Vol. 36 ( 2016 ) No. 4

# THE SQUARE MAPPING GRAPHS OF THE RING $\mathbb{Z}_n[\mathbf{i}]$

学杂志

J. of Math. (PRC)

数

WEI Yang-jiang, TANG Gao-hua

(School of Mathematical Sciences, Guangxi Teachers Education University, Nanning 530023, China)

**Abstract:** In this paper, we investigate some properties of the square mapping graphs  $\Gamma(n)$  of  $\mathbb{Z}_n[\mathbf{i}]$ , the ring of Gaussian integers modulo n. Using the method of number theory, graph theory and group theory, we obtain the in-degree of  $\overline{0}$  and  $\overline{1}$ . Moreover, we give the complete characterizations in terms of n in which  $\Gamma_2(n)$  is semiregular, where  $\Gamma_2(n)$  is induced by all the zero-divisors of  $\mathbb{Z}_n[\mathbf{i}]$ . The formulas on the heights of vertices in  $\Gamma(n)$  are also obtained. This paper extends results concerning the square mapping graphs of  $\mathbb{Z}_n$  given by Somer.

Keywords:Gaussian integers modulo n; semiregularity; height2010 MR Subject Classification:05C05; 11A07; 13F10Document code:AArticle ID:0255-7797(2016)04-0676-07

#### 1 Introduction

Finding the relationship between the algebraic structure of rings using properties of graphs associated to them became an interesting topic in the last years, for example, see [1-3]. In this paper, let  $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$  be the ring of integers modulo n, and  $\mathbb{Z}_n[\mathbf{i}] = \{\overline{a} + \overline{b}\mathbf{i} \mid \overline{a}, \overline{b} \in \mathbb{Z}_n\}$  be the ring of Gaussian integers modulo n. We investigate some properties of the square mapping graphs  $\Gamma(n)$ , whose vertex set is all the elements of  $\mathbb{Z}_n[\mathbf{i}]$ , and for which there is a directed edge from  $\alpha \in \mathbb{Z}_n[\mathbf{i}]$  to  $\beta \in \mathbb{Z}_n[\mathbf{i}]$  if and only if  $\alpha^2 = \beta$ . In [1, 4, 5], some properties of the square mapping graphs of  $\mathbb{Z}_n[\mathbf{i}]$  and the cubic mapping graphs of  $\mathbb{Z}_n[\mathbf{i}]$  were studied in [2].

Let R be a commutative ring, U(R) denotes the unit group of R, D(R) the zero-divisor set of R. For  $\alpha \in U(R)$ ,  $o(\alpha)$  denotes the multiplicative order of  $\alpha$  in R. If  $R = \mathbb{Z}_n$ , then we write  $\operatorname{ord}_n \alpha$  instead of  $o(\alpha)$ . We specify two particular subdigraphs  $\Gamma_1(n)$  and  $\Gamma_2(n)$  of  $\Gamma(n)$ , i.e.,  $\Gamma_1(n)$  is induced by all the vertices of  $U(\mathbb{Z}_n[\mathbf{i}])$ , and  $\Gamma_2(n)$  is induced by all the vertices of  $D(\mathbb{Z}_n[\mathbf{i}])$ .

In  $\Gamma(n)$ , if  $\alpha_1, \dots, \alpha_t$  are pairwise distinct vertices and  $\alpha_1^2 = \alpha_2, \dots, \alpha_{t-1}^2 = \alpha_t, \alpha_t^2 = \alpha_1$ , then the elements  $\alpha_1, \alpha_2, \dots, \alpha_t$  constitute a *t*-cycle. It is obvious that  $\alpha$  is a vertex of a *t*-cycle if and only if *t* is the least positive integer such that  $\alpha^{2^t} = \alpha$ . For  $\alpha \in \mathbb{Z}_n[\mathbf{i}]$ , the in-degree indeg( $\alpha$ ) of  $\alpha$ , denotes the number of directed edges coming into  $\alpha$ .

**Received date:** 2014-08-25 **Accepted date:** 2015-01-23

**Foundation item:** Supported by the National Natural Science Foundation of China (11161006; 11461010); the Guangxi Natural Science Foundation (2014GXNSFAA118005).

