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Abstract: In this paper, we investigate some properties of the square mapping graphs Γ(n)

of Zn[i], the ring of Gaussian integers modulo n. Using the method of number theory, graph

theory and group theory, we obtain the in-degree of 0 and 1. Moreover, we give the complete

characterizations in terms of n in which Γ2(n) is semiregular, where Γ2(n) is induced by all the

zero-divisors of Zn[i]. The formulas on the heights of vertices in Γ(n) are also obtained. This paper

extends results concerning the square mapping graphs of Zn given by Somer.
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1 Introduction

Finding the relationship between the algebraic structure of rings using properties of
graphs associated to them became an interesting topic in the last years, for example, see
[1–3]. In this paper, let Zn = {0, 1, · · · , n− 1} be the ring of integers modulo n, and
Zn[i] = {a + bi | a, b ∈ Zn} be the ring of Gaussian integers modulo n. We investigate some
properties of the square mapping graphs Γ(n), whose vertex set is all the elements of Zn[i],
and for which there is a directed edge from α ∈ Zn[i] to β ∈ Zn[i] if and only if α2 = β.
In [1, 4, 5], some properties of the square mapping graphs of Zn were investigated, and the
cubic mapping graphs of Zn[i] were studied in [2].

Let R be a commutative ring, U(R) denotes the unit group of R, D(R) the zero-divisor
set of R. For α ∈ U(R), o(α) denotes the multiplicative order of α in R. If R = Zn, then
we write ordnα instead of o(α). We specify two particular subdigraphs Γ1(n) and Γ2(n) of
Γ(n), i.e., Γ1(n) is induced by all the vertices of U(Zn[i]), and Γ2(n) is induced by all the
vertices of D(Zn[i]).

In Γ(n), if α1, · · · , αt are pairwise distinct vertices and α2
1 = α2, · · · , α2

t−1 = αt, α2
t = α1,

then the elements α1, α2, · · · , αt constitute a t-cycle. It is obvious that α is a vertex of a
t-cycle if and only if t is the least positive integer such that α2t

= α. For α ∈ Zn[i], the
in-degree indeg(α) of α, denotes the number of directed edges coming into α.
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Example 1.1 The square mapping graph of Z5[i] is as follows.
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The square mapping graph of Z5[i]

Lemma 1.2 (see [6]) Let n > 1.

(1) The element a + bi is a unit of Zn[i] if and only if a2 + b
2

is a unit of Zn.

(2) If n =
s∏

j=1

p
kj

j is the prime power decomposition of n, then Zn[i] ∼= ⊕s
j=1Zp

kj
j

[i].

(3) Zn[i] is a local ring if and only if n = pt, where p = 2 or p is a prime congruent to 3
modulo 4, t > 1.

(4) Zn[i] is a field if and only if n is a prime congruent to 3 modulo 4.

Lemma 1.3 (see [7])

(1) |U(Z2t [i])| = 22t−1, |D(Z2t [i])| = 22t−1.

(2) Let q be a prime congruent to 3 modulo 4. Then |U(Zqt [i])| = q2t−q2t−2, |D(Zqt [i])| =
q2t−2.

(3) Let p be a prime congruent to 1 modulo 4. Then |U(Zpt [i])| = (pt − pt−1)2,
|D(Zpt [i])| = 2p2t−1 − p2t−2.

By Lemma 1.2 (2), we have the following lemma concerning the in-degree of an arbitrary
vertex in Γ(n).

Lemma 1.4 Suppose α = a+bi ∈ Zn[i], and n =
s∏

j=1

p
kj

j is the prime power decomposi-

tion of n. Then indeg(α) = indeg(α1)×· · ·×indeg(αs), where αj = (a mod p
kj

j )+(b mod p
kj

j )i
and indeg(αj) is the in-degree of αj in Γ(pkj

j ), j = 1, · · · , s.

2 In-Degree, Semiregularity, Height

By Lemma 1.4, in order to obtain the in-degree of a vertex in Γ(n), it suffices to consider
the cases of n being a power of a prime.

