THE SQUARE MAPPING GRAPHS OF THE RING $\mathbb{Z}_{n}[\mathbf{i}]$

WEI Yang－jiang，TANG Gao－hua
（School of Mathematical Sciences，Guangxi Teachers Education University，Nanning 530023，China）

Abstract

In this paper，we investigate some properties of the square mapping graphs $\Gamma(n)$ of $\mathbb{Z}_{n}[\mathbf{i}]$ ，the ring of Gaussian integers modulo n ．Using the method of number theory，graph theory and group theory，we obtain the in－degree of $\overline{0}$ and $\overline{1}$ ．Moreover，we give the complete characterizations in terms of n in which $\Gamma_{2}(n)$ is semiregular，where $\Gamma_{2}(n)$ is induced by all the zero－divisors of $\mathbb{Z}_{n}[\mathbf{i}]$ ．The formulas on the heights of vertices in $\Gamma(n)$ are also obtained．This paper extends results concerning the square mapping graphs of \mathbb{Z}_{n} given by Somer．

Keywords：Gaussian integers modulo n ；semiregularity；height
2010 MR Subject Classification：05C05；11A07；13F10
Document code：A Article ID：0255－7797（2016）04－0676－07

1 Introduction

Finding the relationship between the algebraic structure of rings using properties of graphs associated to them became an interesting topic in the last years，for example，see ［1－3］．In this paper，let $\mathbb{Z}_{n}=\{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}$ be the ring of integers modulo n ，and $\mathbb{Z}_{n}[\mathbf{i}]=\left\{\bar{a}+\bar{b} \mathbf{i} \mid \bar{a}, \bar{b} \in \mathbb{Z}_{n}\right\}$ be the ring of Gaussian integers modulo n ．We investigate some properties of the square mapping graphs $\Gamma(n)$ ，whose vertex set is all the elements of $\mathbb{Z}_{n}[\mathbf{i}]$ ， and for which there is a directed edge from $\alpha \in \mathbb{Z}_{n}[\mathbf{i}]$ to $\beta \in \mathbb{Z}_{n}[\mathbf{i}]$ if and only if $\alpha^{2}=\beta$ ． In $[1,4,5]$ ，some properties of the square mapping graphs of \mathbb{Z}_{n} were investigated，and the cubic mapping graphs of $\mathbb{Z}_{n}[\mathbf{i}]$ were studied in［2］．

Let R be a commutative ring， $\mathrm{U}(R)$ denotes the unit group of $R, \mathrm{D}(R)$ the zero－divisor set of R ．For $\alpha \in \mathrm{U}(R), o(\alpha)$ denotes the multiplicative order of α in R ．If $R=\mathbb{Z}_{n}$ ，then we write $\operatorname{ord}_{n} \alpha$ instead of $o(\alpha)$ ．We specify two particular subdigraphs $\Gamma_{1}(n)$ and $\Gamma_{2}(n)$ of $\Gamma(n)$ ，i．e．，$\Gamma_{1}(n)$ is induced by all the vertices of $\mathrm{U}\left(\mathbb{Z}_{n}[\mathbf{i}]\right)$ ，and $\Gamma_{2}(n)$ is induced by all the vertices of $\mathrm{D}\left(\mathbb{Z}_{n}[\mathbf{i}]\right)$ ．

In $\Gamma(n)$ ，if $\alpha_{1}, \cdots, \alpha_{t}$ are pairwise distinct vertices and $\alpha_{1}^{2}=\alpha_{2}, \cdots, \alpha_{t-1}^{2}=\alpha_{t}, \alpha_{t}^{2}=\alpha_{1}$, then the elements $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{t}$ constitute a t－cycle．It is obvious that α is a vertex of a t－cycle if and only if t is the least positive integer such that $\alpha^{2^{t}}=\alpha$ ．For $\alpha \in \mathbb{Z}_{n}[\mathbf{i}]$ ，the in－degree indeg (α) of α ，denotes the number of directed edges coming into α ．

[^0]Example 1.1 The square mapping graph of $\mathbb{Z}_{5}[\mathbf{i}]$ is as follows.
0

The square mapping graph of $\mathbb{Z}_{5}[\mathbf{i}]$

Lemma 1.2 (see [6]) Let $n>1$.
(1) The element $\bar{a}+\bar{b} \mathbf{i}$ is a unit of $\mathbb{Z}_{n}[\mathbf{i}]$ if and only if $\bar{a}^{2}+\bar{b}^{2}$ is a unit of \mathbb{Z}_{n}.
(2) If $n=\prod_{j=1}^{s} p_{j}^{k_{j}}$ is the prime power decomposition of n, then $\mathbb{Z}_{n}[\mathbf{i}] \cong \oplus_{j=1}^{s} \mathbb{Z}_{p_{j}^{k_{j}}}[\mathbf{i}]$.
(3) $\mathbb{Z}_{n}[\mathbf{i}]$ is a local ring if and only if $n=p^{t}$, where $p=2$ or p is a prime congruent to 3 modulo $4, t \geqslant 1$.
(4) $\mathbb{Z}_{n}[\mathbf{i}]$ is a field if and only if n is a prime congruent to 3 modulo 4 .