**Biography:** Wei Yangjiang (1969–), female, professor, born at Nanning, Guangxi, major in commutative algebra.

**Example 1.1** The square mapping graph of  $\mathbb{Z}_5[\mathbf{i}]$  is as follows.



The square mapping graph of  $\mathbb{Z}_5[\mathbf{i}]$ 

**Lemma 1.2** (see [6]) Let n > 1.

(1) The element  $\overline{a} + \overline{b}\mathbf{i}$  is a unit of  $\mathbb{Z}_n[\mathbf{i}]$  if and only if  $\overline{a}^2 + \overline{b}^2$  is a unit of  $\mathbb{Z}_n$ .

(2) If  $n = \prod_{i=1}^{s} p_{j}^{k_{j}}$  is the prime power decomposition of n, then  $\mathbb{Z}_{n}[\mathbf{i}] \cong \bigoplus_{j=1}^{s} \mathbb{Z}_{p_{j}^{k_{j}}}[\mathbf{i}]$ .

(3)  $\mathbb{Z}_n[\mathbf{i}]$  is a local ring if and only if  $n = p^t$ , where p = 2 or p is a prime congruent to 3 modulo 4,  $t \ge 1$ .

(4)  $\mathbb{Z}_n[\mathbf{i}]$  is a field if and only if *n* is a prime congruent to 3 modulo 4.

Lemma 1.3 (see [7])

(1)  $|U(\mathbb{Z}_{2^t}[\mathbf{i}])| = 2^{2t-1}, |D(\mathbb{Z}_{2^t}[\mathbf{i}])| = 2^{2t-1}.$ 

(2) Let q be a prime congruent to 3 modulo 4. Then  $|U(\mathbb{Z}_{q^t}[\mathbf{i}])| = q^{2t} - q^{2t-2}, |D(\mathbb{Z}_{q^t}[\mathbf{i}])| = q^{2t-2}$ .

(3) Let p be a prime congruent to 1 modulo 4. Then  $|U(\mathbb{Z}_{p^t}[\mathbf{i}])| = (p^t - p^{t-1})^2$ ,  $|D(\mathbb{Z}_{p^t}[\mathbf{i}])| = 2p^{2t-1} - p^{2t-2}$ .

By Lemma 1.2 (2), we have the following lemma concerning the in-degree of an arbitrary vertex in  $\Gamma(n)$ .

**Lemma 1.4** Suppose  $\alpha = \overline{a} + \overline{b}\mathbf{i} \in \mathbb{Z}_n[\mathbf{i}]$ , and  $n = \prod_{j=1}^s p_j^{k_j}$  is the prime power decomposition of n. Then  $\operatorname{indeg}(\alpha) = \operatorname{indeg}(\alpha_1) \times \cdots \times \operatorname{indeg}(\alpha_s)$ , where  $\alpha_j = (a \mod p_j^{k_j}) + (b \mod p_j^{k_j})\mathbf{i}$  and  $\operatorname{indeg}(\alpha_j)$  is the in-degree of  $\alpha_j$  in  $\Gamma(p_j^{k_j}), j = 1, \cdots, s$ .

### 2 In-Degree, Semiregularity, Height

By Lemma 1.4, in order to obtain the in-degree of a vertex in  $\Gamma(n)$ , it suffices to consider the cases of n being a power of a prime.

**Theorem 2.5** (1) Let  $n = 2^k$ ,  $k \ge 1$ . Then  $indeg(\overline{0}) = 2^k$ .

(2) Let  $n = p^k$ , where p is an odd prime,  $k \ge 1$ . Then  $indeg(\overline{0}) = p^k$  if k is even, while  $indeg(\overline{0}) = p^{k-1}$  if k is odd.

**Proof** (1) Let  $n = 2^k$ . By inspection, we have  $\operatorname{indeg}(\overline{0}) = 2^k$  for k = 1, 2. Now suppose  $k \ge 3$ . Assume that  $\alpha = \overline{a} + \overline{b}\mathbf{i} \in \mathbb{Z}_{2^k}[\mathbf{i}]$  with  $\alpha^2 = \overline{0}$ . Clearly 2|a and 2|b. Let  $a = 2^u a_1$ ,  $b = 2^v b_1$ , where u, v are positive integers, both  $a_1$  and  $b_1$  are odd. Set  $\lambda = \min\{u, v\}$ . Then  $\alpha = 2^{\lambda}\beta$ , where  $\beta = 2^{u-\lambda}\overline{a_1} + 2^{v-\lambda}\overline{b_1}\mathbf{i}$ .

