVING AVERAGE PROCESS UNDER
DEPENDENCE

XTAO Xiao-yong, YIN Hong-wei
(Department of Mathematics, Nanchang University, Nanchang 330031, Chma)

Abstract: In this paper, the problem of precise asymptotics of complete convergence for
moving average processes under dependence is studied. By using the method of approximation of
normal distribution and associated inequalities, a general law of precise asymptotics is obtained,
which extends the existing results of precise asymptotics in the law of the logarithm and of the
iterated logarithm.
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1 Introduction and Main Results

Suppose that {&;, —0o < i < oo} is a doubly infinite sequence of random variables, and

{a;,—00 < i < 0o} is an absolutely summable sequence of real numbers. Let

oo

Xp= > am&, k>1 (1.1)

1=—00

be the moving average process based on {§;, —0o < i < oco}. So far, there were detailed
studies about the asymptotic behavior of the moving average process { X, k > 1}.
Throughout the paper, let N be the standard normal random variable. We denote
by C a positive constant which may vary from place to place, <, means convergence in
distribution, and [z| = sup{m : m < z,m € Z'}. Also we let logz = In(x V e) and
loglogz = In(In(z V €9)).
We begin with a brief review of the definition of ¢-mixing. Let F} denote the o-field
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generated by X, Xri1,---,X; and define

o(FY, Fp,) == sup{|P(B|A) —P(B)|; A € F}, B € F}3,,},
g(]F]f,IFiin) := sup{|Corr(U,V)|;U € L*(F¥),V ¢ LQ(F;in)},
¢(n) == sup p(F}, F2.,.), o(n) := sup o(F}, F5,)-

k>1 k>1

A sequence {X,,},>1 of random variables is said to be ¢-mixing if ¢(n) — 0 and g-mixing if
o(n) — 0. Tt is well known that a p-mixing sequence is g-mixing, since o(n) < 2p/2(n).
In the sequel, we suppose {&;, —00 < i < oo} is a sequence of identically distributed

and (p-mixing random Variables with zero mean and finite variance with 0 < % = E£? +

2 Z E& €, < oo and Z ©'/?(m) < oo. For the moving average processes { X,k > 1}
k=2 m=1

defined in (1.1), where {a;, —00 < i < 0o} is a sequence of real numbers with > |a;| < oo,

n oo
weset S, = > XpandT=0- > a.
k=1 i=—00

Li and Zhang [1] showed the precise rates in the law of the iterated logarithm of the
moving average process defined in (1.1) for p-mixing or negatively associated sequences
under conditions above. For any § > 0, if E¢?(loglog|&:])°~! < oo, they proved that

) loglog n)°
lim £20+2 ( o2 P > 2nlogl ) 2 1.2
lim & Z wiogn US| 2 e7y/2nloglogn} = f T +3/2),  (12)

where I'(+) is a Gamma function.

In this paper, we consider the general law of complete convergence rates of the mov-
ing average process { Xy, k > 1} defined in (1.1) for ¢-mixing sequences, and we have the
following results.

Theorem 1.1 Suppose that g(z) is a positive and differentiable function defined on
[ng, 00), which is strictly increasing to co. For b > 0, assume that ¢(x) = ¢'(z)g* () is
monotone nondecreasing or monotone nonincreasing on [ng,c0), and if ¢(z) is monotone
nondecreasing, we assume that Ih_)rgo d(x +1)/p(x) = 1. If E|§|**° < oo for some § > 0,

then we have

hma% Z G(M)P{|Su| > (e + an)v/ng*(n)} = Z“ENE o< b <244, (1.3)
0 b b
limet 30 SUE{|S,| - (e +au)vig' ()} = Ty, 0< <148 (14)

where a,, = 0o(g~*(n)) as n — oo.
Theorem 1.2 Suppose that g(x) is a positive and differentiable function defined on
[no, 00), which is strictly increasing to co. Assume that ¢(z) = ¢'(x)g~*(x) is monotone

nondecreasing or monotone nonincreasing on [ng, 00), and if ¢(z) is monotone nondecreasing,
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we assume that lim ¢(x 4+ 1)/¢(x) = 1. Then for s > 0, we have