Theorem 2.5 (1) Let n = 2k, k > 1. Then indeg(0) = 2k.
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(2) Let n = pk, where p is an odd prime, k > 1. Then indeg(0) = pk if k is even, while
indeg(0) = pk−1 if k is odd.

Proof (1) Let n = 2k. By inspection, we have indeg(0) = 2k for k = 1, 2. Now suppose
k > 3. Assume that α = a + bi ∈ Z2k [i] with α2 = 0. Clearly 2|a and 2|b. Let a = 2ua1,
b = 2vb1, where u, v are positive integers, both a1 and b1 are odd. Set λ = min{u, v}. Then
α = 2λβ, where β = 2u−λa1 + 2v−λb1i.

Suppose k is even. Clearly α2 = 0 when λ > k
2
, and α2 6= 0 when λ 6 k

2
− 1. Hence,

α2 = 0 if and only if α = 2k/2 a0 + 2k/2 b0i with a0, b0 ∈ {0, 1, 2, · · · , 2k/2 − 1}. Thus
indeg(0) = 2k/2 × 2k/2 = 2k.

Suppose k is odd. First, if λ > k+1
2

, then clearly α2 = 0. Second, if λ = k−1
2

, then β ∈
U(Z2k [i]) when u 6= v. Hence, α2 = 22λβ2 6= 0. Otherwise, α2 = 22u+1(a1

2−b1
2

2
+ a1b1i) = 0

when u = v = λ. Third, if λ 6 k−3
2

, then clearly α2 6= 0. Therefore, in the case of k odd,
α2 = 0 if and only if α = 2(k+1)/2 a0 + 2(k+1)/2 b0i with a0, b0 ∈ {0, 1, 2, · · · , 2(k−1)/2 − 1},
or α = 2(k−1)/2 a0 + 2(k−1)/2 b0i with a0, b0 ∈ {1, 3, 5, · · · , 2(k+1)/2 − 1}. Thus indeg(0) =
2(k−1)/2 × 2(k−1)/2 + 2(k−1)/2 × 2(k−1)/2 = 2k.

(2) Let n = pk, where p is an odd prime, k > 1. Suppose k is even, then by an
argument similar to (1) above, α2 = 0 if and only if α = pk/2 a0 + pk/2 b0i with a0, b0 ∈
{0, 1, 2, · · · , pk/2 − 1}. Thus indeg(0) = pk/2 × pk/2 = pk.

Suppose k is odd. If λ > k+1
2

, then clearly α2 = 0. If λ 6 k−1
2

, then clearly α2 6= 0.
Therefore, in the case of k odd, α2 = 0 if and only if α = p(k+1)/2 a0 + p(k+1)/2 b0i with
a0, b0 ∈ {0, 1, 2, · · · , p(k−1)/2 − 1}. Hence, indeg(0) = p(k−1)/2 × p(k−1)/2 = pk.

Theorem 2.6 (1) Let n = 2k, k > 1. Then indeg(1) = 2k for k = 1, 2, while indeg(1) =
8 for k > 3.

(2) Let n = pk, where p is an odd prime, k > 1. Then indeg(1) = 2 if p ≡ 3 (mod 4),
while indeg(1) = 4 if p ≡ 1 (mod 4).

Proof (1) Let n = 2k. By inspection, we have indeg(1) = 2k for k = 1, 2. Now suppose
k > 3. Assume that α = a + bi ∈ Z2k [i] with α2 = (a2 − b

2
) + 2abi = 1. Clearly the parity

of a and b is different. If a is even while b = 2t + 1 is odd, then 2k|2ab if and only if a = 0
or 2k−1. However, a2 − b2 − 1 ≡ −4t2 − 4t − 2 6≡ 0 (mod 2k), which contradicts to the fact
that α2 = 1. So we must have a is odd and b is even. Then 2k|2ab if and only if b = 0 or
2k−1. Hence a2 − b2 ≡ 1 (mod 2k) if and only if a2 ≡ 1 (mod 2k). The number of solutions
of a2 ≡ 1 (mod 2k) is 4 for k > 3. So we can conclude that indeg(1) = 8 for k > 3.