Lemma 1.3 (see [7])
(1) $\left|\mathrm{U}\left(\mathbb{Z}_{2^{t}}[\mathbf{i}]\right)\right|=2^{2 t-1},\left|\mathrm{D}\left(\mathbb{Z}_{2^{t}}[\mathbf{i}]\right)\right|=2^{2 t-1}$.
(2) Let q be a prime congruent to 3 modulo 4 . Then $\left|\mathrm{U}\left(\mathbb{Z}_{q^{t}}[\mathbf{i}]\right)\right|=q^{2 t}-q^{2 t-2},\left|\mathrm{D}\left(\mathbb{Z}_{q^{t}}[\mathbf{i}]\right)\right|=$ $q^{2 t-2}$.
(3) Let p be a prime congruent to 1 modulo 4. Then $\left|\mathrm{U}\left(\mathbb{Z}_{p^{t}}[\mathbf{i}]\right)\right|=\left(p^{t}-p^{t-1}\right)^{2}$, $\left|\mathrm{D}\left(\mathbb{Z}_{p^{t}}[\mathbf{i}]\right)\right|=2 p^{2 t-1}-p^{2 t-2}$.

By Lemma 1.2 (2), we have the following lemma concerning the in-degree of an arbitrary vertex in $\Gamma(n)$.

Lemma 1.4 Suppose $\alpha=\bar{a}+\bar{b} \mathbf{i} \in \mathbb{Z}_{n}[\mathbf{i}]$, and $n=\prod_{j=1}^{s} p_{j}^{k_{j}}$ is the prime power decomposition of n. Then indeg $(\alpha)=\operatorname{indeg}\left(\alpha_{1}\right) \times \cdots \times \operatorname{indeg}\left(\alpha_{s}\right)$, where $\alpha_{j}=\left(a \bmod p_{j}^{k_{j}}\right)+\left(b \bmod p_{j}^{k_{j}}\right) \mathbf{i}$ and indeg $\left(\alpha_{j}\right)$ is the in-degree of α_{j} in $\Gamma\left(p_{j}^{k_{j}}\right), j=1, \cdots, s$.

2 In-Degree, Semiregularity, Height

By Lemma 1.4, in order to obtain the in-degree of a vertex in $\Gamma(n)$, it suffices to consider the cases of n being a power of a prime.

Theorem 2.5 (1) Let $n=2^{k}, k \geqslant 1$. Then indeg $(\overline{0})=2^{k}$.
(2) Let $n=p^{k}$, where p is an odd prime, $k \geqslant 1$. Then indeg $(\overline{0})=p^{k}$ if k is even, while $\operatorname{indeg}(\overline{0})=p^{k-1}$ if k is odd.

Proof (1) Let $n=2^{k}$. By inspection, we have indeg $(\overline{0})=2^{k}$ for $k=1,2$. Now suppose $k \geqslant 3$. Assume that $\alpha=\bar{a}+\bar{b} \mathbf{i} \in \mathbb{Z}_{2^{k}}[\mathbf{i}]$ with $\alpha^{2}=\overline{0}$. Clearly $2 \mid a$ and $2 \mid b$. Let $a=2^{u} a_{1}$, $b=2^{v} b_{1}$, where u, v are positive integers, both a_{1} and b_{1} are odd. Set $\lambda=\min \{u, v\}$. Then $\alpha=2^{\lambda} \beta$, where $\beta=2^{u-\lambda} \overline{a_{1}}+2^{v-\lambda} \overline{b_{1}} \mathbf{i}$.

Suppose k is even. Clearly $\alpha^{2}=\overline{0}$ when $\lambda \geqslant \frac{k}{2}$, and $\alpha^{2} \neq \overline{0}$ when $\lambda \leqslant \frac{k}{2}-1$. Hence, $\alpha^{2}=\overline{0}$ if and only if $\alpha=2^{k / 2} \bar{a}_{0}+2^{k / 2} \bar{b}_{0} \mathbf{i}$ with $a_{0}, b_{0} \in\left\{0,1,2, \ldots, 2^{k / 2}-1\right\}$. Thus $\operatorname{indeg}(\overline{0})=2^{k / 2} \times 2^{k / 2}=2^{k}$.

Suppose k is odd. First, if $\lambda \geqslant \frac{k+1}{2}$, then clearly $\alpha^{2}=\overline{0}$. Second, if $\lambda=\frac{k-1}{2}$, then $\beta \in$ $\mathrm{U}\left(\mathbb{Z}_{2^{k}}[\mathbf{i}]\right)$ when $u \neq v$. Hence, $\alpha^{2}=2^{2 \lambda} \beta^{2} \neq \overline{0}$. Otherwise, $\alpha^{2}=2^{2 u+1}\left(\frac{{\overline{a_{1}}}^{2}-{\overline{b_{1}}}^{2}}{2}+\overline{a_{1}} \overline{b_{1}} \mathbf{i}\right)=\overline{0}$ when $u=v=\lambda$. Third, if $\lambda \leqslant \frac{k-3}{2}$, then clearly $\alpha^{2} \neq 0$. Therefore, in the case of k odd, $\alpha^{2}=\overline{0}$ if and only if $\alpha=2^{(k+1) / 2} \bar{a}_{0}+2^{(k+1) / 2} \bar{b}_{0} \mathbf{i}$ with $a_{0}, b_{0} \in\left\{0,1,2, \cdots, 2^{(k-1) / 2}-1\right\}$, or $\alpha=2^{(k-1) / 2} \bar{a}_{0}+2^{(k-1) / 2} \bar{b}_{0} \mathbf{i}$ with $a_{0}, b_{0} \in\left\{1,3,5, \cdots, 2^{(k+1) / 2}-1\right\}$. Thus indeg $(\overline{0})=$ $2^{(k-1) / 2} \times 2^{(k-1) / 2}+2^{(k-1) / 2} \times 2^{(k-1) / 2}=2^{k}$.
(2) Let $n=p^{k}$, where p is an odd prime, $k \geqslant 1$. Suppose k is even, then by an argument similar to (1) above, $\alpha^{2}=\overline{0}$ if and only if $\alpha=p^{k / 2} \bar{a}_{0}+p^{k / 2} \bar{b}_{0} \mathbf{i}$ with $a_{0}, b_{0} \in$ $\left\{0,1,2, \cdots, p^{k / 2}-1\right\}$. Thus indeg $(\overline{0})=p^{k / 2} \times p^{k / 2}=p^{k}$.

