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Abstract: In this paper, we study finite-time stability of continuous non-autonomous sys-
tems. Through the finite-time stability analysis of continuous time-varying scalar systems and
using the comparison principle, some sufficient conditions are presented for finite-time stability of
general n-dimensional continuous non-autonomous systems, which improves the existing finite-time
stability results for continuous non-autonomous systems.
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1 Introduction

In recent years, the concept of finite-time stability was used in different dynamical
systems to deal with various issues in the applied mathematics field, such as finite-time
stabilization control [1], finite-time synchronization [2], finite-time consensus [3], and so on.
It shows that developing the theory of finite-time stability is a significant work. So far,
some researchers made a contribution to developing and improving the theory of finite-time
stability. In [4], a rigorous foundation for the theory of finite-time stability of continuous
autonomous systems was provided. In [5] and [6], some Lyapunov results for finite-time
stability of continuous non-autonomous systems were proposed.

However, all the finite-time stability results for continuous non-autonomous systems are
not perfect. For one thing, the results ineluctably lead to continuous settling-time functions
and thus, they are not suitable for the finite-time stability analysis of the continuous non-
autonomous systems whose settling-time functions may be discontinuous. For another, the
conditions of the results can be further relaxed through the study of finite-time stability
of general continuous time-varying scalar systems and the use of the comparison principle.
Inspired by the two things, the paper will define finite-time stability for continuous non-
autonomous systems and attempt to obtain more general results for finite-time stability of

continuous non-autonomous systems.
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This paper is organized as follows. In Section 2, some necessary definitions and lemmas
are given for later use. In Section 3, finite-time stability of continuous time-varying scalar
systems is considered, and in particular, a class of continuous time-varying scalar systems
with separated variables is studied in detail. In Section 4, the main results for finite-time
stability of continuous non-autonomous systems is presented and some conditions are given
to make sure that settling-time functions are continuous or bounded. In Section 5, some

applications for the results of this paper are provided.

2 Preliminaries

Let || - || denote a norm on R™. The notions of openness, convergence, continuity,
boundary and compactness that we use refer to the topology generated on R™ by the norm
| - |I. We use I to denote the whole nonnegative real numbers. Also, let A, A and bdA
denote the interior, the closure and the boundary of the set A, respectively.

Consider the system of differential equations

dz(t)
dt

= f(t,z(t)), (2.1)

where f : I x D — R"™ is continuous on I x D with an open neighborhood D C R"™ of the
origin and f(¢,0) = 0. Then according to existence theorem of Peano [7], there exists a
sufficiently small positive number 7 and a solution x : (tg — 7,tg +7) — D of (2.1) such that
x(ty) = xo for any initial state (¢g,zo) € I x D. Moreover, extension theorem of solution [7]
indicates that every solution of (2.1) has an extension that is right maximally defined.

We assume that system (2.1) possesses unique solutions in forward time for all initial
states (fo,x0) € I X D except possibly (t9,0) € I x {0} in the following sense: for every
(to,zo) € I x (D\{0}), there exists 7y, ., > to such that for any two right maximally
defined solutions x; : [tg,71) — D and x5 : [tg,72) — D of (2.1) passing through (¢o, o),
we have that 74, ,, < min{m, 7} and z,(t) = z2(¢t) for all t € [ty, 7¢,.2,). Without any loss
of generality, for each (to, (), we may assume that 7, ., is chosen to be the largest such
number in I, or +oo. In this case, the unique solution of (2.1) passing through (g, z¢) on
[to, Tte.z0) 1s denoted by ¢ (-, to, zo). Under the above assumption, the definition of finite-time
stability of (2.1) is given as follows.

Definition 2.1 The origin is said to be a finite-time-stable equilibrium of (2.1) if there
exists a set Q C I x D satisfying both I x {0} C Q and for any ¢t € I, Q;, = {x € R"|(t,z) €
2} C D is an open neighborhood of the origin, and a function T": 2\ (£ x {0}) — (0,400)
such that the following statements hold.

(i) Finite-time convergence: for every (tg,zo) € Q\ (I x {0}), ¢(-,t0, o) is defined on
[to, to + T(to, z0)), (t, d(t, to,x0)) € Q\ (I x {0}) on [tg,to + T (to,x0)) and

lim t,tg, xg) = 0.
t—(to+T (to,z0))~ ¢( 0 O)

(ii) Lyapunov stability: for any t, € I and any open neighborhood U, of the origin,
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there exists an open neighborhood Us C €, related with ¢y and U, of the origin, such that
for every xg € Us \ {0}, &(t, to, x0) € Ue on [to, to + T (to, x0))-

The origin is said to be a globally finite-time-stable equilibrium of (2.1) if it is a finite-
time-stable equilibrium of (2.1) with Q =17 x D =T x R™.