(2) Let n = pk, where p is an odd prime, k > 1. Assume that α = a + bi ∈ Zpk [i]
with α2 = (a2 − b

2
) + 2abi = 1. By Lemma 1.2(1), gcd(p, a2 + b2) = 1. So gcd(p, a) = 1

or gcd(p, b) = 1. Therefore by pk|2ab, we derive that a = 0 or b = 0. If b = 0, then by
a2 − b2 ≡ 1 (mod pk), we have a2 ≡ 1 (mod pk), which has exactly two solutions. If a = 0,
then by a2 − b2 ≡ 1 (mod pk), we have b2 ≡ −1 (mod pk), which has exactly two solutions
when p ≡ 1 (mod 4), while no solutions when p ≡ 3 (mod 4), as claimed.

We call a digraph semiregular if there exists a positive integer d such that the in-degree of
each vertex in this digraph is either d or 0. In Example 1.1, we see that Γ1(5) is semiregular.
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In fact, Γ1(n) is semiregular for n > 1, by an argument similar to paper [8]. But Γ2(n) is
not semiregular for some n > 1. For example, in Γ2(5), indeg(0) = 1 while indeg(3 + i) = 2.

Theorem 2.7 (1) Γ2(2k) is semiregular if and only if k = 1, 2, 3, 4.

(2) Suppose p is a prime congruent to 1 modulo 4. Then Γ2(pk) is not semiregular for
k > 1.

(3) Suppose p is a prime congruent to 3 modulo 4. Then Γ2(pk) is semiregular if and
only if k = 1, 2.

Proof (1) By inspection, we readily show that Γ2(2k) is semiregular for k = 1, 2, 3, 4.
Now suppose k > 5. Let β = (1 + i)2 = 2i. Then indeg(β) > 0. Let α = a + bi such that
α2 = β. Then a2 − b2 ≡ 0 (mod 2k) and 2ab ≡ 2 (mod 2k). By 2ab ≡ 2 (mod 2k), we have
ab ≡ 1 (mod 2k−1) and hence a2b2 ≡ 1 (mod 2k−1). Moreover, since a2 − b2 ≡ 0 (mod 2k),
clearly a2 ≡ b2 (mod 2k−1). So b4 ≡ 1 (mod 2k−1), which has exactly 4 solutions, since
k > 5. Hence, b = bj + m2k−1, where j ∈ {1, 2, 3, 4}, m ∈ {0, 1} and b4

j ≡ 1 (mod 2k−1) for
j = 1, 2, 3, 4. For a fixed odd integer b, the congruence equation ab ≡ 1 (mod 2k−1) in a has
exactly one solution. Therefore a = a0 + m2k−1, where m ∈ {0, 1} and a0b ≡ 1 (mod 2k−1).
So we can conclude that indeg(β) = 16. However, by Theorem 2.5, indeg(0) = 2k > 16 for
k > 5. So Γ2(2k) is not semiregular for k > 5.

(2) First, by Theorem 2.5, indeg(0) = 1 in Γ(p). However, the in-degree of β =
(x+yi)2 ∈ D(Zp[i]) is greater than 1 where p = x2 +y2, since (±β)2 = β. Hence Γ2(p) is not
semiregular. Second, let A = {d2(x + yi)2 : d ∈ U(Zp2) or d = 0}. Then indeg(γ) > 0 for
γ ∈ A. Moreover, since (±d)2 = d2, one can derive that |A| = 1

2
|U(Zp2)|+ 1 = 1

2
p2 − 1

2
p + 1.

If Γ2(p2) is semiregular, then for γ ∈ A, indeg(γ) = indeg(0) = p2 by Theorem 2.5. But one
can easily check that p2|A| > |D(Zp2 [i])|, which is impossible. So Γ2(p2) is not semiregular.

