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THE SQUARE MAPPING GRAPHS OF THE RING Z,]i]
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Abstract: In this paper, we investigate some properties of the square mapping graphs I'(n)
of Z,[i], the ring of Gaussian integers modulo n. Using the method of number theory, graph
theory and group theory, we obtain the in-degree of 0 and 1. Moreover, we give the complete
characterizations in terms of n in which I'2(n) is semiregular, where I'2(n) is induced by all the
zero-divisors of Zy[i]. The formulas on the heights of vertices in I'(n) are also obtained. This paper
extends results concerning the square mapping graphs of Z,, given by Somer.
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1 Introduction

Finding the relationship between the algebraic structure of rings using properties of
graphs associated to them became an interesting topic in the last years, for example, see
[1-3]. In this paper, let Z, = {0,1,---,n — 1} be the ring of integers modulo n, and
Z,[i] = {@ +bi|a,b € Z,} be the ring of Gaussian integers modulo n. We investigate some
properties of the square mapping graphs I'(n), whose vertex set is all the elements of Z,[i],
and for which there is a directed edge from « € Z,[i] to 8 € Z,[i] if and only if o = .
In [1, 4, 5], some properties of the square mapping graphs of Z,, were investigated, and the
cubic mapping graphs of Z,[i] were studied in [2].

Let R be a commutative ring, U(R) denotes the unit group of R, D(R) the zero-divisor
set of R. For o € U(R), o(«) denotes the multiplicative order of o in R. If R = Z,,, then
we write ord,« instead of o(a). We specify two particular subdigraphs I'y(n) and I';(n) of
I'(n), i.e., I'1(n) is induced by all the vertices of U(Z,[i]), and I'y(n) is induced by all the
vertices of D(Z,][i]).

InT'(n), if oy, - -+ , a4 are pairwise distinct vertices and o = ag, -+, a7 | = a4, a2 = ay,
then the elements oy, o, -, a; constitute a t-cycle. It is obvious that « is a vertex of a
t-cycle if and only if ¢ is the least positive integer such that a® = a. For a € Z,i], the

in-degree indeg(«) of a, denotes the number of directed edges coming into .
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Example 1.1 The square mapping graph of Zs[i] is as follows.

Q§+i Q§+Zi
/I 2+ 4i /I 2+i
T+2i 4+43i T+3i 4+72i

T1+i 1+4i

The square mapping graph of Zjs]i]

Lemma 1.2 (see [6]) Let n > 1.
(1) The element @ + bi is a unit of Z,[i] if and only if a* + b is a unit of Z,.

2)If n=1]] pfj is the prime power decomposition of n, then Z,[i] = =125 [i].
Jj=1 J

(3) Z,[i] is a local ring if and only if n = p’, where p = 2 or p is a prime congruent to 3
modulo 4, t > 1.

(4) Z,[i] is a field if and only if n is a prime congruent to 3 modulo 4.

Lemma 1.3 (see [7])

(1) [U(Z [i])| = 227, |D(Za[i])] = 2%

(2) Let ¢ be a prime congruent to 3 modulo 4. Then |U(Z[i])| = ¢* —¢* 2, |D(Zy[i])| =
g22.

(3) Let p be a prime congruent to 1 modulo 4. Then |U(Z,[i])] = (p' — p'~1)?

ID(Zy [i])] = 2p* 71 — p* 2.

By Lemma 1.2 (2), we have the following lemma concerning the in-degree of an arbitrary

)

vertex in T'(n).

Lemma 1.4 Suppose o = a+bi € Z,[i], and n = [] p?j is the prime power decomposi-
j=1
tion of n. Then indeg(a) = indeg(cv) x - - - xindeg(cv ), where o; = (@ mod p?j)—&—(b mod pfj)i
and indeg(cy;) is the in-degree of «; in F(pfj), j=1,---,s.

2 In-Degree, Semiregularity, Height

By Lemma 1.4, in order to obtain the in-degree of a vertex in I'(n), it suffices to consider

the cases of n being a power of a prime.
Theorem 2.5 (1) Let n = 2% k > 1. Then indeg(0) = 2*.
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(2) Let n = p*, where p is an odd prime, k > 1. Then indeg(0) = p* if k is even, while
indeg(0) = p*~! if k is odd.

