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Abstract: In this paper, we study finite-time stability of continuous non-autonomous sys-

tems. Through the finite-time stability analysis of continuous time-varying scalar systems and

using the comparison principle, some sufficient conditions are presented for finite-time stability of

general n-dimensional continuous non-autonomous systems, which improves the existing finite-time

stability results for continuous non-autonomous systems.
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1 Introduction

In recent years, the concept of finite-time stability was used in different dynamical
systems to deal with various issues in the applied mathematics field, such as finite-time
stabilization control [1], finite-time synchronization [2], finite-time consensus [3], and so on.
It shows that developing the theory of finite-time stability is a significant work. So far,
some researchers made a contribution to developing and improving the theory of finite-time
stability. In [4], a rigorous foundation for the theory of finite-time stability of continuous
autonomous systems was provided. In [5] and [6], some Lyapunov results for finite-time
stability of continuous non-autonomous systems were proposed.

However, all the finite-time stability results for continuous non-autonomous systems are
not perfect. For one thing, the results ineluctably lead to continuous settling-time functions
and thus, they are not suitable for the finite-time stability analysis of the continuous non-
autonomous systems whose settling-time functions may be discontinuous. For another, the
conditions of the results can be further relaxed through the study of finite-time stability
of general continuous time-varying scalar systems and the use of the comparison principle.
Inspired by the two things, the paper will define finite-time stability for continuous non-
autonomous systems and attempt to obtain more general results for finite-time stability of
continuous non-autonomous systems.

∗ Received date: 2015-07-25 Accepted date: 2015-11-27

Foundation item: Supported by National Natural Science Foundation of China (61273215).

Biography: Wang Lei (1991–), male, born at Gongan, Hubei, master, major in stability of dynamic

systems and synchronization of complex networks.



738 Journal of Mathematics Vol. 36

This paper is organized as follows. In Section 2, some necessary definitions and lemmas
are given for later use. In Section 3, finite-time stability of continuous time-varying scalar
systems is considered, and in particular, a class of continuous time-varying scalar systems
with separated variables is studied in detail. In Section 4, the main results for finite-time
stability of continuous non-autonomous systems is presented and some conditions are given
to make sure that settling-time functions are continuous or bounded. In Section 5, some
applications for the results of this paper are provided.

2 Preliminaries

Let ‖ · ‖ denote a norm on Rn. The notions of openness, convergence, continuity,
boundary and compactness that we use refer to the topology generated on Rn by the norm
‖ · ‖. We use I to denote the whole nonnegative real numbers. Also, let Å, A and bdA

denote the interior, the closure and the boundary of the set A, respectively.
Consider the system of differential equations

dx(t)
dt

= f(t, x(t)), (2.1)

where f : I ×D → Rn is continuous on I ×D with an open neighborhood D ⊆ Rn of the
origin and f(t, 0) ≡ 0. Then according to existence theorem of Peano [7], there exists a
sufficiently small positive number τ and a solution x : (t0− τ, t0 + τ) → D of (2.1) such that
x(t0) = x0 for any initial state (t0, x0) ∈ I ×D. Moreover, extension theorem of solution [7]
indicates that every solution of (2.1) has an extension that is right maximally defined.

We assume that system (2.1) possesses unique solutions in forward time for all initial
states (t0, x0) ∈ I ×D except possibly (t0, 0) ∈ I × {0} in the following sense: for every
(t0, x0) ∈ I × (D \ {0}), there exists τt0,x0 > t0 such that for any two right maximally
defined solutions x1 : [t0, τ1) → D and x2 : [t0, τ2) → D of (2.1) passing through (t0, x0),
we have that τt0,x0 ≤ min{τ1, τ2} and x1(t) = x2(t) for all t ∈ [t0, τt0,x0). Without any loss
of generality, for each (t0, x0), we may assume that τt0,x0 is chosen to be the largest such
number in I, or +∞. In this case, the unique solution of (2.1) passing through (t0, x0) on
[t0, τt0,x0) is denoted by φ(·, t0, x0). Under the above assumption, the definition of finite-time
stability of (2.1) is given as follows.

Definition 2.1 The origin is said to be a finite-time-stable equilibrium of (2.1) if there
exists a set Ω ⊆ I ×D satisfying both I × {0} ⊆ Ω and for any t ∈ I, Ωt = {x ∈ Rn|(t, x) ∈
Ω} ⊆ D is an open neighborhood of the origin, and a function T : Ω \ (I × {0}) → (0,+∞)
such that the following statements hold.