Suppose k is odd. If $\lambda \geqslant \frac{k+1}{2}$, then clearly $\alpha^{2}=\overline{0}$. If $\lambda \leqslant \frac{k-1}{2}$, then clearly $\alpha^{2} \neq \overline{0}$. Therefore, in the case of k odd, $\alpha^{2}=\overline{0}$ if and only if $\alpha=p^{(k+1) / 2} \bar{a}_{0}+p^{(k+1) / 2} \bar{b}_{0} \mathbf{i}$ with $a_{0}, b_{0} \in\left\{0,1,2, \cdots, p^{(k-1) / 2}-1\right\}$. Hence, $\operatorname{indeg}(\overline{0})=p^{(k-1) / 2} \times p^{(k-1) / 2}=p^{k}$.

Theorem 2.6 (1) Let $n=2^{k}, k \geqslant 1$. Then $\operatorname{indeg}(\overline{1})=2^{k}$ for $k=1,2$, while indeg $(\overline{1})=$ 8 for $k \geqslant 3$.
(2) Let $n=p^{k}$, where p is an odd prime, $k \geqslant 1$. Then $\operatorname{indeg}(\overline{1})=2$ if $p \equiv 3(\bmod 4)$, while $\operatorname{indeg}(\overline{1})=4$ if $p \equiv 1(\bmod 4)$.

Proof (1) Let $n=2^{k}$. By inspection, we have indeg $(\overline{1})=2^{k}$ for $k=1,2$. Now suppose $k \geqslant 3$. Assume that $\alpha=\bar{a}+\bar{b} \mathbf{i} \in \mathbb{Z}_{2^{k}}[\mathbf{i}]$ with $\alpha^{2}=\left(\bar{a}^{2}-\bar{b}^{2}\right)+2 \bar{a} \bar{b} \mathbf{i}=\overline{1}$. Clearly the parity of a and b is different. If a is even while $b=2 t+1$ is odd, then $2^{k} \mid 2 a b$ if and only if $a=0$ or 2^{k-1}. However, $a^{2}-b^{2}-1 \equiv-4 t^{2}-4 t-2 \not \equiv 0\left(\bmod 2^{k}\right)$, which contradicts to the fact that $\alpha^{2}=\overline{1}$. So we must have a is odd and b is even. Then $2^{k} \mid 2 a b$ if and only if $b=0$ or 2^{k-1}. Hence $a^{2}-b^{2} \equiv 1\left(\bmod 2^{k}\right)$ if and only if $a^{2} \equiv 1\left(\bmod 2^{k}\right)$. The number of solutions of $a^{2} \equiv 1\left(\bmod 2^{k}\right)$ is 4 for $k \geqslant 3$. So we can conclude that $\operatorname{indeg}(\overline{1})=8$ for $k \geqslant 3$.
(2) Let $n=p^{k}$, where p is an odd prime, $k \geqslant 1$. Assume that $\alpha=\bar{a}+\bar{b} \mathbf{i} \in \mathbb{Z}_{p^{k}}[\mathbf{i}]$ with $\alpha^{2}=\left(\bar{a}^{2}-\bar{b}^{2}\right)+2 \bar{a} \bar{b} \mathbf{i}=\overline{1}$. By Lemma $1.2(1), \operatorname{gcd}\left(p, a^{2}+b^{2}\right)=1$. So $\operatorname{gcd}(p, a)=1$ or $\operatorname{gcd}(p, b)=1$. Therefore by $p^{k} \mid 2 a b$, we derive that $a=0$ or $b=0$. If $b=0$, then by $a^{2}-b^{2} \equiv 1\left(\bmod p^{k}\right)$, we have $a^{2} \equiv 1\left(\bmod p^{k}\right)$, which has exactly two solutions. If $a=0$, then by $a^{2}-b^{2} \equiv 1\left(\bmod p^{k}\right)$, we have $b^{2} \equiv-1\left(\bmod p^{k}\right)$, which has exactly two solutions when $p \equiv 1(\bmod 4)$, while no solutions when $p \equiv 3(\bmod 4)$, as claimed.

We call a digraph semiregular if there exists a positive integer d such that the in-degree of each vertex in this digraph is either d or 0 . In Example 1.1, we see that $\Gamma_{1}(5)$ is semiregular.

In fact, $\Gamma_{1}(n)$ is semiregular for $n>1$, by an argument similar to paper [8]. But $\Gamma_{2}(n)$ is not semiregular for some $n>1$. For example, in $\Gamma_{2}(5)$, indeg $(\overline{0})=1$ while $\operatorname{indeg}(\overline{3}+\mathbf{i})=2$.

