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Abstract: In this paper, we study the chaos expansion for multifractional Lévy processes.
By using the white noise analysis, we give the chaos expansion of multifractional Lévy Processes.
Moreover, we derive their Lévy-Hermite transforms and Malliavin derivatives.
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1 Introduction

The study on fractional processes started from the fractional Brownian motion (FBM)
which was first introduced by Kolmogrov in 1940 and popularized by Mandelbrot and Van
Ness [1] in 1968. For a constant 3 € (—3, 1), a FBM W” is defined by

T 202

t
Wh = /R(Ifl[o,t])(s)dWS = I‘(ﬁl—i—l)/oo<<t_ s)ﬁ — (—s)i)dWs,

where W is a standard Brownian motion, I ? is the Riemann-Liouville fractional integration
operator, H = 3 + % is called the Hurst parameter of W#. FBM exhibits self-similarity and
long-range dependence when 0 < 3 < % while remaining Gaussian, therefore, suits to model
driving noise in different applications such as mathematical finance. However, the Hurst
parameter H = (3 + % is a constant, this property make it unsuitable when some one use it
to model some phenomena which do not admit a constant Holder exponent. To this purpose,
2, 3] independently substitute 8 by a Hélder continuous function 5 : [0,00) — (—3, %) and
define the multifractional Brownian motion (MFBM) by

Woht) = WP (1) = / (1" 11.4)(s)dW,
1 t

W /_m((t —5)P0 _ (*S)i(t))dWs.
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On the other hand, the light tails of FBM make it unsuitable to model the high volatility
phenomenon. [4] and [5] defined fractional Lévy processes and noises on a Gel’fand triple.
The (G-fractional Lévy process on a Gel'fand {Xf,t >0} (0<pg< %) is defined by

X) = /R(Ifl[o,t])(s)dXs = F(ﬂl—f—l)/ ((t—s)" = (=9)])dX,,

where X is a Lévy process on a Gel'fand with zero mean, continuous covariance operator.
Lii et al. [5] showed that fractional Lévy process has stationary increments, long-range
dependence. Moreover, Lii et al. [7] substitute the § parameter of fractional Lévy processes
by a Holder continuous function with respect to time to define multifractional Lévy processes
on Gel’fand triple.

In this paper, based on the white noise analysis of 0 mean Lévy process with finite
moments of any orders given by [6], we give the chaos expansion of multifractional Lévy
processes. Moreover, we derive their Lévy-Hermite transforms and Malliavin derivatives.
The paper is organized as follows: in Section 2, we recall the basic results about white noise
analysis of Lévy processes; in Section 3, we we derive the chaos expansion of multifractional

Lévy processes.

2 White Noise Aanlysis for Lévy Processes

Denote by S(R) the Schwartz space of rapidly decreasing C'*°-functions on R¢ and by
S'(R) the space of tempered distributions, let F = B(S'(R)) be the Borel o-algebra. By
Bochner-Minlos theorem, there exists a probability P on S’(R) such that

/Q e P(do) = exp{ | (2f(s))ds}, 2 € R, € S(R), 21

— 00

where

P(z) = /[ei“ — 1 —izzldv(x),u € R,
R
v is the Lévy measure satisfying v({0}) = 0 and
/(|9v|2 A 1)dv(z) < oo,
R

where a A b = min{a, b}. Moreover, we assume that

/ |z|?dv () < oco.
|z|>1

For f € S(R), let X (f)(w) := (w, f), then by (2.1), we have
E[X(f)] =0,
B = [ £y [ advta).



No. 4 Chaos expansion for multifractional Lévy processes 707

We can extend the definition of X (f)(w) for f € S(R) to any f € L*(R) by choosing
fn € S(R) such that f, — f in L2(R) and defining X (f)(w) := lim X(f,)(w) (in L2(P)).
Now define 7(t) := X (x[0.¢1(s)), where

1, 0<s<Ht,
Xo4(s) =4 -1, t<s<0,

0, else.

The stochastic process {n(t),t € R} has a cadlag version, denoted by X. This process
{X(t),t € R} is a pure jump Lévy process with Lévy measure v, X admits the stochastic

//mNdsdx ),t >0,

where N((O,t] x A) = N((0,t] x A) — tv(A) is its compensation Poisson measure. In this

integral representation

case, X is a martingale and we call it pure-jump Lévy process.
From now on we assume that the Levy measure v satisfies for all € > 0, there exists
A > 0 such that

/ exp(A|z|)dr(z) < oo, (2.2)
Ro\(—¢,€)

where Ry = R\ {0}.This condition means that X has finite moment of any orders. Let
{p;(2),j > 1} be the orthonormal basis for L?*(v) and {e;(t),i > 1} be the Hermite

functions, where p;(z) = my'z, my = [ 2?v(dz). Define s(i,j) = j + %7
R
Suiijy(t,2) = ei(t)p;j(z). For a € J (where J = NVY), (index)a = j, |a| = m, that is

j
a=(a, a0, ,0;,0,0,--+), Y a; =m,a; € N, we define
i=1

5®a(t15217 U 7tm’zm)
:5?041 & ®5?aj(t1721,. .. ,tm,Zm)