Now, suppose k > 3. Let β = p2 ∈ D(Zpk [i]). Then indeg(β) > 0. Assume that
α = a + bi such that α2 = β. Then a2 − b2 ≡ p2 (mod pk) and 2ab ≡ 0 (mod pk). It
is clear that p|a and p|b. Moreover, since a2 − b2 ≡ p2 (mod pk), one can derive that
p ‖ a or p ‖ b. If p ‖ a, then by 2ab ≡ 0 (mod pk), we have b ≡ 0 (mod pk−1). Hence
b = pk−1b1 with b1 = 0, 1, · · · , p − 1. Furthermore, since a2 − b2 ≡ p2 (mod pk), we derive
that a2 ≡ p2 (mod pk). Therefore, a = p(mpk−2 ± 1) with m = 0, 1, · · · , p− 1.

On the other hand, if p ‖ b, by an argument similar to above, we have a = pk−1a1

with a1 = 0, 1, · · · , p − 1 and b = p(mpk−2 ± 1) with m = 0, 1, · · · , p − 1. Therefore,
indeg(β) = 2p2 + 2p2 = 4p2. However, by Theorem 2.5, the in-degree of 0 in Γ(pk) is not
equal to 4p2. So Γ2(pk) is not semiregular for k > 3.

(3) First, by Lemma 1.2 (4), Zp[i] is a field when p ≡ 3 (mod 4). So Γ2(p) is a 1-cycle
and hence is semiregular. Second, by Lemma 1.3 (2), |D(Zp2 [i])| = p2 = indeg(0), which
implies that α2 = 0 for α ∈ D(Zp2 [i]). So Γ2(p2) is semiregular.

Now, suppose k > 3. Let β = p2 ∈ D(Zpk [i]). Then indeg(β) > 0. Assume that
α = a + bi such that α2 = β. Similarly to (2) above, we have p|a and p|b, and furthermore,
p ‖ a or p ‖ b. If p ‖ b, then p2|a. Let a = pta1, while b = pb1, where t > 2 and p - b1. Then by
α2 = β, we derive a2− b2 ≡ p2 (mod pk). Hence, 2t−2 > 2 and p2t−2a2

1 ≡ b2
1 +1 (mod pk−2),
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which contradicts to the fact that b2
1 +1 6≡ 0 (mod p) for any integer b1, since p ≡ 3 (mod 4).

So we must have p ‖ a and hence, by an argument similar to (2) above, we can conclude
that indeg(β) = 2p2 6= indeg(0). Therefore, Γ2(pk) is not semiregular for k > 3.

We have observed that α is a vertex of a t-cycle if and only if t is the least positive
integer such that α2t

= α. So it is easy to derive the following

Lemma 2.8 (1) α ∈ U(Zn[i]) is a cycle vertex in Γ1(n) if and only if 2 - o(α).

(2) α ∈ U(Zn[i]) is a vertex of a t-cycle in Γ1(n) if and only if t = ordo(α)2.

Let α = a+bi ∈ Zn[i], the norm N(α) of α is defined by 1 6 N(α) 6 n and N(α) ≡ a2+
b2 (mod n). It is easy to check that N(αβ) ≡ N(α)N(β) (mod n). If α is a vertex of a t-cycle,
then α2t

= α. So N(α)2
t ≡ N(α2t

) ≡ N(α) (mod n), i.e., N(α)(N(α)2
t−1) ≡ 0 (mod n).

Since gcd(N(α), N(α)2
t−1) = 1, if p|N(α) with pt ‖ n, clearly pt|N(α). So we have proved

the following lemma.

Lemma 2.9 Let n =
s∏

j=1

p
kj

j be the prime power decomposition of n. If α is a vertex

of a t-cycle, then p
kj

j | N(α) whenever pj | N(α).