It is easy to prove that if the origin is a finite-time-stable equilibrium of (2.1) with Q
and T as in Definition 2.1 and let T'(ty,0) = 0, then for every (tg,zo) € Q, ¢(-,t0,zo) is
defined on [tg, +00), (¢, ¢(t, to, o)) € Q\ (I x {0}) on [to, to + T'(to,z0)) and ¢(t, to, xo) =0

on [tg + T'(to, xo), +00), what’s more,
T(to,.ﬁlj‘o) = ll’lf{t — to it Z to and ¢(t,t0,$0) = O}

At this time, T is said to be the settling-time function corresponding to  of (2.1), which
may be continuous or discontinuous, bounded or unbounded.

For later use, we introduce the following definitions and lemmas.

Suppose V : I x D — R is a continuous function. If (¢,2) € I x D and ¢(-,¢,x) is
defined, then we define the derivative V‘ e 1)(t, x) of V along the solutions of (2.1) as

V‘(m)(t, 2) = hhniigp V(t+h,o(t+ f;l, t,x)) —V(t,x) .
Definition 2.2 If there exists an open neighborhood &4 C D of the origin and two
continuous functions W : Y — R and V : I x U — R such that
(i) W(0) =0, W(z) >0,z U\ {0},
(ii) V(t,0) =0, V(t,z) > W(x), (t,x) € I xU,
(iii) V‘@'l)(t,x) <0,(t,z) €I x (U\{0}),
then it is said that system (2.1) satisfies condition A;.
Definition 2.3 Suppose 7 : (a,b) — R is a function, where a < 0 < b. If r(0) = 0,

0
and for every = € (a,0) U (0,b), zr(z) < 0 and / 7"(1u)du < 400, then it is said that the
function r satisfies condition A,. ’

Lemma 2.1 If system (2.1) satisfies condition A;, then the origin is a stable equilibrium
of (2.1).

Condition A; is just the so-called Lyapunov stability condition. According to the Lya-
punov stability theory, we can obtain Lemma 2.1.

Lemma 2.2 Assume that the origin is a finite-time-stable equilibrium of (2.1) and T°
is the settling-time function corresponding to  of (2.1), then T is continuous on § if and
only if for every t € I, T(t,z) — 0 as x — 0.

Similarly to [5, Prop. 3.2], we can prove Lemma 2.2.

3 Some Results for Finite-Time Stability of Continuous Time-Varying
Scalar Systems

In this section, we will consider system (2.1) with n =1 and D = R. Suppose f(t,z) =
g(t,x), where g : I x R — R is a continuous function and g(¢,0) = 0. Then system (2.1) is
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written as
dx(t)
dt
As in Section 2, system (3.1) has unique solutions in forward time for all initial states
(to, o) € I x (R\ {0}). Distinguished from (2.1), for each (tg,zo), we may use (-, to, z¢)
to denote the unique solution of (3.1) passing through (¢, o) on [to, Tty a0 )-

= g(t,z(t)). (3.1)

The following conclusion can be directly obtained from the definition of finite-time
stability.

Theorem 3.1  If the origin is a stable equilibrium of (3.1), then the following state-
ments hold.

(1) The origin is a finite-time-stable equilibrium of (3.1) if and only if for every t, € I,
there exist two numbers zy > 0 and Z < 0 such that the two equations v (t, ty, xo) = 0 and
¥ (t,to, Zp) = 0 have a solution with respect to ¢, respectively.

(2) The origin is a globally finite-time-stable equilibrium of (3.1) if and only if for every
(to, o) € I x R, the equation v (t,ty, xo) = 0 has a solution with respect to t.

Next, for simplicity, let g(t,z) = c(t)r(z), where ¢ : [0,400) — R is a continuous
function, and r : R — R is also a continuous function satisfying condition A,. Then system

(3.1) is written as

dx(t)
3 = c(t)r(z(t)). (3.2)

Through verification, system (3.2) has unique solutions in forward time for all initial states
(to,x0) € I x (R\ {0}). Furthermore, the following theorem provides a sufficient and neces-
sary condition for finite-time stability of (3.2).

Theorem 3.2 The following two statements hold

(1) The origin is a finite-time-stable equilibrium of (3.2) if and only if ¢(¢) > 0 for all
t € I and for any ¢ € I, there exists a time 7 € [, +00) such that ¢(7) > 0.