1 ZOO g'(n) |

il\l"% —10g€ = g(n) IP>{|S"| > <€+an)\/ﬁg (n)} - g: (15)
lim fo: I g6 = (e + an)vig () hs = 4/ 2 (1.6)
N0 —loge = Vvng(n) n n += S\ :

where a,, = 0o(g~*(n)) as n — oo.
Remark 1.1 Applying Lemma 2.3 of [1], Theorems 1.1 and 1.2 are still true when

{&;,—00 < i < oo} is a sequence of identically distributed negatively associated random
variables with E&; = 0, E€? < oo and 0 < 02 = E£? + 2 Z E& & < oo.
Remark 1.2 Specially, for & > 1, if we let agp, = 1 and a; =0,—00 < i < oo for i # 2k,

that is to say, X, = & with E§; = 0, E€? < co and 0 < 02 = E&2 + 2 Z E&1€&, < 00, then
k=2

for S, = >_ &, Theorems 1.1 and 1.2 are still valid for 7 = o.
k=1
Remark 1.3 The conditions about ¢(z) and g(x) in the above two theorems are mild

for many common functions like g(z) = z7, (logz)” and (loglogz)” with v > 0, and the

corresponding results were obtained by many researchers.

2 Some Lemmas

For proving of our main results, we introduce the following lemmas.

Lemma 2.1 (see [2]) Let Y. a; be an absolutely convergent series of real numbers

1=—00

with a = > a; and k > 1, then

1=—00

Lemma 2.2 Suppose {§;, —0c0 < i < oo} is a sequence of identically distributed and

-mixing random variables with E¢; = 0, E¢ < oo and Z ©'/2(m) < oo, and suppose

m=1
0<o?=E&+2> E&E, < oo. For the moving average processes { Xy, k > 1} defined in
k=2
(1.1) with Z la;| < oo, we set S, = Z X. Then we have \”f L N, where 7 = o- > a.
1=—00 k=1 i=—00

Proof The proof is similar to that of Theorem 1 in [3], so we omit it.

Lemma 2.3 (see [4]) Let {§;;7 > 1} be a p-mixing sequence. Y,, = > &;, n > 1. Suppose
i=1
that there exists a sequence {C,, } of positive numbers such that max;<;<, EYf < C,. Then

for any ¢ > 2, there exists some constant C' = C(q, ¢(+)) such that

E( max |Y;|9) < 0(05/2 +E max |gi|q).

1<i<n
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3 Proof of Theorem 1.1
In this section, for M > 1 and 0 < € < 1, we define
bu(e) = lg~ (Me™"7*) . (3.1)

Without loss of generality, we assume 7 = 1. Next we calculate the left hand side of (1.3)
and (1.4) by approximation of partial sums about the tail probability of standard normal
random variable N.

Proposition 3.1 For b, s > 0, we have

ElNlb/s

- (3.2)

: b/s > s —
lim = _Z ¢(n)P{|IN| = (¢ + ay)g*(n)}
Proof Since lim a,g°(n) = 0, then for any & > 0 there exists a positive integer

n—oo

Ny > ng such that for any n > Ny, we have —0 < a,g®(n) < 8. If ¢(z) = ¢'(z)g" ' (z) is

monotone nonincreasing, we have

lim %/* /OO ¢(x)P{|N| > eg®(z) + 0 }da < gi{%é’/s > (PN > (e + an)g"(n)}

0 No+1 n=No+1
< lim ¥/ o(x)P{|N| > eg*(z) — 0 }du.
eN\.0 No
Let & 1 0, we obtain
lim ="/* Z OP{IN| > (e + an)g*(n)} = lim e / ¢(x)P{|N| > eg’(x)}dz.  (3.3)

n=ng

If ¢(x) is monotone nondecreasing, by lim ¢(z + 1)/¢(z) = 1, for the  mentioned

above, there exists a positive integer N; such that for any = > Ny, we have (1 —8)¢(z+1) <
d(x) < (1 +6)p(x —1). Let Ny = max{Ny, N1}, thus it holds that

ii\l%eb/‘“ > S(P{IN| = (e +an)g*(n)}

n=no

_hmg Z P(n)P{|N| > (¢ + an)g*(n)}

n=Ns+1
— >
<(1+5) lim 2 ;Hqsn DE{N| > 2g"(n) — 5}

<(1+5) lim e /¢ YP{IN| > eg°() — S}z,

similarly, it holds that

hmeb/S Z d(M)P{|IN| > (e +an)g’(n)} >(1 — )hme / (z)P{|N| > eg°(z) + 6 }dz.