Theorem 2.7 (1) $\Gamma_{2}\left(2^{k}\right)$ is semiregular if and only if $k=1,2,3,4$.
(2) Suppose p is a prime congruent to 1 modulo 4. Then $\Gamma_{2}\left(p^{k}\right)$ is not semiregular for $k \geqslant 1$.
(3) Suppose p is a prime congruent to 3 modulo 4. Then $\Gamma_{2}\left(p^{k}\right)$ is semiregular if and only if $k=1,2$.

Proof (1) By inspection, we readily show that $\Gamma_{2}\left(2^{k}\right)$ is semiregular for $k=1,2,3,4$. Now suppose $k \geqslant 5$. Let $\beta=(\overline{1}+\mathbf{i})^{2}=\overline{2} \mathbf{i}$. Then indeg $(\beta)>0$. Let $\alpha=\bar{a}+\bar{b} \mathbf{i}$ such that $\alpha^{2}=\beta$. Then $a^{2}-b^{2} \equiv 0\left(\bmod 2^{k}\right)$ and $2 a b \equiv 2\left(\bmod 2^{k}\right)$. By $2 a b \equiv 2\left(\bmod 2^{k}\right)$, we have $a b \equiv 1\left(\bmod 2^{k-1}\right)$ and hence $a^{2} b^{2} \equiv 1\left(\bmod 2^{k-1}\right)$. Moreover, since $a^{2}-b^{2} \equiv 0\left(\bmod 2^{k}\right)$, clearly $a^{2} \equiv b^{2}\left(\bmod 2^{k-1}\right)$. So $b^{4} \equiv 1\left(\bmod 2^{k-1}\right)$, which has exactly 4 solutions, since $k \geqslant 5$. Hence, $b=b_{j}+m 2^{k-1}$, where $j \in\{1,2,3,4\}, m \in\{0,1\}$ and $b_{j}^{4} \equiv 1\left(\bmod 2^{k-1}\right)$ for $j=1,2,3,4$. For a fixed odd integer b, the congruence equation $a b \equiv 1\left(\bmod 2^{k-1}\right)$ in a has exactly one solution. Therefore $a=a_{0}+m 2^{k-1}$, where $m \in\{0,1\}$ and $a_{0} b \equiv 1\left(\bmod 2^{k-1}\right)$. So we can conclude that $\operatorname{indeg}(\beta)=16$. However, by Theorem 2.5, indeg $(\overline{0})=2^{k}>16$ for $k \geqslant 5$. So $\Gamma_{2}\left(2^{k}\right)$ is not semiregular for $k \geqslant 5$.
(2) First, by Theorem 2.5, indeg $(\overline{0})=1$ in $\Gamma(p)$. However, the in-degree of $\beta=$ $(\bar{x}+\bar{y} \mathbf{i})^{2} \in \mathrm{D}\left(\mathbb{Z}_{p}[\mathbf{i}]\right)$ is greater than 1 where $p=x^{2}+y^{2}$, since $(\pm \beta)^{2}=\beta$. Hence $\Gamma_{2}(p)$ is not semiregular. Second, let $A=\left\{d^{2}(\bar{x}+\bar{y} \mathbf{i})^{2}: d \in \mathrm{U}\left(\mathbb{Z}_{p^{2}}\right)\right.$ or $\left.d=0\right\}$. Then indeg $(\gamma)>0$ for $\gamma \in A$. Moreover, since $(\pm d)^{2}=d^{2}$, one can derive that $|A|=\frac{1}{2}\left|\mathrm{U}\left(\mathbb{Z}_{p^{2}}\right)\right|+1=\frac{1}{2} p^{2}-\frac{1}{2} p+1$. If $\Gamma_{2}\left(p^{2}\right)$ is semiregular, then for $\gamma \in A$, indeg $(\gamma)=\operatorname{indeg}(\overline{0})=p^{2}$ by Theorem 2.5. But one can easily check that $p^{2}|A|>\left|\mathrm{D}\left(\mathbb{Z}_{p^{2}}[\mathbf{i}]\right)\right|$, which is impossible. So $\Gamma_{2}\left(p^{2}\right)$ is not semiregular.

Now, suppose $k \geqslant 3$. Let $\beta=\bar{p}^{2} \in \mathrm{D}\left(\mathbb{Z}_{p^{k}}[\mathbf{i}]\right)$. Then $\operatorname{indeg}(\beta)>0$. Assume that $\alpha=\bar{a}+\bar{b} \mathbf{i}$ such that $\alpha^{2}=\beta$. Then $a^{2}-b^{2} \equiv p^{2}\left(\bmod p^{k}\right)$ and $2 a b \equiv 0\left(\bmod p^{k}\right)$. It is clear that $p \mid a$ and $p \mid b$. Moreover, since $a^{2}-b^{2} \equiv p^{2}\left(\bmod p^{k}\right)$, one can derive that $p \| a$ or $p \| b$. If $p \| a$, then by $2 a b \equiv 0\left(\bmod p^{k}\right)$, we have $b \equiv 0\left(\bmod p^{k-1}\right)$. Hence $b=p^{k-1} b_{1}$ with $b_{1}=0,1, \cdots, p-1$. Furthermore, since $a^{2}-b^{2} \equiv p^{2}\left(\bmod p^{k}\right)$, we derive that $a^{2} \equiv p^{2}\left(\bmod p^{k}\right)$. Therefore, $a=p\left(m p^{k-2} \pm 1\right)$ with $m=0,1, \cdots, p-1$.