Suppose k is even. Clearly  $\alpha^2 = \overline{0}$  when  $\lambda \ge \frac{k}{2}$ , and  $\alpha^2 \ne \overline{0}$  when  $\lambda \le \frac{k}{2} - 1$ . Hence,  $\alpha^2 = \overline{0}$  if and only if  $\alpha = 2^{k/2} \overline{a}_0 + 2^{k/2} \overline{b}_0 \mathbf{i}$  with  $a_0, b_0 \in \{0, 1, 2, \dots, 2^{k/2} - 1\}$ . Thus  $\operatorname{indeg}(\overline{0}) = 2^{k/2} \times 2^{k/2} = 2^k$ .

Suppose k is odd. First, if  $\lambda \geq \frac{k+1}{2}$ , then clearly  $\alpha^2 = \overline{0}$ . Second, if  $\lambda = \frac{k-1}{2}$ , then  $\beta \in U(\mathbb{Z}_{2^k}[\mathbf{i}])$  when  $u \neq v$ . Hence,  $\alpha^2 = 2^{2\lambda}\beta^2 \neq \overline{0}$ . Otherwise,  $\alpha^2 = 2^{2u+1}(\frac{\overline{a_1}^2 - \overline{b_1}^2}{2} + \overline{a_1}\overline{b_1}\mathbf{i}) = \overline{0}$  when  $u = v = \lambda$ . Third, if  $\lambda \leq \frac{k-3}{2}$ , then clearly  $\alpha^2 \neq 0$ . Therefore, in the case of k odd,  $\alpha^2 = \overline{0}$  if and only if  $\alpha = 2^{(k+1)/2}\overline{a_0} + 2^{(k+1)/2}\overline{b_0}\mathbf{i}$  with  $a_0, b_0 \in \{0, 1, 2, \cdots, 2^{(k-1)/2} - 1\}$ , or  $\alpha = 2^{(k-1)/2}\overline{a_0} + 2^{(k-1)/2}\overline{b_0}\mathbf{i}$  with  $a_0, b_0 \in \{1, 3, 5, \cdots, 2^{(k+1)/2} - 1\}$ . Thus indeg $(\overline{0}) = 2^{(k-1)/2} \times 2^{(k-1)/2} + 2^{(k-1)/2} \times 2^{(k-1)/2} = 2^k$ .

(2) Let  $n = p^k$ , where p is an odd prime,  $k \ge 1$ . Suppose k is even, then by an argument similar to (1) above,  $\alpha^2 = \overline{0}$  if and only if  $\alpha = p^{k/2} \overline{a}_0 + p^{k/2} \overline{b}_0 \mathbf{i}$  with  $a_0, b_0 \in \{0, 1, 2, \dots, p^{k/2} - 1\}$ . Thus  $\operatorname{indeg}(\overline{0}) = p^{k/2} \times p^{k/2} = p^k$ .

Suppose k is odd. If  $\lambda \ge \frac{k+1}{2}$ , then clearly  $\alpha^2 = \overline{0}$ . If  $\lambda \le \frac{k-1}{2}$ , then clearly  $\alpha^2 \ne \overline{0}$ . Therefore, in the case of k odd,  $\alpha^2 = \overline{0}$  if and only if  $\alpha = p^{(k+1)/2} \overline{a}_0 + p^{(k+1)/2} \overline{b}_0 \mathbf{i}$  with  $a_0, b_0 \in \{0, 1, 2, \cdots, p^{(k-1)/2} - 1\}$ . Hence,  $\operatorname{indeg}(\overline{0}) = p^{(k-1)/2} \times p^{(k-1)/2} = p^k$ .

**Theorem 2.6** (1) Let  $n = 2^k$ ,  $k \ge 1$ . Then  $indeg(\overline{1}) = 2^k$  for k = 1, 2, while  $indeg(\overline{1}) = 8$  for  $k \ge 3$ .