By Lemma 1.2 (3), Zn[i] is a local ring if n = pt, where p = 2 or p is a prime congruent
to 3 modulo 4, t > 1. It is easy to show that Γ2(n) has a unique component containing the
1-cycle with 0 as its only vertex if Zn[i] is a local ring. For the cycle vertices in Γ2(pk) with
p is a prime congruent to 1 modulo 4, we have the following theorem.

Theorem 2.10 Let p be a prime congruent to 1 modulo 4. Then α = a + bi 6= 0 lies
on a t-cycle of Γ2(pk) if and only if pk|N(α) and 2a lies on a t-cycle of Γ1(pk).

Proof Suppose that α is a vertex of a t-cycle in Γ2(pk), then p|N(α). By Lemma
2.9, pk|N(α). Moreover, since α 6= 0, it is easy to check that p - a and p - b. So by
α2 = (a2 − b

2
) + 2abi and −b2 ≡ a2 (mod pk), we have α2 = 2a(a + bi). Therefore we

can conclude that α2t

= 2a
2t−1

(a + bi). Hence t is the least positive integer such that
(2a)2

t−1 ≡ 1 (mod pk). Thus due to Lemma 2.8, 2a lies on a t-cycle of Γ1(pk).

Conversely, if pk|N(α) and 2a lies on a t-cycle of Γ1(pk), then α2 = (a2 − b
2
) + 2abi =

2a(a + bi). Hence α2t

= 2a
2t−1

(a + bi). Furthermore, since t is the least positive integer
such that (2a)2

t−1 ≡ 1 (mod pk), we can claim that t is the least positive integer such that
α2t

= α, which implies that α is a vertex of a t-cycle in Γ2(pk).

For instance, 3 + i lies on a 1-cycle of Γ2(5) (see Example 1.1), 2× 3 ≡ 1 (mod 5) and
1 lies on a 1-cycle of Γ1(5). If n = 52, one can check that α = 8 + 6i lies on a 4-cycle of
Γ2(52), i.e., the cycle 8 + 6i→3 + 21i→18 + i→ 23 + 11i→8 + 6i. While 16 lies on a 4-cycle
of Γ1(52), i.e., the cycle 16→6→11→21→16.

Finally, we investigate the height of an arbitrary vertex of Γ2(pk) for any prime p. We
say a vertex α in Γ(n) is of height m if m is the least nonnegative integer such that α2m

is
a vertex of a cycle, and we denote hα = m. Clearly, hα = 0 if and only if α is a vertex of a
cycle.
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Theorem 2.11 Suppose α = a + bi ∈ D(Z2k [i]), k > 1. Then the height hα of α is

hα =

{ dlog
2

k
λ
e, 2x ‖ a, 2y ‖ b, x 6= y, λ = min{x, y} > 1,

dlog
2

2k
2λ+1

e, 2λ ‖ a, 2λ ‖ b, λ > 0.

Proof Suppose that 2x ‖ a, 2y ‖ b, λ = min{x, y}. Then α = 2λβ, where β = a1 + b1i
with 2 - gcd(a1, b1).

If x 6= y, then λ > 1, and β2j ∈ U(Z2k [i]) for j > 0. Hence α2j

= (2λ)2
j

β2j

= 0 if and
only if 2jλ > k, if and only if j > log

2

k
λ
. So hα = dlog

2

k
λ
e.

If x = y = λ > 0, then α = 2λβ with both a1 and b1 are odd. Thus β ∈ D(Z2k [i]). Let
β2 = 2γ where γ = 1