:51 (t17 Zl) e 61(ta1?za1) e 6j(tm—ozj+1v zm—aj—Q—l) T 5j(tma Zm)~
We set 6?0 =1 and 5@)"‘(751,21, oty Zm) = 5?0‘1 ® - ® 5® "(t1, 21, -+« sty Zm,), define
K, = I|a‘(5®“),

where I,,(f) is the n-fold iterated integral of f with respect to X, ® means tensor product,
® means the symmetric tensor product (for more details, see [6]).
Theorem 2.1 (see [6]) Any F' € L?(P) has a unique expansion of the form

F=> c.Ks (2.3)

aceJ

| F ||2L2(Q): Z alel,.

aceJ

with ¢, € R. Moreover,
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If F has the chaos expansion (2.3), its Lévy-Hermite transform of F' is defined by

HF (u) = Z cou” = Z Ca Hug’“, (2.4)

acd acd k

where u = (uy, ug,...) € CV.

3 Chaos Expansion for Multifractional Lévy Processes

In this section, we give the chaos expansion of multifractional Lévy processes. Moreover,
we derive their Lévy-Hermite transforms and Malliavin derivatives.

By the definition of multi-fractional Lévy processes on Gel'fand triple given by [7], we
can easily define the real-valued multi-fractional Lévy process.

Definition 3.1 Let 3 : Rt — (0,1) be a measurable function, X be a two-side Lévy

process satisfying all the assumptions in Section 2. Define
X = / (1" D1p4)(s)d X,
R

- e L -,

(3.1)

where z, = max{z,0}, 15 is the indicator function on the set B, and I” is the Riemann-
Liouville fractional integral operator defined by

1 [t

(IZf)(t) = ) J, (s)(s — 1) ds,

if the integral exist for almost all z € R (see [8]), and I'(-) is the Gamma function.

By Theorem 3.2 of [7], we can obtain the one-dimensional distribution of the multi-
fractional Lévy process.

Theorem 3.2 Let X° = {Xtﬁ(t),t > 0} be a S-multifractional Lévy process, then for
any t > 0, Xtﬁ ) is a 0 mean infinitely divisible random variable with characteristic function

Efexp(izX{")] = exp{ / [ — 1 — iza]dv ()}, (3.2)
R
where
Vs (B) = / / 1{(I"P1.9)(s)2}v(dx)ds, VB € B(R). (3.3)
R JR,
Vs, t >0,
E[x/ X)) 4
:mQC(ﬁ(t),ﬁ(s))(|t|ﬁ(t)+5(s)+l + |5|ﬂ(t)+ﬂ(3)+1 - S‘ﬁ(t)+6(3)+1) (3.4)
and

1

OB BN = S o T B ¥ 2) i BT
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Theorem 3.3 Let X° = {Xf (t),t > 0} be f-multi-fractional Lévy process, then for
any t > 0, the chaos expansion of Xf(t) is

= [ (710 eI, (3.5)
i>1
where
K i1y = Li(ei(t)pi(2)),

e(i, 1) = (0,0,---,1,0,---) with the 1 on the (i, 1)th place.
Proof Since If(t)l[oﬂ € L2(R), for any t > 0, X/¥ € L2(P), then by Theorem 2.1,

X7 = [P 100)5)4x.
= L(I"1p.4(5)2)
= I1(Z<If(t)1[o (), e ) 2mei(s)z)

Z Iﬂ( )1[0 1) (+)s €i(-)) L2y 1 (ei(s)2)
- Zm2<(I§(t)X[0,t])(')7 ei(*)) 2y Kegin)

i>1

_Zm /Ig(t)X[o,t])(5)6i(s)d‘9K€(i’1)'

i>1

Thus we get the desired.

By the following fractional integral by parts formula of operator Ii:

+oo +oo

F(5)(Ig)(s)ds = / g(s)(I° ) (s)ds, f.g9 € S(R),

— 00 — 00

which can be extended to f € LP(R), g € L"(R) with p > 1, 7 > 1 and %—&—% =1+ 3, where

N0 =175 / (= )% f(s)ds

(see [8]), (3.5) can be written as
Xﬁ(t = Mo Z/ L’Hr ei(s)dsK ().
i>1

By the chaos expansion of X?, we get
Corollary 3.4 Let X? = {Xﬁ D> 0} be [-multifractional Lévy process, then for
any t > 0, the Lévy-Hermite transform of Xtﬁ ®©

HXﬁ t) Zm /I(t)l[O,t])(5)6i<5)dsua(i,1), (3.6)

i>1
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where u = (uy, ug,---) € CV.

By equality (12.4) of [6], we can easily get

Proposition 3.5 Let X” = {Xf(t),t > 0} be S-multifractional Lévy process, then for
any t > 0, the Malliavin derivative of Xf )

Do X = (1" 4)(s)=. (3.7)
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