(i) Finite-time convergence: for every (t0, x0) ∈ Ω \ (I × {0}), φ(·, t0, x0) is defined on
[t0, t0 + T (t0, x0)), (t, φ(t, t0, x0)) ∈ Ω \ (I × {0}) on [t0, t0 + T (t0, x0)) and

lim
t→(t0+T (t0,x0))−

φ(t, t0, x0) = 0.

(ii) Lyapunov stability: for any t0 ∈ I and any open neighborhood Uε of the origin,
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there exists an open neighborhood Uδ ⊆ Ωt0 related with t0 and Uε of the origin, such that
for every x0 ∈ Uδ \ {0}, φ(t, t0, x0) ∈ Uε on [t0, t0 + T (t0, x0)).

The origin is said to be a globally finite-time-stable equilibrium of (2.1) if it is a finite-
time-stable equilibrium of (2.1) with Ω = I ×D = I × Rn.

It is easy to prove that if the origin is a finite-time-stable equilibrium of (2.1) with Ω
and T as in Definition 2.1 and let T (t0, 0) ≡ 0, then for every (t0, x0) ∈ Ω, φ(·, t0, x0) is
defined on [t0,+∞), (t, φ(t, t0, x0)) ∈ Ω \ (I × {0}) on [t0, t0 + T (t0, x0)) and φ(t, t0, x0) = 0
on [t0 + T (t0, x0),+∞), what’s more,

T (t0, x0) = inf{t− t0 : t ≥ t0 and φ(t, t0, x0) = 0}.

At this time, T is said to be the settling-time function corresponding to Ω of (2.1), which
may be continuous or discontinuous, bounded or unbounded.

For later use, we introduce the following definitions and lemmas.
Suppose V : I × D → R is a continuous function. If (t, x) ∈ I ×D and φ(·, t, x) is

defined, then we define the derivative V̇
∣∣
(2.1)

(t, x) of V along the solutions of (2.1) as

V̇
∣∣
(2.1)

(t, x) = lim sup
h→0+

V (t + h, φ(t + h, t, x))− V (t, x)
h

.

Definition 2.2 If there exists an open neighborhood U ⊆ D of the origin and two
continuous functions W : U → R and V : I × U → R such that

(i) W (0) = 0, W (x) > 0, x ∈ U \ {0},
(ii) V (t, 0) ≡ 0, V (t, x) ≥ W (x), (t, x) ∈ I × U ,
(iii) V̇

∣∣
(2.1)

(t, x) ≤ 0, (t, x) ∈ I × (U \ {0}),
then it is said that system (2.1) satisfies condition A1.

Definition 2.3 Suppose r : (a, b) → R is a function, where a < 0 < b. If r(0) = 0,

and for every x ∈ (a, 0) ∪ (0, b), xr(x) < 0 and
∫ 0

x

1
r(u)

du < +∞, then it is said that the

function r satisfies condition A2.
Lemma 2.1 If system (2.1) satisfies condition A1, then the origin is a stable equilibrium

of (2.1).
Condition A1 is just the so-called Lyapunov stability condition. According to the Lya-

punov stability theory, we can obtain Lemma 2.1.
Lemma 2.2 Assume that the origin is a finite-time-stable equilibrium of (2.1) and T

is the settling-time function corresponding to Ω of (2.1), then T is continuous on Ω if and
only if for every t ∈ I, T (t, x) → 0 as x → 0.

Similarly to [5, Prop. 3.2], we can prove Lemma 2.2.

3 Some Results for Finite-Time Stability of Continuous Time-Varying

Scalar Systems

In this section, we will consider system (2.1) with n = 1 and D = R. Suppose f(t, x) =
g(t, x), where g : I × R → R is a continuous function and g(t, 0) ≡ 0. Then system (2.1) is
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written as
dx(t)

dt
= g(t, x(t)). (3.1)

As in Section 2, system (3.1) has unique solutions in forward time for all initial states
(t0, x0) ∈ I × (R \ {0}). Distinguished from (2.1), for each (t0, x0), we may use ψ(·, t0, x0)
to denote the unique solution of (3.1) passing through (t0, x0) on [t0, τt0,x0).

The following conclusion can be directly obtained from the definition of finite-time
stability.