On the other hand, if $p \| b$, by an argument similar to above, we have $a=p^{k-1} a_{1}$ with $a_{1}=0,1, \cdots, p-1$ and $b=p\left(m p^{k-2} \pm 1\right)$ with $m=0,1, \cdots, p-1$. Therefore, $\operatorname{indeg}(\beta)=2 p^{2}+2 p^{2}=4 p^{2}$. However, by Theorem 2.5, the in-degree of $\overline{0}$ in $\Gamma\left(p^{k}\right)$ is not equal to $4 p^{2}$. So $\Gamma_{2}\left(p^{k}\right)$ is not semiregular for $k \geqslant 3$.
(3) First, by Lemma $1.2(4), \mathbb{Z}_{p}[\mathbf{i}]$ is a field when $p \equiv 3(\bmod 4)$. So $\Gamma_{2}(p)$ is a 1-cycle and hence is semiregular. Second, by Lemma $1.3(2),\left|\mathrm{D}\left(\mathbb{Z}_{p^{2}}[\mathbf{i}]\right)\right|=p^{2}=\operatorname{indeg}(\overline{0})$, which implies that $\alpha^{2}=\overline{0}$ for $\alpha \in \mathrm{D}\left(\mathbb{Z}_{p^{2}}[\mathbf{i}]\right)$. So $\Gamma_{2}\left(p^{2}\right)$ is semiregular.

Now, suppose $k \geqslant 3$. Let $\beta=\bar{p}^{2} \in \mathrm{D}\left(\mathbb{Z}_{p^{k}}[\mathbf{i}]\right)$. Then $\operatorname{indeg}(\beta)>0$. Assume that $\alpha=\bar{a}+\bar{b} \mathbf{i}$ such that $\alpha^{2}=\beta$. Similarly to (2) above, we have $p \mid a$ and $p \mid b$, and furthermore, $p \| a$ or $p \| b$. If $p \| b$, then $p^{2} \mid a$. Let $a=p^{t} a_{1}$, while $b=p b_{1}$, where $t \geqslant 2$ and $p \nmid b_{1}$. Then by $\alpha^{2}=\beta$, we derive $a^{2}-b^{2} \equiv p^{2}\left(\bmod p^{k}\right)$. Hence, $2 t-2 \geqslant 2$ and $p^{2 t-2} a_{1}^{2} \equiv b_{1}^{2}+1\left(\bmod p^{k-2}\right)$,
which contradicts to the fact that $b_{1}^{2}+1 \not \equiv 0(\bmod p)$ for any integer b_{1}, since $p \equiv 3(\bmod 4)$. So we must have $p \| a$ and hence, by an argument similar to (2) above, we can conclude that $\operatorname{indeg}(\beta)=2 p^{2} \neq \operatorname{indeg}(\overline{0})$. Therefore, $\Gamma_{2}\left(p^{k}\right)$ is not semiregular for $k \geqslant 3$.

We have observed that α is a vertex of a t-cycle if and only if t is the least positive integer such that $\alpha^{2^{t}}=\alpha$. So it is easy to derive the following

Lemma 2.8 (1) $\alpha \in \mathrm{U}\left(\mathbb{Z}_{n}[\mathbf{i}]\right)$ is a cycle vertex in $\Gamma_{1}(n)$ if and only if $2 \nmid o(\alpha)$.
(2) $\alpha \in \mathrm{U}\left(\mathbb{Z}_{n}[\mathbf{i}]\right)$ is a vertex of a t-cycle in $\Gamma_{1}(n)$ if and only if $t=\operatorname{ord}_{o(\alpha)} 2$.

Let $\alpha=\bar{a}+\bar{b} \mathbf{i} \in \mathbb{Z}_{n}[\mathbf{i}]$, the norm $N(\alpha)$ of α is defined by $1 \leqslant N(\alpha) \leqslant n$ and $N(\alpha) \equiv a^{2}+$ $b^{2}(\bmod n)$. It is easy to check that $N(\alpha \beta) \equiv N(\alpha) N(\beta)(\bmod n)$. If α is a vertex of a t-cycle, then $\alpha^{2^{t}}=\alpha$. So $N(\alpha)^{2^{t}} \equiv N\left(\alpha^{2^{t}}\right) \equiv N(\alpha)(\bmod n)$, i.e., $N(\alpha)\left(N(\alpha)^{2^{t}-1}\right) \equiv 0(\bmod n)$. Since $\operatorname{gcd}\left(N(\alpha), N(\alpha)^{2^{t}-1}\right)=1$, if $p \mid N(\alpha)$ with $p^{t} \| n$, clearly $p^{t} \mid N(\alpha)$. So we have proved the following lemma.

Lemma 2.9 Let $n=\prod_{j=1}^{s} p_{j}^{k_{j}}$ be the prime power decomposition of n. If α is a vertex of a t-cycle, then $p_{j}^{k_{j}} \mid N(\alpha)$ whenever $p_{j} \mid N(\alpha)$.