n=no
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Let 6 | 0, we obtain (3.3).
Let y = eg®(z), we have

lim &/ / " g @) @P{IN] > eg* () }da

N0
Lim [ 2yt pN| > yhd
—— 11Im —1 s
b N0 Jegs(no) s -
1 [%b v, E|N|Y/s
=— -y "P{|IN| > y}dy = .
b/o Sy P{NT 2 yhdy >
Thus proof of this proposition is completed.
Proposition 3.2 For b,s > 0, we have
b (e)
lime* Y 7 IP{ISal > (e + an)vng* ()} = P{IN| > (e + an)g"(m)} =0.  (3.4)
n=no
Proof Let
A, = sup |[P(|S,| = vnz) — P(IN| = )], (3.5)

z€R

then A,, — 0 as n — oo from Lemma 2.2. Using the Toeplitz lemma [5], we have

b}w(&)
lim /s 3™ 6(m)IF{Su] = (¢ + an)vig* ()} — P{IN| 2 (= + an)g*(n)}
bM(E) CMb b]v](s)
<1l b/s / b—1 An < lim —— ’ b—1 An =0.
<limets Y 7 g'(n)g"! (n)A, < lim OO ; g (n)g" ' (n)

n=no =nNg

Proposition 3.3 For b, s > 0, we have

lim lim sup e®* Z d(n)P{|N| > (¢ + a,)g’(n)} = 0. (3.6)

M —o0
N0 n>by (g)

Proof Since a,, — 0 as n > bys(e) — o0, it is enough to show

lim limsupe®/® Z ¢(n)]P’{|N| > Egs(n)} =0.
Moo eNo 7L>b1\4(8) 2

Let y = eg®(x)/2, we have

lim limsupe®/® Z g/(n)gb_l(n)P{|N| > ggs(”)}

M—o0
eN0 n>bp ()

<C lim limsupeb/s/ g’(z)gbil(m)P{|N| > Egs(x)}dx
M —o00 e\.0 bas(e) 2
< by
<C lim —y*'P{|N| > y}dy = 0.
M—oo fprs o S
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Therefore this proposition is proved.
Proposition 3.4 If E|£;|**° < oo for some § > 0, then for 0 < b < (2 + §)s, we have

lim limsupe”® > " ¢(n)P{|Su| > (¢ + an)v/ng*(n)} = 0. (3.7)

M —o0
N0 n>bas(e)

Proof It suffices to show that

lim limsupe®/* Z g’(n)gb_l(n)IF’{|Sn| > g\/ﬁgs(n)} =0. (3.8)

M—o0 6\0

n>ba(e)
Note that S, = > ag+i&i = Y. ani&;, where a,; = Y agi;. From Lemma 2.1,
i=—o0 k=1 i=—o0 k=1
we can suppose that
> lawlP<n, pz1 a= Y Jal<i. (3.9)
Next, for x > 0, we set
Si(@) =Y am&l{lanéi| < (e +x)v/ng*(n)}. (3.10)

Since E¢; = 0, then by (3.9) and Markov’s inequality, we have

ES, @) = Y Eangil{lanti| > (e +2)v/ng(n)}

1=—00

< 3 Bl {lan€] > (¢ +2)v/ng"(n)}

1=—00

< 3 land B2/ Bllani] > (= +2)ving*(n)}

1=—00 C\/ﬁ
E+a)g(n)’

<Cn\[P{les| > (e +2)Ving“(n)} < (3.11)

Since

|Sn| < [ES; (2)] + |5, (x) — ES,, ()] +) Y anbil{lané&i| > (e + 2)Vng* ()}, (3.12)

and for M large enough, it holds that
ES, 0 _ ¢
evng®(n) ~ %g*(n)

<CM*<e, n> bas(e),

then we obtain

P{18.] = Svng*(n) } < P{supa,i&i| > v/ng*(n) + P{]54(0) — ES,(0)] = vng*(m) }-
(3.13)
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Set
then U;>11,; = Z, where Z is the set of all integers. Note that (referred by [6])