(2) Let  $n = p^k$ , where p is an odd prime,  $k \ge 1$ . Then  $indeg(\overline{1}) = 2$  if  $p \equiv 3 \pmod{4}$ , while  $indeg(\overline{1}) = 4$  if  $p \equiv 1 \pmod{4}$ .

**Proof** (1) Let  $n = 2^k$ . By inspection, we have  $\operatorname{indeg}(\overline{1}) = 2^k$  for k = 1, 2. Now suppose  $k \ge 3$ . Assume that  $\alpha = \overline{a} + \overline{b}\mathbf{i} \in \mathbb{Z}_{2^k}[\mathbf{i}]$  with  $\alpha^2 = (\overline{a}^2 - \overline{b}^2) + 2\overline{a}\overline{b}\mathbf{i} = \overline{1}$ . Clearly the parity of a and b is different. If a is even while b = 2t + 1 is odd, then  $2^k | 2ab$  if and only if a = 0 or  $2^{k-1}$ . However,  $a^2 - b^2 - 1 \equiv -4t^2 - 4t - 2 \not\equiv 0 \pmod{2^k}$ , which contradicts to the fact that  $\alpha^2 = \overline{1}$ . So we must have a is odd and b is even. Then  $2^k | 2ab$  if and only if b = 0 or  $2^{k-1}$ . Hence  $a^2 - b^2 \equiv 1 \pmod{2^k}$  if and only if  $a^2 \equiv 1 \pmod{2^k}$ . The number of solutions of  $a^2 \equiv 1 \pmod{2^k}$  is 4 for  $k \ge 3$ .

(2) Let  $n = p^k$ , where p is an odd prime,  $k \ge 1$ . Assume that  $\alpha = \overline{a} + \overline{b}\mathbf{i} \in \mathbb{Z}_{p^k}[\mathbf{i}]$ with  $\alpha^2 = (\overline{a}^2 - \overline{b}^2) + 2\overline{a}\overline{b}\mathbf{i} = \overline{1}$ . By Lemma 1.2(1),  $gcd(p, a^2 + b^2) = 1$ . So gcd(p, a) = 1or gcd(p, b) = 1. Therefore by  $p^k | 2ab$ , we derive that a = 0 or b = 0. If b = 0, then by  $a^2 - b^2 \equiv 1 \pmod{p^k}$ , we have  $a^2 \equiv 1 \pmod{p^k}$ , which has exactly two solutions. If a = 0, then by  $a^2 - b^2 \equiv 1 \pmod{p^k}$ , we have  $b^2 \equiv -1 \pmod{p^k}$ , which has exactly two solutions when  $p \equiv 1 \pmod{4}$ , while no solutions when  $p \equiv 3 \pmod{4}$ , as claimed.

We call a digraph semiregular if there exists a positive integer d such that the in-degree of each vertex in this digraph is either d or 0. In Example 1.1, we see that  $\Gamma_1(5)$  is semiregular.

In fact,  $\Gamma_1(n)$  is semiregular for n > 1, by an argument similar to paper [8]. But  $\Gamma_2(n)$  is not semiregular for some n > 1. For example, in  $\Gamma_2(5)$ , indeg $(\overline{0}) = 1$  while indeg $(\overline{3} + \mathbf{i}) = 2$ .

**Theorem 2.7** (1)  $\Gamma_2(2^k)$  is semiregular if and only if k = 1, 2, 3, 4.

(2) Suppose p is a prime congruent to 1 modulo 4. Then  $\Gamma_2(p^k)$  is not semiregular for  $k \ge 1$ .

(3) Suppose p is a prime congruent to 3 modulo 4. Then  $\Gamma_2(p^k)$  is semiregular if and only if k = 1, 2.