Proof (1) Let n = 2*. By inspection, we have indeg(0) = 2* for k = 1,2. Now suppose
k > 3. Assume that a = @+ bi € Zy[i] with a? = 0. Clearly 2|a and 2|b. Let a = 2¥ay,
b = 2Vby, where u, v are positive integers, both a; and b, are odd. Set A = min{u,v}. Then
a = 223, where § = 2" 2ay + 2V byi.

Suppose k is even. Clearly a? = 0 when X\ > %, and a? # 0 when \ < g — 1. Hence,

§a

o? = 0 if and only if a = 28/2a@, + 25/2byi with ag,by € {0,1,2,---,2F2 — 1}. Thus
indeg(0) = 2k/2 x 2%/2 = 2k,

Suppose k is odd. First, if A > ’““ , then clearly o? = 0. Second, if A = —, then § €
U(Zyx[i]) when u # v. Hence, a2 = 22’\ﬂ2 # 0. Otherwise, o = 22““(u +aibi) =0
When u =v = A. Third, if A < , then clearly a? # 0. Therefore, in the case of k odd,

= 0 if and only if o = 2(-+1) /2a + 20+ D/2h0i with ag, by € {0,1,2,---,2=D/2 _ 1},
or a = 2b=1/2g, 4 2:=1/2h0i with ag, by € {1,3,5,---,20:+1/2 1}. Thus indeg(0) =
o(k=1)/2 5 9(k=1)/2 | 9(k=1)/2 y 9(k-1)/2 _ ok

(2) Let n = pF, where p is an odd prime, k¥ > 1. Suppose k is even, then by an
argument similar to (1) above, a® = 0 if and only if a = p*/2 @y + p*/2 boi with ag, by €
{0,1,2,--+,p*/?2 — 1}. Thus indeg(0) = p*/2 x pk/? = pk.

Suppose k is odd. If A > L then clearly o® = 0. If A < 51, then clearly o® # 0.
Therefore, in the case of k odd, a? = 0 if and only if a = p**t1/2q, + pF+1/2pyi with
ao,bo € {0,1,2,--- ,p*=1/2 _ 11, Hence, indeg(0) = pF=1/2 x pk=1/2 = pF,

Theorem 2.6 (1) Let n = 2%, k > 1. Then indeg(1) = 2* for k = 1,2, while indeg(1) =
fork >3

(2) Let n = p*, where p is an odd prime, k > 1. Then indeg(1) = 2 if p = 3 (mod 4),
while indeg(1) = 4 if p =1 (mod 4).

Proof (1) Let n = 2*. By inspection, we have indeg(1) = 2* for k = 1,2. Now suppose
k > 3. Assume that o = @+ bi € Zy[i] with o® = (@ — 52) + 2abi = 1. Clearly the parity
of a and b is different. If a is even while b = 2¢ + 1 is odd, then 2¥|2ab if and only if a = 0
or 2°=1. However, a®> — b? — 1 = —4t> — 4t — 2 # 0 (mod 2*), which contradicts to the fact
that o* = 1. So we must have a is odd and b is even. Then 2¥|2ab if and only if b = 0 or
2¢=1 Hence a® — b* = 1 (mod 2*) if and only if a®> = 1 (mod 2*¥). The number of solutions
of a> =1 (mod 2*) is 4 for k > 3. So we can conclude that indeg(1) = 8 for k > 3.

(2) Let n = p*, where p is an odd prime, k > 1. Assume that a = @ + bi € Z,[i]
with o? = (a* — 52) + 2abi = 1. By Lemma 1.2(1), ged(p,a® + b?) = 1. So ged(p,a) = 1
or ged(p,b) = 1. Therefore by p*|2ab, we derive that a = 0 or b = 0. If b = 0, then by
a? —b* =1 (mod p*), we have a®> = 1 (mod p*), which has exactly two solutions. If a = 0,
then by a? — > = 1 (mod p*), we have b2 = —1 (mod p*), which has exactly two solutions
when p =1 (mod 4), while no solutions when p = 3 (mod 4), as claimed.