By Lemma $1.2(3), \mathbb{Z}_{n}[\mathbf{i}]$ is a local ring if $n=p^{t}$, where $p=2$ or p is a prime congruent to 3 modulo $4, t \geqslant 1$. It is easy to show that $\Gamma_{2}(n)$ has a unique component containing the 1 -cycle with $\overline{0}$ as its only vertex if $\mathbb{Z}_{n}[\mathbf{i}]$ is a local ring. For the cycle vertices in $\Gamma_{2}\left(p^{k}\right)$ with p is a prime congruent to 1 modulo 4 , we have the following theorem.

Theorem 2.10 Let p be a prime congruent to 1 modulo 4. Then $\alpha=\bar{a}+\bar{b} \mathbf{i} \neq \overline{0}$ lies on a t-cycle of $\Gamma_{2}\left(p^{k}\right)$ if and only if $p^{k} \mid N(\alpha)$ and $\overline{2 a}$ lies on a t-cycle of $\Gamma_{1}\left(p^{k}\right)$.

Proof Suppose that α is a vertex of a t-cycle in $\Gamma_{2}\left(p^{k}\right)$, then $p \mid N(\alpha)$. By Lemma 2.9, $p^{k} \mid N(\alpha)$. Moreover, since $\alpha \neq \overline{0}$, it is easy to check that $p \nmid a$ and $p \nmid b$. So by $\alpha^{2}=\left(\bar{a}^{2}-\bar{b}^{2}\right)+2 \bar{a} \bar{b} \mathbf{i}$ and $-b^{2} \equiv a^{2}\left(\bmod p^{k}\right)$, we have $\alpha^{2}=\overline{2 a}(\bar{a}+\bar{b} \mathbf{i})$. Therefore we can conclude that $\alpha^{2^{t}}=\overline{2 a}^{2^{t}-1}(\bar{a}+\bar{b} \mathbf{i})$. Hence t is the least positive integer such that $(2 a)^{2^{t}-1} \equiv 1\left(\bmod p^{k}\right)$. Thus due to Lemma $2.8, \overline{2 a}$ lies on a t-cycle of $\Gamma_{1}\left(p^{k}\right)$.

Conversely, if $p^{k} \mid N(\alpha)$ and $\overline{2 a}$ lies on a t-cycle of $\Gamma_{1}\left(p^{k}\right)$, then $\alpha^{2}=\left(\bar{a}^{2}-\bar{b}^{2}\right)+2 \bar{a} \bar{b} \mathbf{i}=$ $\overline{2 a}(\bar{a}+\bar{b} \mathbf{i})$. Hence $\alpha^{2^{t}}=\overline{2 a}^{2^{t}-1}(\bar{a}+\bar{b} \mathbf{i})$. Furthermore, since t is the least positive integer such that $(2 a)^{2^{t}-1} \equiv 1\left(\bmod p^{k}\right)$, we can claim that t is the least positive integer such that $\alpha^{2^{t}}=\alpha$, which implies that α is a vertex of a t-cycle in $\Gamma_{2}\left(p^{k}\right)$.

For instance, $\overline{3}+\mathbf{i}$ lies on a 1-cycle of $\Gamma_{2}(5)($ see Example 1.1$), 2 \times 3 \equiv 1(\bmod 5)$ and $\overline{1}$ lies on a 1 -cycle of $\Gamma_{1}(5)$. If $n=5^{2}$, one can check that $\alpha=\overline{8}+\overline{6} \mathbf{i}$ lies on a 4 -cycle of $\Gamma_{2}\left(5^{2}\right)$, i.e., the cycle $\overline{8}+\overline{6} \mathbf{i} \rightarrow \overline{3}+\overline{21} \mathbf{i} \rightarrow \overline{18}+\mathbf{i} \rightarrow \overline{23}+\overline{11} \mathbf{i} \rightarrow \overline{8}+\overline{6} \mathbf{i}$. While $\overline{16}$ lies on a 4-cycle of $\Gamma_{1}\left(5^{2}\right)$, i.e., the cycle $\overline{16} \rightarrow \overline{6} \rightarrow \overline{11} \rightarrow \overline{21} \rightarrow \overline{16}$.

Finally, we investigate the height of an arbitrary vertex of $\Gamma_{2}\left(p^{k}\right)$ for any prime p. We say a vertex α in $\Gamma(n)$ is of height m if m is the least nonnegative integer such that $\alpha^{2^{m}}$ is a vertex of a cycle, and we denote $h_{\alpha}=m$. Clearly, $h_{\alpha}=0$ if and only if α is a vertex of a cycle.

Theorem 2.11 Suppose $\alpha=\bar{a}+\bar{b} \mathbf{i} \in \mathrm{D}\left(\mathbb{Z}_{2^{k}}[\mathbf{i}]\right), k \geqslant 1$. Then the height h_{α} of α is

$$
h_{\alpha}= \begin{cases}\left\lceil\log _{2} \frac{k}{\lambda}\right\rceil, & 2^{x}\left\|a, 2^{y}\right\| b, x \neq y, \lambda=\min \{x, y\} \geqslant 1 \\ \left\lceil\log _{2} \frac{2 k}{2 \lambda+1}\right\rceil, & 2^{\lambda}\left\|a, 2^{\lambda}\right\| b, \lambda \geqslant 0\end{cases}
$$

Proof Suppose that $2^{x}\left\|a, 2^{y}\right\| b, \lambda=\min \{x, y\}$. Then $\alpha=2^{\lambda} \beta$, where $\beta=\overline{a_{1}}+\overline{b_{1}} \mathbf{i}$ with $2 \nmid \operatorname{gcd}\left(a_{1}, b_{1}\right)$.