**Proof** (1) By inspection, we readily show that  $\Gamma_2(2^k)$  is semiregular for k = 1, 2, 3, 4. Now suppose  $k \ge 5$ . Let  $\beta = (\overline{1} + \mathbf{i})^2 = \overline{2}\mathbf{i}$ . Then  $\operatorname{indeg}(\beta) > 0$ . Let  $\alpha = \overline{a} + \overline{b}\mathbf{i}$  such that  $\alpha^2 = \beta$ . Then  $a^2 - b^2 \equiv 0 \pmod{2^k}$  and  $2ab \equiv 2 \pmod{2^k}$ . By  $2ab \equiv 2 \pmod{2^k}$ , we have  $ab \equiv 1 \pmod{2^{k-1}}$  and hence  $a^2b^2 \equiv 1 \pmod{2^{k-1}}$ . Moreover, since  $a^2 - b^2 \equiv 0 \pmod{2^k}$ , clearly  $a^2 \equiv b^2 \pmod{2^{k-1}}$ . So  $b^4 \equiv 1 \pmod{2^{k-1}}$ , which has exactly 4 solutions, since  $k \ge 5$ . Hence,  $b = b_j + m2^{k-1}$ , where  $j \in \{1, 2, 3, 4\}$ ,  $m \in \{0, 1\}$  and  $b_j^4 \equiv 1 \pmod{2^{k-1}}$  for j = 1, 2, 3, 4. For a fixed odd integer b, the congruence equation  $ab \equiv 1 \pmod{2^{k-1}}$  in a has exactly one solution. Therefore  $a = a_0 + m2^{k-1}$ , where  $m \in \{0, 1\}$  and  $a_0b \equiv 1 \pmod{2^{k-1}}$ . So we can conclude that  $\operatorname{indeg}(\beta) = 16$ . However, by Theorem 2.5,  $\operatorname{indeg}(\overline{0}) = 2^k > 16$  for  $k \ge 5$ . So  $\Gamma_2(2^k)$  is not semiregular for  $k \ge 5$ .

(2) First, by Theorem 2.5,  $\operatorname{indeg}(\overline{0}) = 1$  in  $\Gamma(p)$ . However, the in-degree of  $\beta = (\overline{x} + \overline{y}\mathbf{i})^2 \in \mathcal{D}(\mathbb{Z}_p[\mathbf{i}])$  is greater than 1 where  $p = x^2 + y^2$ , since  $(\pm \beta)^2 = \beta$ . Hence  $\Gamma_2(p)$  is not semiregular. Second, let  $A = \{d^2(\overline{x} + \overline{y}\mathbf{i})^2 : d \in \mathcal{U}(\mathbb{Z}_{p^2}) \text{ or } d = 0\}$ . Then  $\operatorname{indeg}(\gamma) > 0$  for  $\gamma \in A$ . Moreover, since  $(\pm d)^2 = d^2$ , one can derive that  $|A| = \frac{1}{2}|\mathcal{U}(\mathbb{Z}_{p^2})| + 1 = \frac{1}{2}p^2 - \frac{1}{2}p + 1$ . If  $\Gamma_2(p^2)$  is semiregular, then for  $\gamma \in A$ ,  $\operatorname{indeg}(\gamma) = \operatorname{indeg}(\overline{0}) = p^2$  by Theorem 2.5. But one can easily check that  $p^2|A| > |\mathcal{D}(\mathbb{Z}_{p^2}[\mathbf{i}])|$ , which is impossible. So  $\Gamma_2(p^2)$  is not semiregular.

Now, suppose  $k \ge 3$ . Let  $\beta = \overline{p}^2 \in D(\mathbb{Z}_{p^k}[\mathbf{i}])$ . Then  $\operatorname{indeg}(\beta) > 0$ . Assume that  $\alpha = \overline{a} + \overline{b}\mathbf{i}$  such that  $\alpha^2 = \beta$ . Then  $a^2 - b^2 \equiv p^2 \pmod{p^k}$  and  $2ab \equiv 0 \pmod{p^k}$ . It is clear that p|a and p|b. Moreover, since  $a^2 - b^2 \equiv p^2 \pmod{p^k}$ , one can derive that  $p \parallel a$  or  $p \parallel b$ . If  $p \parallel a$ , then by  $2ab \equiv 0 \pmod{p^k}$ , we have  $b \equiv 0 \pmod{p^{k-1}}$ . Hence  $b = p^{k-1}b_1 \pmod{b_1} = 0, 1, \cdots, p-1$ . Furthermore, since  $a^2 - b^2 \equiv p^2 \pmod{p^k}$ , we derive that  $a^2 \equiv p^2 \pmod{p^k}$ . Therefore,  $a = p(mp^{k-2} \pm 1) \pmod{m}$ .