(2) The origin is a globally finite-time-stable equilibrium of (3.2) if and only if ¢(t) > 0

—+oo
and / e(r)dr = +o0 for all t € I.
t

Proof  We first prove (1). If there exists a time ¢; € I such that ¢(t;) < 0, then
the continuity of ¢ implies that there exists a sufficiently small real number ¢ > 0 such
that c¢(t) < 0 for all t € [t1,t; + €]. It is easy to obtain that system (3.2) has a non-zero

t T
1
solution through (¢1,0) from the equation / c(r)dr = / ﬁdu for all t € [t1,t1 + €].
t o ru

This contradicts Lyapunov stability of the orilgin. Thus, ¢(t) > 0 for all t € I.

Also, if there exists a time t; € I such that for every 7 € [ta2, +00), ¢(7) = 0, then
Y(t,ta, z9) = x for all zp € R and all ¢t € [ty, +00). This contradicts finite-time stability.
Thus, for any t € I, there exists 7 € [t,4+00) such that ¢(7) > 0. This prove the necessity of
(1).

Let V = 2. Then V‘(
equilibrium of (3.2).

3'2)(25, x) = 2¢(t)zr(x) < 0. By Lemma 2.1, the origin is a stable
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If the origin is not a finite-time-stable equilibrium of (3.2), then by Theorem 3.1, there
exists a time t3 € I such that for every zo > 0, ¢(t,t3,20) # 0 for all ¢t € [t5, T4, 4,), or for
every Zog < 0, ¥(t,t3,20) # 0 for all t € [t5, Ty, 2,). Without any loss of generality, assume
for every xg > 0, ¥(t,t3,20) # 0 for all ¢ € [t3,T¢;.4,). Then

t t
1
0< /ts c(r)dr = /t3 mdi/}(Ta ts3, o)

P(t,t3,x0) 1 0 1
= ——du < ——du.
0 r(u) 20 r(u)

It is easy to see that 0 < ¢(t,t3,20) < w for all t € [t5,T¢; 4,). By Extension Theorem of
Solution, (-, t3, x) is defined on [t3,+00). Moreover,

+o0 0 1
/ts e(r)dr < LO @du, x> 0.

Since for any ¢t € I, there exists 7 € [t,4+00) such that ¢(7) > 0, then it can be shown that

“+oo
/ ¢(r)dr > 0. Also, by the continuity of r and condition Ay, we have that
t3

. ° 1
lim —_
w0—0% Jo r(u)

du = 0.

This leads to a contradiction. Thus, The origin is a finite-time-stable equilibrium of (3.2).
This prove the sufficiency of (1).

In the following, we prove the necessity of (2). Similarly to the proof of (1), ¢(t) > 0 for
all t € I, and for every initial state (to,zo) € I x R satisfying xzq # 0,

+o0 to+T (to,x0) 0 1
/ e(r)dr > / c(r)dr = / ——du > 0.

to to zo 7(u)

+oo
If there exists a time t3 € I such that / c(r)dr < 400, then the infinite integral
t3

+oo
/ ¢(7)dr is convergent, and moreover,
t3

lim c(r)dr = 0.

to—+oo to

“+o0
This leads to a contradiction. Thus for every ¢y € I, / e(r)dr = 4o0.
to
At last, we can prove the sufficiency of (2) in the same way as the proof of the sufficiency

for (1).
Remark If the origin is a finite-time-stable equilibrium of (3.2), and T is the settling-

time function corresponding to Q of (3.2), then we can prove that T satisfies the following

to+T(to,z0) U ~
/ c(r)dr = / ——du, (to, xo) € Q. (3.3)

to xo T(u)

formula:
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Suppose E = {t € I : ¢(t) = 0}. From Lemma 2.2 and formula (3.3), it is easy to see that
the following statements hold:

(1) The settling-time function 7" of (3.2) is continuous on € if and only if £ = (.

(2) The settling-time function T of (3.2) is bounded on € if and only if there exists a

0 to+ M
1 -
constant M > 0 such that / ﬁdu < / c(r)dr for all (to,zo) € Q.
xo ru to

4 Main Results for Finite-Time Stability of Continuous Non-Autonomous
Systems

In this section, we will put forward more general sufficient conditions for finite-time
stability of continuous non-autonomous systems. According to the definition of finite-time
stability, finite-time stability of the origin is divided into two parts, namely, Lyapunov stabil-
ity and finite-time convergence. In fact, it is relatively easy to determine Lyapunov stability
of the origin since Lyapunov stability theory has been quite mature. Therefore, it will be a
good idea to analyse finite-time convergence of the origin under the condition that Lyapunov
stability of the origin holds. The results of this section are obtained from this idea.