Theorem 3.1 If the origin is a stable equilibrium of (3.1), then the following state-
ments hold.

(1) The origin is a finite-time-stable equilibrium of (3.1) if and only if for every t0 ∈ I,
there exist two numbers x0 > 0 and x̂0 < 0 such that the two equations ψ(t, t0, x0) = 0 and
ψ(t, t0, x̂0) = 0 have a solution with respect to t, respectively.

(2) The origin is a globally finite-time-stable equilibrium of (3.1) if and only if for every
(t0, x0) ∈ I × R, the equation ψ(t, t0, x0) = 0 has a solution with respect to t.

Next, for simplicity, let g(t, x) = c(t)r(x), where c : [0,+∞) → R is a continuous
function, and r : R→ R is also a continuous function satisfying condition A2. Then system
(3.1) is written as

dx(t)
dt

= c(t)r(x(t)). (3.2)

Through verification, system (3.2) has unique solutions in forward time for all initial states
(t0, x0) ∈ I × (R \ {0}). Furthermore, the following theorem provides a sufficient and neces-
sary condition for finite-time stability of (3.2).

Theorem 3.2 The following two statements hold
(1) The origin is a finite-time-stable equilibrium of (3.2) if and only if c(t) ≥ 0 for all

t ∈ I and for any t ∈ I, there exists a time τ ∈ [t, +∞) such that c(τ) > 0.
(2) The origin is a globally finite-time-stable equilibrium of (3.2) if and only if c(t) ≥ 0

and
∫ +∞

t

c(τ)dτ = +∞ for all t ∈ I.

Proof We first prove (1). If there exists a time t1 ∈ I such that c(t1) < 0, then
the continuity of c implies that there exists a sufficiently small real number ε > 0 such
that c(t) < 0 for all t ∈ [t1, t1 + ε]. It is easy to obtain that system (3.2) has a non-zero

solution through (t1, 0) from the equation
∫ t

t1

c(τ)dτ =
∫ x

0

1
r(u)

du for all t ∈ [t1, t1 + ε].

This contradicts Lyapunov stability of the origin. Thus, c(t) ≥ 0 for all t ∈ I.
Also, if there exists a time t2 ∈ I such that for every τ ∈ [t2,+∞), c(τ) = 0, then

ψ(t, t2, x0) = x0 for all x0 ∈ R and all t ∈ [t2,+∞). This contradicts finite-time stability.
Thus, for any t ∈ I, there exists τ ∈ [t, +∞) such that c(τ) > 0. This prove the necessity of
(1).

Let V = x2. Then V̇
∣∣
(3.2)

(t, x) = 2c(t)xr(x) ≤ 0. By Lemma 2.1, the origin is a stable
equilibrium of (3.2).
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If the origin is not a finite-time-stable equilibrium of (3.2), then by Theorem 3.1, there
exists a time t3 ∈ I such that for every x0 > 0, ψ(t, t3, x0) 6= 0 for all t ∈ [t3, τt3,x0), or for
every x̂0 < 0, ψ(t, t3, x̂0) 6= 0 for all t ∈ [t3, τt3,x̂0). Without any loss of generality, assume
for every x0 > 0, ψ(t, t3, x0) 6= 0 for all t ∈ [t3, τt3,x0). Then

0 ≤
∫ t

t3

c(τ)dτ =
∫ t

t3

1
r(ψ(τ, t3, x0))

dψ(τ, t3, x0)

=
∫ ψ(t,t3,x0)

x0

1
r(u)

du ≤
∫ 0

x0

1
r(u)

du.

It is easy to see that 0 < ψ(t, t3, x0) ≤ x0 for all t ∈ [t3, τt3,x0). By Extension Theorem of
Solution, ψ(·, t3, x0) is defined on [t3,+∞). Moreover,

∫ +∞

t3

c(τ)dτ ≤
∫ 0

x0

1
r(u)

du, x0 > 0.

Since for any t ∈ I, there exists τ ∈ [t, +∞) such that c(τ) > 0, then it can be shown that∫ +∞

t3

c(τ)dτ > 0. Also, by the continuity of r and condition A2, we have that

lim
x0→0+

∫ 0

x0

1
r(u)

du = 0.

This leads to a contradiction. Thus, The origin is a finite-time-stable equilibrium of (3.2).
This prove the sufficiency of (1).