On the other hand, if  $p \parallel b$ , by an argument similar to above, we have  $a = p^{k-1}a_1$ with  $a_1 = 0, 1, \dots, p-1$  and  $b = p(mp^{k-2} \pm 1)$  with  $m = 0, 1, \dots, p-1$ . Therefore, indeg $(\beta) = 2p^2 + 2p^2 = 4p^2$ . However, by Theorem 2.5, the in-degree of  $\overline{0}$  in  $\Gamma(p^k)$  is not equal to  $4p^2$ . So  $\Gamma_2(p^k)$  is not semiregular for  $k \ge 3$ .

(3) First, by Lemma 1.2 (4),  $\mathbb{Z}_p[\mathbf{i}]$  is a field when  $p \equiv 3 \pmod{4}$ . So  $\Gamma_2(p)$  is a 1-cycle and hence is semiregular. Second, by Lemma 1.3 (2),  $|\mathbb{D}(\mathbb{Z}_{p^2}[\mathbf{i}])| = p^2 = \operatorname{indeg}(\overline{0})$ , which implies that  $\alpha^2 = \overline{0}$  for  $\alpha \in \mathbb{D}(\mathbb{Z}_{p^2}[\mathbf{i}])$ . So  $\Gamma_2(p^2)$  is semiregular.

Now, suppose  $k \ge 3$ . Let  $\beta = \overline{p}^2 \in D(\mathbb{Z}_{p^k}[\mathbf{i}])$ . Then  $\operatorname{indeg}(\beta) > 0$ . Assume that  $\alpha = \overline{a} + \overline{b}\mathbf{i}$  such that  $\alpha^2 = \beta$ . Similarly to (2) above, we have p|a and p|b, and furthermore,  $p \parallel a$  or  $p \parallel b$ . If  $p \parallel b$ , then  $p^2|a$ . Let  $a = p^t a_1$ , while  $b = pb_1$ , where  $t \ge 2$  and  $p \nmid b_1$ . Then by  $\alpha^2 = \beta$ , we derive  $a^2 - b^2 \equiv p^2 \pmod{p^k}$ . Hence,  $2t - 2 \ge 2$  and  $p^{2t-2}a_1^2 \equiv b_1^2 + 1 \pmod{p^{k-2}}$ ,

which contradicts to the fact that  $b_1^2 + 1 \not\equiv 0 \pmod{p}$  for any integer  $b_1$ , since  $p \equiv 3 \pmod{4}$ . So we must have  $p \parallel a$  and hence, by an argument similar to (2) above, we can conclude that  $\operatorname{indeg}(\beta) = 2p^2 \neq \operatorname{indeg}(\overline{0})$ . Therefore,  $\Gamma_2(p^k)$  is not semiregular for  $k \geq 3$ .

We have observed that  $\alpha$  is a vertex of a *t*-cycle if and only if *t* is the least positive integer such that  $\alpha^{2^t} = \alpha$ . So it is easy to derive the following

**Lemma 2.8** (1)  $\alpha \in U(\mathbb{Z}_n[\mathbf{i}])$  is a cycle vertex in  $\Gamma_1(n)$  if and only if  $2 \nmid o(\alpha)$ .

(2)  $\alpha \in U(\mathbb{Z}_n[\mathbf{i}])$  is a vertex of a *t*-cycle in  $\Gamma_1(n)$  if and only if  $t = \operatorname{ord}_{o(\alpha)} 2$ .

Let  $\alpha = \overline{a} + \overline{b}\mathbf{i} \in \mathbb{Z}_n[\mathbf{i}]$ , the norm  $N(\alpha)$  of  $\alpha$  is defined by  $1 \leq N(\alpha) \leq n$  and  $N(\alpha) \equiv a^2 + b^2 \pmod{n}$ . It is easy to check that  $N(\alpha\beta) \equiv N(\alpha)N(\beta) \pmod{n}$ . If  $\alpha$  is a vertex of a *t*-cycle, then  $\alpha^{2^t} = \alpha$ . So  $N(\alpha)^{2^t} \equiv N(\alpha^{2^t}) \equiv N(\alpha) \pmod{n}$ , i.e.,  $N(\alpha)(N(\alpha)^{2^t-1}) \equiv 0 \pmod{n}$ . Since  $\gcd(N(\alpha), N(\alpha)^{2^t-1}) = 1$ , if  $p|N(\alpha)$  with  $p^t \parallel n$ , clearly  $p^t|N(\alpha)$ . So we have proved the following lemma.