The comparison principle can be found in Section 2.5 of [8], which will be used in the
proof of the following theorem.

Theorem 4.1  If (2.1) satisfies condition A; with ¢, W and V as in Definition 2.2,
and there exists an open neighborhood N' C D of the origin and a continuous function
Vi : I x N — R such that

(i) Vi(t,0) =0, Vi(t,x) > 0,(t,x) € I x (N'\{0}),

(1) Vi ) (1) < 9(t, Vit ), (1,2) € Tx W\ {0}),
where let ¢ : I x R — R be as in system (3.1) ensuring that the origin is a finite-time-
stable equilibrium of (3.1), then the origin is a finite-time-stable equilibrium of (2.1). If in
addition the origin is a globally finite-time-stable equilibrium of (3.1), Y = N = D = R"
and W(z) — 400 as || z ||— +oo, then the origin is a globally finite-time-stable equilibrium
of (2.1).

Proof By Lemma 2.1, Lyapunov stability of the origin holds. It can be shown that
the right maximally defined solution of (2.1) starting from the origin at any initial time is
unique. Then we have that V’(zl)(t,O) =0 and Vl}(Q.l)(t,O) = 0. Thus V‘(m)(t,x) < 0 for
all (t,x) € I x U and ‘/1’(2.1)(15,.%) < g(t,Vi(t,z)) for all (t,x) € I x N.

Suppose T is the settling-time function corresponding to Q of (3.1). Let X CU NN is
a bounded open set containing the origin and X C U N N. Let a = min,ecpax W (z), then
a > 0. Choose 3 such that 0 < 8 < « and let

Q={(t,z) e I xK:V(t,z) < Band (t,Vi(t,z)) € Q}.

Then I x {0} C Q and for every t € I, Q;, = {x € R" : (t,x) € Q} C K is a bounded open

set containing the origin.



No. 4 Sufficient conditions for finite-time stability of continuous non-autonomous systems 743

Suppose (tg, o) € Q. Then it is not difficult to obtain that ¢(-, %o, zo) is defined on
[to, +00) and ¢(t, tg,xg) € K for all t € [ty, +00) by using condition A; and extension
theorem of solution. Put (¢, ¢(t,to, o)) into Vi t,z) < g(t,Vi(t,z)). Then by the

comparison principle,

‘(2.1)(

Vl(t,¢(t7t0,.’l,‘o)) S w(t7t07 %(to,.’ﬂo)), t Z tO'
Because (to, Vi (to, z0)) € Q, we have
Ut to, Vi(to, 20)) = 0, t > to + T(to, Vi(to, z0))-

Thus
¢(t7 t07 l'()) = 07 t 2 tO + T(t07 ‘/1(t07 xO))

This proves finite-time convergence of the origin. So the origin is a finite-time-stable equi-
librium.
To prove global finite-time stability of the origin, we only need to prove global finite-time

convergence of the origin. In fact, for every (to,x0) € I x R™,
V<t7 ¢(t7 t07 170)) S V(t07 IO)

for all ¢t € [tg, T¢,,4,) by condition A;. Also, if 73, ., < +00, then by extension theorem of

solution, as t — 7, ., || ¢(t,to,zo) || = 400 and moreover,
V(tv ¢(ta to, 370)) 2 W((ﬁ(t, to, 930>> — +00.

This is a contradiction. Thus ¢(-,tg, z¢) is defined on [tg, +00). Next, similarly to the proof
of finite-time stability, the conclusion we need can be proved.

We can seek some practical functions g to make the use of Theorem 4.1 more convenient.
The following corollary is just a good example.

Corollary 4.2  If (2.1) satisfies condition A; with ¢, W and V as in Definition 2.2,
and there exists an open neighborhood N' C D of the origin and a continuous function
Vi : I x N = R such that

(i) Vi(t,0) =0, Vi(t,z) > 0,(t,z) € I x (M \{0}),

() Vi ) () < c()r(Vilt, @), () € Tx W\ {0)),
where ¢ : I — R is a continuous function satisfying both ¢(t) > 0 and there exists a time
T € [t,+00) such that ¢(r) > 0 for any ¢ € I, and the function » : R — R satisfies

condition A, then the origin is a finite-time-stable equilibrium of (2.1). If in addition
—+o0
/ c(r)dr =+oc forallt € I, = N =D =R" and W(z) — +o0 as || x |— +oo, then
t
the origin is a globally finite-time-stable equilibrium of (2.1).