In the following, we prove the necessity of (2). Similarly to the proof of (1), c(t) ≥ 0 for
all t ∈ I, and for every initial state (t0, x0) ∈ I × R satisfying x0 6= 0,

∫ +∞

t0

c(τ)dτ ≥
∫ t0+T̃ (t0,x0)

t0

c(τ)dτ =
∫ 0

x0

1
r(u)

du > 0.

If there exists a time t3 ∈ I such that
∫ +∞

t3

c(τ)dτ < +∞, then the infinite integral
∫ +∞

t3

c(τ)dτ is convergent, and moreover,

lim
t0→+∞

∫ +∞

t0

c(τ)dτ = 0.

This leads to a contradiction. Thus for every t0 ∈ I,
∫ +∞

t0

c(τ)dτ = +∞.

At last, we can prove the sufficiency of (2) in the same way as the proof of the sufficiency
for (1).

Remark If the origin is a finite-time-stable equilibrium of (3.2), and T̃ is the settling-
time function corresponding to Ω̃ of (3.2), then we can prove that T̃ satisfies the following
formula: ∫ t0+T̃ (t0,x0)

t0

c(τ)dτ =
∫ 0

x0

1
r(u)

du, (t0, x0) ∈ Ω̃. (3.3)
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Suppose E = {t ∈ I : c(t) = 0}. From Lemma 2.2 and formula (3.3), it is easy to see that
the following statements hold:

(1) The settling-time function T̃ of (3.2) is continuous on Ω̃ if and only if E̊ = ∅.
(2) The settling-time function T̃ of (3.2) is bounded on Ω̃ if and only if there exists a

constant M > 0 such that
∫ 0

x0

1
r(u)

du ≤
∫ t0+M

t0

c(τ)dτ for all (t0, x0) ∈ Ω̃.

4 Main Results for Finite-Time Stability of Continuous Non-Autonomous

Systems

In this section, we will put forward more general sufficient conditions for finite-time
stability of continuous non-autonomous systems. According to the definition of finite-time
stability, finite-time stability of the origin is divided into two parts, namely, Lyapunov stabil-
ity and finite-time convergence. In fact, it is relatively easy to determine Lyapunov stability
of the origin since Lyapunov stability theory has been quite mature. Therefore, it will be a
good idea to analyse finite-time convergence of the origin under the condition that Lyapunov
stability of the origin holds. The results of this section are obtained from this idea.

The comparison principle can be found in Section 2.5 of [8], which will be used in the
proof of the following theorem.

Theorem 4.1 If (2.1) satisfies condition A1 with U , W and V as in Definition 2.2,
and there exists an open neighborhood N ⊆ D of the origin and a continuous function
V1 : I ×N → R such that

(i) V1(t, 0) ≡ 0, V1(t, x) > 0, (t, x) ∈ I × (N \ {0}),
(ii) V̇1

∣∣
(2.1)

(t, x) ≤ g(t, V1(t, x)), (t, x) ∈ I × (N \ {0}),
where let g : I × R → R be as in system (3.1) ensuring that the origin is a finite-time-
stable equilibrium of (3.1), then the origin is a finite-time-stable equilibrium of (2.1). If in
addition the origin is a globally finite-time-stable equilibrium of (3.1), U = N = D = Rn

and W (x) → +∞ as ‖ x ‖→ +∞, then the origin is a globally finite-time-stable equilibrium
of (2.1).

Proof By Lemma 2.1, Lyapunov stability of the origin holds. It can be shown that
the right maximally defined solution of (2.1) starting from the origin at any initial time is
unique. Then we have that V̇

∣∣
(2.1)

(t, 0) ≡ 0 and V̇1

∣∣
(2.1)

(t, 0) ≡ 0. Thus V̇
∣∣
(2.1)

(t, x) ≤ 0 for

all (t, x) ∈ I × U and V̇1

∣∣
(2.1)

(t, x) ≤ g(t, V1(t, x)) for all (t, x) ∈ I ×N .

Suppose T̃ is the settling-time function corresponding to Ω̃ of (3.1). Let K ⊆ U ∩ N is
a bounded open set containing the origin and K ⊆ U ∩ N . Let α = minx∈bdKW (x), then
α > 0. Choose β such that 0 < β < α and let

Ω = {(t, x) ∈ I ×K : V (t, x) < β and (t, V1(t, x)) ∈ Ω̃}.