**Lemma 2.9** Let  $n = \prod_{j=1}^{s} p_j^{k_j}$  be the prime power decomposition of n. If  $\alpha$  is a vertex of a *t*-cycle, then  $p_j^{k_j} \mid N(\alpha)$  whenever  $p_j \mid N(\alpha)$ .

By Lemma 1.2 (3),  $\mathbb{Z}_n[\mathbf{i}]$  is a local ring if  $n = p^t$ , where p = 2 or p is a prime congruent to 3 modulo 4,  $t \ge 1$ . It is easy to show that  $\Gamma_2(n)$  has a unique component containing the 1-cycle with  $\overline{0}$  as its only vertex if  $\mathbb{Z}_n[\mathbf{i}]$  is a local ring. For the cycle vertices in  $\Gamma_2(p^k)$  with p is a prime congruent to 1 modulo 4, we have the following theorem.

**Theorem 2.10** Let p be a prime congruent to 1 modulo 4. Then  $\alpha = \overline{a} + \overline{b}\mathbf{i} \neq \overline{0}$  lies on a *t*-cycle of  $\Gamma_2(p^k)$  if and only if  $p^k | N(\alpha)$  and  $\overline{2a}$  lies on a *t*-cycle of  $\Gamma_1(p^k)$ .

**Proof** Suppose that  $\alpha$  is a vertex of a *t*-cycle in  $\Gamma_2(p^k)$ , then  $p|N(\alpha)$ . By Lemma 2.9,  $p^k|N(\alpha)$ . Moreover, since  $\alpha \neq \overline{0}$ , it is easy to check that  $p \nmid a$  and  $p \nmid b$ . So by  $\alpha^2 = (\overline{a}^2 - \overline{b}^2) + 2\overline{a}\overline{b}\mathbf{i}$  and  $-b^2 \equiv a^2 \pmod{p^k}$ , we have  $\alpha^2 = \overline{2a}(\overline{a} + \overline{b}\mathbf{i})$ . Therefore we can conclude that  $\alpha^{2^t} = \overline{2a}^{2^{t-1}}(\overline{a} + \overline{b}\mathbf{i})$ . Hence *t* is the least positive integer such that  $(2a)^{2^t-1} \equiv 1 \pmod{p^k}$ . Thus due to Lemma 2.8,  $\overline{2a}$  lies on a *t*-cycle of  $\Gamma_1(p^k)$ .

Conversely, if  $p^k | N(\alpha)$  and  $\overline{2a}$  lies on a *t*-cycle of  $\Gamma_1(p^k)$ , then  $\alpha^2 = (\overline{a}^2 - \overline{b}^2) + 2\overline{a}\overline{b}\mathbf{i} = \overline{2a}(\overline{a} + \overline{b}\mathbf{i})$ . Hence  $\alpha^{2^t} = \overline{2a}^{2^{t-1}}(\overline{a} + \overline{b}\mathbf{i})$ . Furthermore, since *t* is the least positive integer such that  $(2a)^{2^{t-1}} \equiv 1 \pmod{p^k}$ , we can claim that *t* is the least positive integer such that  $\alpha^{2^t} = \alpha$ , which implies that  $\alpha$  is a vertex of a *t*-cycle in  $\Gamma_2(p^k)$ .