We call a digraph semiregular if there exists a positive integer d such that the in-degree of

each vertex in this digraph is either d or 0. In Example 1.1, we see that I';(5) is semiregular.
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In fact, T';1(n) is semiregular for n > 1, by an argument similar to paper [8]. But I'y(n) is
not semiregular for some n > 1. For example, in I'y(5), indeg(0) = 1 while indeg(3 + i) = 2.

Theorem 2.7 (1) T'y(2%) is semiregular if and only if k = 1,2, 3, 4.

(2) Suppose p is a prime congruent to 1 modulo 4. Then I'y(p*) is not semiregular for
k>1.

(3) Suppose p is a prime congruent to 3 modulo 4. Then I'y(p*) is semiregular if and
only if £ =1,2.

Proof (1) By inspection, we readily show that I'y(2¥) is semiregular for k = 1,2, 3, 4.
Now suppose k > 5. Let 8 = (14 1i)? = 2i. Then indeg(3) > 0. Let a = @ + bi such that
a? = 3. Then a? — b? = 0 (mod 2*) and 2ab = 2 (mod 2%). By 2ab = 2 (mod 2%), we have
ab =1 (mod 2*~1!) and hence a?b* = 1 (mod 2*~1). Moreover, since a? — b?> = 0 (mod 2%),
clearly a® = b? (mod 2*71). So b* = 1 (mod 2*71), which has exactly 4 solutions, since
k > 5. Hence, b = b; + m2"~!, where j € {1,2,3,4}, m € {0,1} and b = 1 (mod 2"~!) for
j=1,2,3,4. For a fixed odd integer b, the congruence equation ab =1 (mod 2¢7!) in a has
exactly one solution. Therefore a = ag + m2*~!, where m € {0,1} and agb = 1 (mod 2*71).
So we can conclude that indeg(3) = 16. However, by Theorem 2.5, indeg(0) = 2% > 16 for
k > 5. So I'y(2%) is not semiregular for k > 5.

(2) First, by Theorem 2.5, indeg(0) = 1 in I'(p). However, the in-degree of § =
(T+7yi)? € D(Z,]i]) is greater than 1 where p = 22 4+ y?, since (£3)? = 8. Hence I's(p) is not
semiregular. Second, let A = {d*(Z +7i)* : d € U(Z,2) or d = 0}. Then indeg(y) > 0 for
v € A. Moreover, since (+d)? = d?, one can derive that |A| = $|U(Z,2)| +1 = 1p* — Ip+ 1.
If To(p?) is semiregular, then for v € A, indeg(v) = indeg(0) = p? by Theorem 2.5. But one
can easily check that p?|A| > |D(Z,2[i])|, which is impossible. So I'z(p?) is not semiregular.

Now, suppose k > 3. Let 3 = p*° € D(Zyi]). Then indeg(3) > 0. Assume that
a = @ + bi such that > = 3. Then a? — b?> = p? (mod p*) and 2ab = 0 (mod p*). It
is clear that pla and p|b. Moreover, since a? — b*> = p? (mod p*), one can derive that

k=1). Hence

pllaorpl] b If pl a, then by 2ab = 0 (mod p*), we have b = 0 (mod p
b = p*~1b with b; = 0,1,--- ,p — 1. Furthermore, since a? — b?> = p? (mod p*), we derive
that a> = p? (mod p*). Therefore, a = p(mp*~2 £ 1) with m =0,1,--- ,p— 1.

On the other hand, if p || b, by an argument similar to above, we have a = pF~la;
with a; = 0,1,---,p—1 and b = p(mp*~2 £ 1) with m = 0,1,--- ,p — 1. Therefore,
indeg() = 2p* + 2p? = 4p?. However, by Theorem 2.5, the in-degree of 0 in I'(p*) is not
equal to 4p?. So T'y(p*) is not semiregular for k > 3.