2
(a1

2 − b1
2
) + a1b1i. Then clearly γ ∈ U(Z2k [i]) since 4|a2

1 − b2
1. Hence,

α2j

= (2λ)2
j

β2j

= 22jλ(2γ)2
j−1

= 22jλ+2j−1
γ2j−1

. So α2j

= 0 if and only if 2jλ + 2j−1 > k, if
and only if j > log

2

2k
2λ+1

. So hα = dlog
2

2k
2λ+1

e.
Theorem 2.12 Suppose α = a + bi ∈ D(Zpk [i]), where p is a prime congruent to 3

modulo 4, k > 1. Then the height hα of α is hα = dlog
2

k
λ
e, where px ‖ a, py ‖ b and

λ = min{x, y} > 1.
Proof Since p ≡ 3 (mod 4), α ∈ D(Zpk [i]) if and only if p|a and p|b. Let px ‖ a, py ‖ b

and λ = min{x, y} > 1. Then α = pλβ, where β = a1 + b1i and p - gcd(a1, b1). Hence
β ∈ U(Zpk [i]). So α2j

= (pλ)2
j

β2j

= 0 if and only if 2jλ > k, if and only if j > log
2

k
λ
. So

hα = dlog
2

k
λ
e.

Theorem 2.13 Suppose α = a + bi ∈ D(Zpk [i]), where p is a prime congruent to 1
modulo 4, k > 1. Then the height hα of α is

hα =





dlog
2

k
λ
e, px ‖ a, py ‖ b, k = min{x, y} > 1,

j, p - a, p - b, and j is the least nonnegative integer
such that both pk | (N(α))2

j

and 2 - o(2Re(α2j

)),

where Re(γ) = c if γ = c + di.
Proof Since p ≡ 1 (mod 4), α = a + bi ∈ D(Zpk [i]) if and only if p|a2 + b2.
First, suppose p|gcd(a, b). Let px ‖ a, py ‖ b, where x > 1 and y > 1. Let λ = min{x, y}.

Then α = pλβ, where β = a0 + b0i with p - gcd(a0, b0). Hence, α2j

= 0 for some j > 1.
Now, suppose that α2 = p2λ(a1 + b1i), where a1 = a0

2 − b0
2

and b1 = 2a0b0. Then, clearly
p - gcd(a1, b1) since p - gcd(a0, b0). So we can conclude that α2j

= p2jλ(aj + bji) with
p - gcd(aj , bj). Therefore α2j

= 0 if and only if 2jλ > k, if and only if j > log
2

k
λ
. So

hα = dlog
2

k
λ
e.

Second, suppose p|a2 + b2 but p - gcd(a, b). Then α2j 6= 0 for any j > 0. It is easy to
show that if α2j

= c + di, then p - gcd(c, d). Moreover, by Theorem 2.10 and Lemma 2.8,
α2j

lies on a t-cycle of Γ2(pk) if and only if pk|N(α)2
j

and 2c lies on a t-cycle of Γ1(pk), if
and only if j is the least nonnegative integer such that both pk|N(α)2

j

and ordo(2c)2 = t, if
and only if j is the least nonnegative integer such that both pk|N(α)2

j

and 2 - o(2c). Hence
the result follows.
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[5] Somer L, Kř́ıžek M. On symmetric digraphs of the congruence xk ≡ y (mod n)[J]. Discrete. Math.,

2009, 309: 1999–2009.

[6] Su Huadong, Tang Gaohua. The prime spectrum and zero-divisors of Zn[i][J]. J. Guangxi Teach.

Edu. Univ., 2006, 23(4): 1–4.

[7] Tang Gaohua, Su Huadong, Yi Zhong. The structure of the unit group of Zn[i][J]. J. Guangxi Nor.

Univ., 2010, 28(2): 38–41.

[8] Sha Min. Digraphs from endomorphisms of finite cyclic groups [DB]. J. Combin. Math. Combin.

Comp., 2011.

Zn[i]的平方映射图

韦扬江,唐高华

(广西师范学院数学与统计学院, 广西南宁 530023)

摘要: 本文研究了模 n高斯整数环 Zn[i]的平方映射图 Γ(n). 利用数论、图论与群论等方法, 获得了

Γ(n)中顶点 0及 1的入度, 并研究了 Γ(n)的零因子子图的半正则性. 同时, 获得了 Γ(n)中顶点的高度公式.

推广了 Somer等人给出的模 n剩余类环平方映射图的相关结论.
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