If $x \neq y$, then $\lambda \geqslant 1$, and $\beta^{2^{j}} \in \mathrm{U}\left(\mathbb{Z}_{2^{k}}[\mathbf{i}]\right)$ for $j \geqslant 0$. Hence $\alpha^{2^{j}}=\left(2^{\lambda}\right)^{2^{j}} \beta^{2^{j}}=\overline{0}$ if and only if $2^{j} \lambda \geqslant k$, if and only if $j \geqslant \log _{2} \frac{k}{\lambda}$. So $h_{\alpha}=\left\lceil\log _{2} \frac{k}{\lambda}\right\rceil$.

If $x=y=\lambda \geqslant 0$, then $\alpha=2^{\lambda} \beta$ with both a_{1} and b_{1} are odd. Thus $\beta \in \mathrm{D}\left(\mathbb{Z}_{2^{k}}[\mathbf{i}]\right)$. Let $\beta^{2}=2 \gamma$ where $\gamma=\frac{1}{2}\left({\overline{a_{1}}}^{2}-{\overline{b_{1}}}^{2}\right)+\overline{a_{1}} \overline{b_{1}} \mathbf{i}$. Then clearly $\gamma \in \mathrm{U}\left(\mathbb{Z}_{2^{k}}[\mathbf{i}]\right)$ since $4 \mid a_{1}^{2}-b_{1}^{2}$. Hence, $\alpha^{2^{j}}=\left(2^{\lambda}\right)^{2^{j}} \beta^{2^{j}}=2^{2^{j} \lambda}(2 \gamma)^{2^{j-1}}=2^{2^{j} \lambda+2^{j-1}} \gamma^{2^{j-1}}$. So $\alpha^{2^{j}}=\overline{0}$ if and only if $2^{j} \lambda+2^{j-1} \geqslant k$, if and only if $j \geqslant \log _{2} \frac{2 k}{2 \lambda+1}$. So $h_{\alpha}=\left\lceil\log _{2} \frac{2 k}{2 \lambda+1}\right\rceil$.

Theorem 2.12 Suppose $\alpha=\bar{a}+\bar{b} \mathbf{i} \in \mathrm{D}\left(\mathbb{Z}_{p^{k}}[\mathbf{i}]\right)$, where p is a prime congruent to 3 modulo $4, k \geqslant 1$. Then the height h_{α} of α is $h_{\alpha}=\left\lceil\log _{2} \frac{k}{\lambda}\right\rceil$, where $p^{x}\left\|a, p^{y}\right\| b$ and $\lambda=\min \{x, y\} \geqslant 1$.

Proof Since $p \equiv 3(\bmod 4), \alpha \in \mathrm{D}\left(\mathbb{Z}_{p^{k}}[\mathbf{i}]\right)$ if and only if $p \mid a$ and $p \mid b$. Let $p^{x}\left\|a, p^{y}\right\| b$ and $\lambda=\min \{x, y\} \geqslant 1$. Then $\alpha=p^{\lambda} \beta$, where $\beta=\bar{a}_{1}+\bar{b}_{1} \mathbf{i}$ and $p \nmid \operatorname{gcd}\left(a_{1}, b_{1}\right)$. Hence $\beta \in \mathrm{U}\left(\mathbb{Z}_{p^{k}}[\mathbf{i}]\right)$. So $\alpha^{2^{j}}=\left(p^{\lambda}\right)^{2^{j}} \beta^{2^{j}}=\overline{0}$ if and only if $2^{j} \lambda \geqslant k$, if and only if $j \geqslant \log _{2} \frac{k}{\lambda}$. So $h_{\alpha}=\left\lceil\log _{2} \frac{k}{\lambda}\right\rceil$.

Theorem 2.13 Suppose $\alpha=\bar{a}+\bar{b} \mathbf{i} \in \mathrm{D}\left(\mathbb{Z}_{p^{k}}[\mathbf{i}]\right)$, where p is a prime congruent to 1 modulo $4, k \geqslant 1$. Then the height h_{α} of α is

$$
h_{\alpha}= \begin{cases}\left\lceil\log _{2} \frac{k}{\lambda}\right\rceil, & p^{x}\left\|a, p^{y}\right\| b, k=\min \{x, y\} \geqslant 1 \\ j, & p \nmid a, p \nmid b, \text { and } j \text { is the least nonnegative integer } \\ & \text { such that both } p^{k} \mid(N(\alpha))^{2^{j}} \text { and } 2 \nmid o\left(2 \operatorname{Re}\left(\alpha^{2^{j}}\right)\right),\end{cases}
$$