(3) First, by Lemma 1.2 (4), Z,[i] is a field when p = 3 (mod 4). So I'y(p) is a 1-cycle
and hence is semiregular. Second, by Lemma 1.3 (2), |D(Z,2[i])] = p?> = indeg(0), which
implies that a? = 0 for a € D(Z,2]i]). So I's(p?) is semiregular.

Now, suppose k > 3. Let 3 = p* € D(Z,[i]). Then indeg(3) > 0. Assume that
« = @+ bi such that o? = 3. Similarly to (2) above, we have p|a and p|b, and furthermore,
pllaorp| b Ifp| b, then p?la. Let a = p'a;, while b = pb;, where t > 2 and p { b;. Then by
a? = 3, we derive a® —b? = p? (mod p*). Hence, 2t —2 > 2 and p**~2a? = b?+1 (mod pF~2),
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which contradicts to the fact that b2 +1 % 0 (mod p) for any integer b, since p = 3 (mod 4).
So we must have p || @ and hence, by an argument similar to (2) above, we can conclude
that indeg(3) = 2p? # indeg(0). Therefore, I'y(p*) is not semiregular for k > 3.

We have observed that « is a vertex of a t-cycle if and only if ¢ is the least positive

integer such that o = a. So it is easy to derive the following
Lemma 2.8 (1) a € U(Z,[i]) is a cycle vertex in I'y (n) if and only if 2 { o(«).
(2) a € U(Zy[i]) is a vertex of a t-cycle in I'; (n) if and only if ¢t = ord,(a)2.

Let a = @+bi € Z,[i], the norm N(a) of « is defined by 1 < N(a) < n and N(a) = a®+
b? (mod n). It is easy to check that N(a3) = N(a)N(8) (mod n). If a is a vertex of a t-cycle,
then a® = a. So N(a)? = N(a*) = N(a) (mod n), i.c., N(a)(N(a)2 1) = 0 (mod n).
Since ged(N (), N(a)? ~1) = 1, if p|N(a) with p' || n, clearly p'|N(a). So we have proved
the following lemma.

Lemma 2.9 Let n =[] pfj be the prime power decomposition of n. If a is a vertex

j=1

of a t-cycle, then pfj | N(a) whenever p; | N(a).

By Lemma 1.2 (3), Z,[i] is a local ring if n = p*, where p = 2 or p is a prime congruent
to 3 modulo 4, ¢ > 1. It is easy to show that I's(n) has a unique component containing the
1-cycle with 0 as its only vertex if Z,[i] is a local ring. For the cycle vertices in T'y(p*) with

p is a prime congruent to 1 modulo 4, we have the following theorem.

Theorem 2.10 Let p be a prime congruent to 1 modulo 4. Then a = @ + bi # 0 lies
on a t-cycle of T'y(p*) if and only if p*| N () and 2a lies on a t-cycle of T'; (p*).

Proof Suppose that « is a vertex of a t-cycle in T'y(p*), then p|N(a). By Lemma
2.9, p*|N(a). Moreover, since a # 0, it is easy to check that p t a and p { b. So by
a? = (@ — 52) + 2abi and —b> = a? (mod p*), we have a? = 2a(@ + bi). Therefore we
can conclude that o = %Zt_l(ﬁ + bi). Hence t is the least positive integer such that
(2a)% 1 =1 (mod p*). Thus due to Lemma 2.8, 2a lies on a t-cycle of T'y (p*).

Conversely, if p*|N () and 2a lies on a t-cycle of T'y(p*), then a2 = (@ — b°) + 2abi =
2a(a + bi). Hence o2 = %?_1(6 + bi). Furthermore, since t is the least positive integer
such that (2a)2 ~! =1 (mod p*), we can claim that ¢ is the least positive integer such that

o?" = «, which implies that « is a vertex of a t-cycle in Ty (p").

For instance, 3 + i lies on a 1-cycle of I'y(5) (see Example 1.1), 2 x 3 = 1 (mod 5) and
1 lies on a 1-cycle of I'1(5). If n = 52, one can check that o = 8 + 6i lies on a 4-cycle of
I'y(5%), i.e., the cycle 8 + 6i—3 + 21i—18 + i— 23 + 11i—8 + 6i. While 16 lies on a 4-cycle
of I'1(5%), i.e., the cycle 16—6—11—21—16.