Z n(k+1). (3.14)
On the one hand, we have
P{Sll}p|am§i| > (e +x)vng®(n)} < Z P{lani&| > (e + z)v/ng®(n)}
<§j§jpwm>ye+xviy Ej#hJMKn>xs+m¢@<>}
N 51
<;;(#IM)]‘P{I€ < W e k+ 1}
NN (ur ST
_;;(#IM)P{k S erodirm < k+ 1}

e &l
<§: (k1 { @+whfg(><k+1}

2fEI£1|I{I€1I > (e +2)vng*(n)}
(e +x)g%(n)
S2BIG PRI > (e + 2)v/ng*(n)}
= nd/2(e + x)2+0g(2+d)s (n)
< C
= (e + )2+ g+)s(p)’

(3.15)

On the other hand, since Y ¢!/2(m) < oo, then we have
m=1

E(S () — ES' (2))* <C Z (ani&)*H{]ani&i| < (e + x)v/ng®(n)}

i=—00

<C Z (am)2E§f < Cn.

i=—00

Thus using Markov’s inequality and Lemma 2.3, we have

(r+¢) .
T\/ﬁg (n)}
SCE{l‘S;L(x) - Esé(ﬁ)‘q}niq/2(l' _|_ 5)*qg*qs (’ﬂ)

n—4/2 i
c ) Z Elani&i|" I{]ani&i| < (x +¢€)v/ng®(n)}

St ol

+C(x+e) 9 ¥(n) =: Hi(x)+ Ha(x), (3.16)

P{|54(2) — ES, ()| 2

1=—00



754 Journal of Mathematics Vol. 36

where we take ¢ = 2 + § (actually, the above inequality holds for any ¢ > 2).
However, from (3.14), it holds that

oo

> Elani& [P I{]ané] < (x+€)v/ng*(n)}

1=—00

<SS RGP G < (G 1)@ + o) Vg (n)}

j=14€ln;

S #L)TFIEGPEI{G] < G+ D+ ) Viag' (n)

<
Il

J

<kt

1

In' ’*(2+5)]E 2+51 k |£1‘
(Il { = ot e)Vig )

j=1 k=

N —(2+46) 244 [S1 }
1(#1713)] E[&: | I{O =< (z + €)\/ng*(n) <1

Y L)~ CHIEE )P I k el k 1}
* 2 2 )R < G <+

M

<.
I

=:Ly(z) + La(z).

then we have

D (#I;)i~ D < Cnk= (00, (3.17)

=k

Therefore, using (3.17), we have

Ly(z) <CnEI&* " I{|&1] < (z + €)v/ng®(n)} < Cn,

S —(146) 245 I ST
Ly(x) <Cn;k‘ RGP I{k = (x + €)y/ng*(n)

- 245 [s1
<Cn) El&[* I{k < EEworTm k+ 1}

k=1

<SCnEl& [P I{|&1] = (z + €)v/ng®(n)} < Cn.

<k+1}

Thus we have
Cn—0/2 C

H(z) < <
o) < (€ +2)2H0gHDs(n) = (e + 2)2H0gEH+0)s(n)’

(3.18)
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then using (3.13), (3.15), (3.16) and (3.18) with = = 0, it holds that

lim limsupe®/® Z g’(n)gb_l(n)P{\Sn| > g\/ﬁgs(n)}

M—o0
eN0 n>bpr ()

< lim limsup Ce®~ (29 Z g (n)[g(n)]P~FF9s-1
M—oo e\.0
n>bar(e)

< Jlim limsup Ce =g by (e))) -+
M—oo E\O

< lim limsup CMb~C+9)s — ¢,
M —o0 e\.0

Therefore we complete the proof of (3.8).

From Propositions 3.1-3.4, applying the triangle inequality, we complete the proof of
(1.3). Next we show (1.4). For simplicity, we let a,, = 0 and omit the discussion of ¢(x), but
the process is similar to that of Proposition 3.1.

Proposition 3.5 For b, s > 0, one has that

oo b/s+1
: b/s . s _ SE|N|
n=no
Proof We calculate that

li b/s ’ b—1 E{IN| — s
lim e Z g'(n)g" " (n)E{IN| — eg®(n)}+

— e [ g BN - 0" (0) oy

:hi% 5b/5/ g’(y)gbl(y)dy/ P{|N| > xz}dz (double integrals)
€ no €9°(y)
1 o0 o0

=—lim tb/s_ldt/ P{|N| > z}dx (t=¢g°(y))
§ N0 Jege (o) t
1 o0 x

== lim P{|N| > x}dx/ /5= 1at
§ N0 Jege(no) £9° (o)
1 > E|N|?/st!