where $\operatorname{Re}(\gamma)=\bar{c}$ if $\gamma=\bar{c}+\bar{d} \mathbf{i}$.
Proof Since $p \equiv 1(\bmod 4), \alpha=\bar{a}+\bar{b} \mathbf{i} \in \mathrm{D}\left(\mathbb{Z}_{p^{k}}[\mathbf{i}]\right)$ if and only if $p \mid a^{2}+b^{2}$.
First, suppose $p \mid \operatorname{gcd}(a, b)$. Let $p^{x}\left\|a, p^{y}\right\| b$, where $x \geqslant 1$ and $y \geqslant 1$. Let $\lambda=\min \{x, y\}$. Then $\alpha=p^{\lambda} \beta$, where $\beta=\bar{a}_{0}+\bar{b}_{0} \mathbf{i}$ with $p \nmid \operatorname{gcd}\left(a_{0}, b_{0}\right)$. Hence, $\alpha^{2^{j}}=\overline{0}$ for some $j \geqslant 1$. Now, suppose that $\alpha^{2}=p^{2 \lambda}\left(\bar{a}_{1}+\bar{b}_{1} \mathbf{i}\right)$, where ${\overline{a_{1}}}^{\prime}{\overline{a_{0}}}^{2}-{\overline{b_{0}}}^{2}$ and $\overline{b_{1}}=2 \overline{a_{0}} \overline{b_{0}}$. Then, clearly $p \nmid \operatorname{gcd}\left(a_{1}, b_{1}\right)$ since $p \nmid \operatorname{gcd}\left(a_{0}, b_{0}\right)$. So we can conclude that $\alpha^{2^{j}}=p^{2^{j} \lambda}\left(\bar{a}_{j}+\bar{b}_{j} \mathbf{i}\right)$ with $p \nmid \operatorname{gcd}\left(a_{j}, b_{j}\right)$. Therefore $\alpha^{2^{j}}=\overline{0}$ if and only if $2^{j} \lambda \geqslant k$, if and only if $j \geqslant \log _{2} \frac{k}{\lambda}$. So $h_{\alpha}=\left\lceil\log _{2} \frac{k}{\lambda}\right\rceil$.

Second, suppose $p \mid a^{2}+b^{2}$ but $p \nmid \operatorname{gcd}(a, b)$. Then $\alpha^{2^{j}} \neq \overline{0}$ for any $j \geqslant 0$. It is easy to show that if $\alpha^{2^{j}}=\bar{c}+\bar{d} \mathbf{i}$, then $p \nmid \operatorname{gcd}(c, d)$. Moreover, by Theorem 2.10 and Lemma 2.8, $\alpha^{2^{j}}$ lies on a t-cycle of $\Gamma_{2}\left(p^{k}\right)$ if and only if $p^{k} \mid N(\alpha)^{2^{j}}$ and $\overline{2 c}$ lies on a t-cycle of $\Gamma_{1}\left(p^{k}\right)$, if and only if j is the least nonnegative integer such that both $p^{k} \mid N(\alpha)^{2^{j}}$ and $\operatorname{ord}_{o(\overline{2 c})} 2=t$, if and only if j is the least nonnegative integer such that both $p^{k} \mid N(\alpha)^{2^{j}}$ and $2 \nmid o(\overline{2 c})$. Hence the result follows.

References

［1］Somer L，Křížek M．On a connection of number theory with graph theory［J］．Czech．Math．J．，2004， 54（129）：465－485．
［2］Wei Yangjiang，Nan Jizhu，Tang Gaohua．The cubic mapping graph for the ring of Gaussian integers modulo $n[J]$ ．Czech．Math．J．，2011，61：1023－1036．
［3］Xu Chengjie，Yi Zhong，Zheng Ying．On the zero－divisor graphs of formal triangular matrix rigns［J］． J．Math．，2013，33（5）：891－901．
［4］Somer L，Křížek M．Structure of digraphs associated with quadratic congruences with composite moduli［J］．Discrete Math．，2006，36：2174－2185．
［5］Somer L，Křížek M．On symmetric digraphs of the congruence $x^{k} \equiv y(\bmod n)[J]$ ．Discrete．Math．， 2009，309：1999－2009．
［6］Su Huadong，Tang Gaohua．The prime spectrum and zero－divisors of $\mathbb{Z}_{n}[\mathbf{i}][\mathrm{J}]$ ．J．Guangxi Teach． Edu．Univ．，2006，23（4）：1－4．
［7］Tang Gaohua，Su Huadong，Yi Zhong．The structure of the unit group of $\mathbb{Z}_{n}[\mathbf{i}][J]$ ．J．Guangxi Nor． Univ．，2010，28（2）：38－41．
［8］Sha Min．Digraphs from endomorphisms of finite cyclic groups［DB］．J．Combin．Math．Combin． Comp．， 2011.

$\mathbb{Z}_{n}[\mathrm{i}]$ 的平方映射图

> 韦扬江, 唐高华
> (广西师范学院数学与统计学院, 广西 南宁 530023)

摘要：本文研究了模 n 高斯整数环 $\mathbb{Z}_{n}[\mathbf{i}]$ 的平方映射图 $\Gamma(n)$ ．利用数论，图论与群论等方法，获得了 $\Gamma(n)$ 中顶点 $\overline{0}$ 及 $\overline{1}$ 的入度，并研究了 $\Gamma(n)$ 的零因子子图的半正则性．同时，获得了 $\Gamma(n)$ 中顶点的高度公式．推广了 Somer 等人给出的模 n 剩余类环平方映射图的相关结论。

关键词：模 n 高斯整数环；半正则性；高度
$\operatorname{MR}(2010)$ 主题分类号： $05 \mathrm{C} 05 ; 11 \mathrm{~A} 07 ; 13 \mathrm{~F} 10$
中图分类号：O153．3；O156．1；O157．5

[^0]: ＊Received date：2014－08－25 Accepted date：2015－01－23
 Foundation item：Supported by the National Natural Science Foundation of China（11161006； 11461010）；the Guangxi Natural Science Foundation（2014GXNSFAA118005）．

 Biography：Wei Yangjiang（1969－），female，professor，born at Nanning，Guangxi，major in com－ mutative algebra．