Finally, we investigate the height of an arbitrary vertex of I'y(p*) for any prime p. We
say a vertex a in I'(n) is of height m if m is the least nonnegative integer such that a?” is
a vertex of a cycle, and we denote h, = m. Clearly, h, = 0 if and only if « is a vertex of a

cycle.
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Theorem 2.11 Suppose o = @ + bi € D(Zy«|i]), k > 1. Then the height h, of « is

[log, %1, 2° |a, 2V || b, z #y, A=min{z,y} >1
h, =
[log, 5241, 2 [la, 22 || b, A= 0

Proof Suppose that 2% || a, 2¥ || b, A = min{z,y}. Then a = 2*3, where 3 = @y + b;i
with 2t ged(aq, by).

If 2 # y, then A > 1, and % € U(sz[ ) for j > 0. Hence o = (2))¥ 3% =0 if and
only if 22X > k, if and only if j > log, £. So ha = [log, £7.

Ifz=y=X\2>0,then a =2*f w1th both a; and b, are odd. Thus 3 € D(Zyx[i]). Let
B2 = 2y where v = 1(a;® — b ) + @1b1i. Then clearly *y € U(Zyx[i]) since 4|a? — b3. Hence,
a? = (2N Y = 22”‘(27)?71 — 92/ 27" 1721 . So o? =0 if and only if 27\ + 2771 > k, if
and only if j > log, 52 2A+1 So ho = [log, 52 2/\“

Theorem 2.12 Suppose a = @+ bi € D(Zpk [i]), where p is a prime congruent to 3
modulo 4, k > 1. Then the height h, of a is h, = [log, £], where p” || a, p¥ || b and
A =min{z,y} > 1

Proof Since p = 3 (mod 4), a € D(Z,+]i]) if and only if p|a and p|b. Let p® || a, p¥ || b
and A = min{x,y} > 1. Then a = p*B, where 3 = @; + bii and p { ged(a;,b;). Hence
B € U(Zuli]). Soa® = (p")? 3% =0 if and only if 27X > k, if and only if j > log, £. So
ho = [log, §7.

Theorem 2.13 Suppose a = @ + bi € D(Z,[i]), where p is a prime congruent to 1
modulo 4, k£ > 1. Then the height A, of « is

[log, 51, p" | a p || b, k=min{z,y} >1
ha = 7, pta,pthb, and j is the least nonnegative integer

such that both p* | (N(a))?’ and 21 o(2Re(a?’)),

where Re(y) = ¢ if vy = ¢ + di.

Proof Since p =1 (mod 4), « =@ + bi € D(Z,«[i]) if and only if p|a? + b%.

First, suppose p|ged(a, b). Let p® || a, p¥ || b, where x > 1 and y > 1. Let A = min{z,y}.
Then o = p*3, where 3 = @y + boi with p { ged(ao,bo). Hence, a* = 0 for some j > 1.
Now, suppose that a? = p?*(@; + b;i), where a; = @g> — Ez and by = 2agby. Then, clearly
p 1 ged(aq, by) since p t ged(ag, by). So we can conclude that o = p**a; + b;i) with
p t ged(aj,b;). Therefore o = 0 if and only if 27X > k, if and only if j > log, £, So
ho = [log, £7.

Second, suppose pla2 + b2 but p { ged(a,b). Then o # 0 for any j > 0. It is easy to
show that if a? = ¢+ di, then p f ged(e, d). Moreover, by Theorem 2.10 and Lemma 2.8,
o? lies on a t-cycle of Ty(pF) if and only if p*|N(a)? and 2¢ lies on a t-cycle of Fl(pk) if
and only if j is the least nonnegative integer such that both p*|N(« )2j and ord, ;2 = t, if
and only if j is the least nonnegative integer such that both p*|N(a)? and 24 ( ) Hence
the result follows.
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