— lim PIPYN| > o}de = TN
b N0 S gs (o) b(b+ s)

Thus proof of this proposition is completed.
Proposition 3.6 For b, s > 0, one has that
S S,

lim &%/* n)|E{|N| —eg®(n)}. —ES —= —eg°(n =0. 3.20
lim /" 3 ofn) [B(N| <" (). {ﬁ g()}+ (3:20)

n=ngo
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Proof It holds that

bM(E)

—eg°(n m —eg°(n
3 o BN e ) - B{ 5o >}+
b (€)
_Z¢n)/ (IN| > eg*(n )—i—x)—[P’('j%' ngs(n)—f—x)dx
b (e) 00
< Z é(n)g°(n / ‘]P’(|N| > (x+5)gs(n)) —]P’('ST;L' > (x+8)gs(n)> dx
bar(€) I(n)
<3 st [ 0wz ) -2 (B > ) fao

o0

" /( BNz @+ )de+ [ B(S. <x+s>ﬁgs<n>)d4

l(n) I(n)
bM (6)

=Y ¢(n)g*(n) [y + Jo + Js],

n=no

where I(n) = g *(n)A, 2% and A, is defined in (3.5). It is easy to see that

A2
J< o
L= g5(n)
o EN? C CAL?
Jo < / e R < . 3.21
2= ) a0 m ™ S e m) = ) (3:21)

Next for Js, from (3.10)—(3.12) and the fact that for x > I(n) and n large enough, we

have

[ES; (z)] ¢ ¢

< < < CA, <e,
(@+e)vng'(n) = (x+e)2g%(n) ~ Bn)g>(n) = ©
then we obtain

P{ISu] = (@ +£)vng'(n) } <P{suplansi| > (x +)Vig*(n)}

(x+¢)
2

+ {15, () ~ ES, (@) 2 Vagm}  (322)

Thus using (3.15), (3.16) and (3.18) with § = 0, we have

P L S B
< x < < .
°= S (@ +€)%g%(n) l(n)g*(n) = g°(n)
Therefore using (3.21) and the Toeplitz lemma, we have

b]u(E b]\/[(E)
hm eb/s Z o(n )i+ T+ J5] < hm Cebs Z g (n)g" t(n)AL? = 0.

n=ng n=ng
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Proposition 3.7 For b, s > 0, one has that

lim lim sup e®/* Z d(n)E{|N| —eg°(n)}+ = 0. (3.23)

M —o0
N0 n>by (€)

Proof It is easy from the proof of Proposition 3.5.
Proposition 3.8 For 0 < b < (14 0)s, one has that

lim limsupe®® > ME{|Sn| —ev/ng*(n)}4 = 0. (3.24)

M—o0 n
N0 n>by (€) f

Proof For M large enough and any x > 0, it holds that

ES,@) _ ¢ __¢©
Eravag(n) =+ a7 (n) = )

Then using (3.22), (3.15), (3.16) and (3.18), we have

<CM*<e

C
(e + x)2+0gC+0)s(p)”

P{IS.] > (@ +2)vig*(n) } <
Hence it holds that

lim limsupe®/® Z g'(n)g"( )E{|S| evng®(n)}y

M —o0
N0 n>ba ()

= lim limsupe®® Z g (n)g"™"*(n) /OOO P{|S,.| > (¢ + z)v/ng®(n) }dx

M—oo eN\.0

n>b ()
° C
< lim limsupe®*® "(n)g"T*Y(n / dx
= M—oo E\Op n>bZM(E)9< )y (n) s (z+e)2togo)s(n)

< lim hmsupC’gs 1-6 g (n)[g(n b—(1+8)s—1
i Hm st > g )g(n)

n>bar (E)

< lim limsup Ce* ' 7[g(by(g)))0 -1 +0)s

0 N0
< lim CMP~0+9)s —
M—oo

where b < (14 6)s.

Finally, the proof of (1.4) is completed by combining Propositions 3.5-3.8 together and
using the triangle inequality. We omit the proof of Theorem 1.2 since the idea is similar,
and we only need to replace €%/ by 1/(—loge) with b= 0.
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