Then I × {0} ⊆ Ω and for every t ∈ I, Ωt = {x ∈ Rn : (t, x) ∈ Ω} ⊆ K is a bounded open
set containing the origin.
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Suppose (t0, x0) ∈ Ω. Then it is not difficult to obtain that φ(·, t0, x0) is defined on
[t0,+∞) and φ(t, t0, x0) ∈ K for all t ∈ [t0,+∞) by using condition A1 and extension
theorem of solution. Put (t, φ(t, t0, x0)) into V̇1

∣∣
(2.1)

(t, x) ≤ g(t, V1(t, x)). Then by the
comparison principle,

V1(t, φ(t, t0, x0)) ≤ ψ(t, t0, V1(t0, x0)), t ≥ t0.

Because (t0, V1(t0, x0)) ∈ Ω̃, we have

ψ(t, t0, V1(t0, x0)) = 0, t ≥ t0 + T̃ (t0, V1(t0, x0)).

Thus
φ(t, t0, x0) = 0, t ≥ t0 + T̃ (t0, V1(t0, x0)).

This proves finite-time convergence of the origin. So the origin is a finite-time-stable equi-
librium.

To prove global finite-time stability of the origin, we only need to prove global finite-time
convergence of the origin. In fact, for every (t0, x0) ∈ I × Rn,

V (t, φ(t, t0, x0)) ≤ V (t0, x0)

for all t ∈ [t0, τt0,x0) by condition A1. Also, if τt0,x0 < +∞, then by extension theorem of
solution, as t → τ−t0,x0

, ‖ φ(t, t0, x0) ‖→ +∞ and moreover,

V (t, φ(t, t0, x0)) ≥ W (φ(t, t0, x0)) → +∞.

This is a contradiction. Thus φ(·, t0, x0) is defined on [t0,+∞). Next, similarly to the proof
of finite-time stability, the conclusion we need can be proved.

We can seek some practical functions g to make the use of Theorem 4.1 more convenient.
The following corollary is just a good example.

Corollary 4.2 If (2.1) satisfies condition A1 with U , W and V as in Definition 2.2,
and there exists an open neighborhood N ⊆ D of the origin and a continuous function
V1 : I ×N → R such that

(i) V1(t, 0) ≡ 0, V1(t, x) > 0, (t, x) ∈ I × (N \ {0}),
(ii) V̇1

∣∣
(2.1)

(t, x) ≤ c(t)r(V1(t, x)), (t, x) ∈ I × (N \ {0}),
where c : I → R is a continuous function satisfying both c(t) ≥ 0 and there exists a time
τ ∈ [t, +∞) such that c(τ) > 0 for any t ∈ I, and the function r : R → R satisfies
condition A2, then the origin is a finite-time-stable equilibrium of (2.1). If in addition∫ +∞

t

c(τ)dτ = +∞ for all t ∈ I, U = N = D = Rn and W (x) → +∞ as ‖ x ‖→ +∞, then

the origin is a globally finite-time-stable equilibrium of (2.1).
Proof Here, the function r is not necessarily continuous on its domain. So we can’t

directly use Theorem 4.1. In this case, let

V2(t, x) = [−
∫ V1(t,x)

0

1
r(u)

du]
1

1−α , (t, x) ∈ I ×N ,
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where 0 < α < 1. Then V2 : I × N → R is a continuous function and satisfies the above
condition (i). Also,

V̇2

∣∣
(2.1)

(t, x) = − 1
1− α

[−
∫ V1(t,x)

0

1
r(u)

du]
α

1−α

V̇1

∣∣
(2.1)

(t, x)

r(V1(t, x))

≤ − c(t)
1− α

[−
∫ V1(t,x)

0

1
r(u)

du]
α

1−α

≤ c(t)[− 1
1− α

(V2(t, x))α] ≤ c(t)r̃(V2(t, x))

for all (t, x) ∈ I × (N \ {0}), where r̃(x) = −sign(x) 1
1−α

|x|α and sign(·) is the sign function
defined by

sign(x) =





1, x > 0,

0, x = 0,

−1, x < 0.

Obviously, r̃ : R → R is a continuous function and satisfies condition A2. Then Corollary
4.2 can be obtained from Theorem 3.2 and Theorem 4.1.