Proof Here, the function r is not necessarily continuous on its domain. So we can’t

directly use Theorem 4.1. In this case, let

Vi (t,x) X
Vg(t,x):[—/o %du}l—a, (t,z) e I x N,
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where 0 < a« < 1. Then V5 : I x N — R is a continuous function and satisfies the above

condition (i). Also,

1 Vi(t,x) 1 %‘./1‘(2'1)(@.%)
[‘/0 T T )
B C(t) B Vl(t,x)i y -
[ / ™
(Va(t, 2))°] < e(t)F(Va(t, )

%’(2.1)(@%) = -

IN
Q
—~
~+
~—
|
!

—

for all (¢,x) € I x (N '\ {0}), where 7#(2) = —sign(z) = |z|* and sign(-) is the sign function
defined by

1, z>0,
sign(z) =4 0, x=0,
-1, x<0.

Obviously, 7 : R — R is a continuous function and satisfies condition A,. Then Corollary
4.2 can be obtained from Theorem 3.2 and Theorem 4.1.

Remark If the origin is a finite-time-stable equilibrium of (2.1) under the conditions of
Corollary 4.2 and T is the settling-time function corresponding to €2 of (2.1), then according
to the proofs of Theorem 4.1 and Corollary 4.2, T satisfies the following formula:

to+T(to,xo0) Vi(to,xo) 1
/ e(r)dr < / ——du, (to, xo) € Q. (4.1)

to 0 r(u)

Moreover, by Lemma 2.2 and formula (4.1), we have that the following statements hold
(1) The settling-time function 7' of (2.1) is continuous on Q if E = (), where E = {t €
I:c(t) =0}.
(2) The settlinog—time function T’ tof ](\421) is bounded on € if there exists a constant
M > 0 such that / Ldu < / " c(r)dr for all (to,zo) € Q.
Vi (to,70) 7(u) to

5 Applications

In this section, we will provide some applications for the results of this paper.

Consider a multi-agent system described by
T; = a”i(t)(pi(‘rj - .367;), i, =1, 2 and.j 7é i, (51)

where z; € R is the state variable, a; : I — R is a continuous function satisfying a;(t) > 0
for all t € I, and ¢; : R — R is also a continuous function and locally Lipschitz outside the

origin. Let y = 1 — 5. Then we have

¥ = ai(t)p1(—y) — az(t)p2(y). (5.2)
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Assume that ¢ = 1 = @5 is an odd function and —¢ satisfies condition A,, then system

(5.2) can be written as
g = —(ax(t) + az()) o (y)- (5:3)

Obviously, system (5.3) is the same as system (3.2) with ¢ = a; + ay and »r = —¢p. By
Theorem 3.2, it is easy to see that if for any ¢ € I, there exists a time 7 € [t, +00) such that
a1(7) + as(7) > 0, then the origin is a finite-time-stable equilibrium of (5.3), namely, the
states of (5.1) can locally reach consensus in finite time; and if

too
/t (a1(7) + az(7))dr = 400

for all ¢ € I, then the origin is a globally finite-time-stable equilibrium of (5.3), namely, the
states of (5.1) can globally reach consensus in finite time, and furthermore, we can make
the settling-time function of (5.3) bounded on R, namely, make the states of (5.1) reach

consensus in fixed time if there exists a constant M > 0 such that

/O ' S0(1u)du < /t T () + aa(r))dr

for all (t,z) € I x R.

Also, assume that yp1(—y) < 0 for all y € R and there exists a function r : R — R
satisfying condition A, such that —ys(y) < r(y?), then by Corollary 4.2 with V = V; = ¢
similarly, we have that the states of (5.1) can locally reach consensus in finite time when for

any t € I, there exists a time 7 € [t,4+00) such that as(7) > 0, or globally reach consensus
—+o0
in finite time when as(7)dT = +o0 for all ¢ € I, or reach consensus in fixed time when

t
there exists a constant M > 0 such that

0 t+M
/ ) du < 2/ as(7)dr
T t

for all (t,z) € I x R. Of course, if —yps(y) < 0 for all y € R and there exists a function

r : R — R satisfying condition A, such that yp;(—y) < r(y?), then we have the same

conclusions with a; taking the place of as.

From the above analysis, we see that the results of this paper can be applied to the
study of finite-time consensus of the multi-agent system (5.1). In fact, it is not difficult to
understand that they can be used to analyze finite-time consensus of more general multi-
agent systems.
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