Remark If the origin is a finite-time-stable equilibrium of (2.1) under the conditions of
Corollary 4.2 and T is the settling-time function corresponding to Ω of (2.1), then according
to the proofs of Theorem 4.1 and Corollary 4.2, T satisfies the following formula:

∫ t0+T (t0,x0)

t0

c(τ)dτ ≤ −
∫ V1(t0,x0)

0

1
r(u)

du, (t0, x0) ∈ Ω. (4.1)

Moreover, by Lemma 2.2 and formula (4.1), we have that the following statements hold
(1) The settling-time function T of (2.1) is continuous on Ω if E̊ = ∅, where E = {t ∈

I : c(t) = 0}.
(2) The settling-time function T of (2.1) is bounded on Ω if there exists a constant

M > 0 such that
∫ 0

V1(t0,x0)

1
r(u)

du ≤
∫ t0+M

t0

c(τ)dτ for all (t0, x0) ∈ Ω.

5 Applications

In this section, we will provide some applications for the results of this paper.
Consider a multi-agent system described by

ẋi = ai(t)ϕi(xj − xi), i, j = 1, 2 and j 6= i, (5.1)

where xi ∈ R is the state variable, ai : I → R is a continuous function satisfying ai(t) ≥ 0
for all t ∈ I, and ϕi : R→ R is also a continuous function and locally Lipschitz outside the
origin. Let y = x1 − x2. Then we have

ẏ = a1(t)ϕ1(−y)− a2(t)ϕ2(y). (5.2)
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Assume that ϕ = ϕ1 = ϕ2 is an odd function and −ϕ satisfies condition A2, then system
(5.2) can be written as

ẏ = −(a1(t) + a2(t))ϕ(y). (5.3)

Obviously, system (5.3) is the same as system (3.2) with c = a1 + a2 and r = −ϕ. By
Theorem 3.2, it is easy to see that if for any t ∈ I, there exists a time τ ∈ [t, +∞) such that
a1(τ) + a2(τ) > 0, then the origin is a finite-time-stable equilibrium of (5.3), namely, the
states of (5.1) can locally reach consensus in finite time; and if

∫ +∞

t

(a1(τ) + a2(τ))dτ = +∞

for all t ∈ I, then the origin is a globally finite-time-stable equilibrium of (5.3), namely, the
states of (5.1) can globally reach consensus in finite time, and furthermore, we can make
the settling-time function of (5.3) bounded on R, namely, make the states of (5.1) reach
consensus in fixed time if there exists a constant M > 0 such that

∫ x

0

1
ϕ(u)

du ≤
∫ t+M

t

(a1(τ) + a2(τ))dτ

for all (t, x) ∈ I × R.
Also, assume that yϕ1(−y) ≤ 0 for all y ∈ R and there exists a function r : R → R

satisfying condition A2 such that −yϕ2(y) ≤ r(y2), then by Corollary 4.2 with V = V1 = y2,
similarly, we have that the states of (5.1) can locally reach consensus in finite time when for
any t ∈ I, there exists a time τ ∈ [t, +∞) such that a2(τ) > 0, or globally reach consensus

in finite time when
∫ +∞

t

a2(τ)dτ = +∞ for all t ∈ I, or reach consensus in fixed time when

there exists a constant M > 0 such that
∫ 0

x

1
r(u)

du ≤ 2
∫ t+M

t

a2(τ)dτ

for all (t, x) ∈ I × R. Of course, if −yϕ2(y) ≤ 0 for all y ∈ R and there exists a function
r : R → R satisfying condition A2 such that yϕ1(−y) ≤ r(y2), then we have the same
conclusions with a1 taking the place of a2.

From the above analysis, we see that the results of this paper can be applied to the
study of finite-time consensus of the multi-agent system (5.1). In fact, it is not difficult to
understand that they can be used to analyze finite-time consensus of more general multi-
agent systems.
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连续非自治系统的有限时间稳定性及其充分条件

王 磊,崔玲霞

(武汉大学数学与统计学院,湖北武汉 430072)

摘要: 本文研究了连续非自治系统的有限时间稳定性问题. 从一维连续非自治系统的有限时间稳定性

分析入手, 本文通过使用比较原理, 获得了一些判定一般n维连续非自治系统的有限时间稳定性的充分条件,

这些条件改善了已有的连续非自治系统有限时间稳定性的判定条件.
关键词: 连续非自治系统; 有限时间稳定性; 充分条件
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