For instance,  $\overline{3} + \mathbf{i}$  lies on a 1-cycle of  $\Gamma_2(5)$  (see Example 1.1),  $2 \times 3 \equiv 1 \pmod{5}$  and  $\overline{1}$  lies on a 1-cycle of  $\Gamma_1(5)$ . If  $n = 5^2$ , one can check that  $\alpha = \overline{8} + \overline{6}\mathbf{i}$  lies on a 4-cycle of  $\Gamma_2(5^2)$ , i.e., the cycle  $\overline{8} + \overline{6}\mathbf{i} \rightarrow \overline{3} + \overline{21}\mathbf{i} \rightarrow \overline{18} + \mathbf{i} \rightarrow \overline{23} + \overline{11}\mathbf{i} \rightarrow \overline{8} + \overline{6}\mathbf{i}$ . While  $\overline{16}$  lies on a 4-cycle of  $\Gamma_1(5^2)$ , i.e., the cycle  $\overline{16} \rightarrow \overline{6} \rightarrow \overline{11} \rightarrow \overline{21} \rightarrow \overline{16}$ .

Finally, we investigate the height of an arbitrary vertex of  $\Gamma_2(p^k)$  for any prime p. We say a vertex  $\alpha$  in  $\Gamma(n)$  is of height m if m is the least nonnegative integer such that  $\alpha^{2^m}$  is a vertex of a cycle, and we denote  $h_{\alpha} = m$ . Clearly,  $h_{\alpha} = 0$  if and only if  $\alpha$  is a vertex of a cycle.

**Theorem 2.11** Suppose  $\alpha = \overline{a} + \overline{b}\mathbf{i} \in D(\mathbb{Z}_{2^k}[\mathbf{i}]), k \ge 1$ . Then the height  $h_{\alpha}$  of  $\alpha$  is

$$h_{\alpha} = \begin{cases} \lceil \log_2 \frac{k}{\lambda} \rceil, & 2^x \parallel a, \ 2^y \parallel b, \ x \neq y, \ \lambda = \min\{x, y\} \geqslant \\ \lceil \log_2 \frac{2k}{2\lambda + 1} \rceil, & 2^\lambda \parallel a, \ 2^\lambda \parallel b, \ \lambda \geqslant 0. \end{cases}$$

**Proof** Suppose that  $2^x \parallel a$ ,  $2^y \parallel b$ ,  $\lambda = \min\{x, y\}$ . Then  $\alpha = 2^{\lambda}\beta$ , where  $\beta = \overline{a_1} + \overline{b_1}\mathbf{i}$  with  $2 \nmid \gcd(a_1, b_1)$ .

If  $x \neq y$ , then  $\lambda \ge 1$ , and  $\beta^{2^j} \in \mathrm{U}(\mathbb{Z}_{2^k}[\mathbf{i}])$  for  $j \ge 0$ . Hence  $\alpha^{2^j} = (2^{\lambda})^{2^j} \beta^{2^j} = \overline{0}$  if and only if  $2^j \lambda \ge k$ , if and only if  $j \ge \log_2 \frac{k}{\lambda}$ . So  $h_\alpha = \lceil \log_2 \frac{k}{\lambda} \rceil$ .

If  $x = y = \lambda \ge 0$ , then  $\alpha = 2^{\lambda}\beta$  with both  $a_1$  and  $b_1$  are odd. Thus  $\beta \in D(\mathbb{Z}_{2^k}[\mathbf{i}])$ . Let  $\beta^2 = 2\gamma$  where  $\gamma = \frac{1}{2}(\overline{a_1}^2 - \overline{b_1}^2) + \overline{a_1}\overline{b_1}\mathbf{i}$ . Then clearly  $\gamma \in U(\mathbb{Z}_{2^k}[\mathbf{i}])$  since  $4|a_1^2 - b_1^2$ . Hence,  $\alpha^{2^j} = (2^{\lambda})^{2^j}\beta^{2^j} = 2^{2^j\lambda}(2\gamma)^{2^{j-1}} = 2^{2^j\lambda+2^{j-1}}\gamma^{2^{j-1}}$ . So  $\alpha^{2^j} = \overline{0}$  if and only if  $2^j\lambda + 2^{j-1} \ge k$ , if and only if  $j \ge \log_2 \frac{2k}{2\lambda+1}$ . So  $h_{\alpha} = \lceil \log_2 \frac{2k}{2\lambda+1} \rceil$ .

**Theorem 2.12** Suppose  $\alpha = \overline{a} + \overline{b}\mathbf{i} \in D(\mathbb{Z}_{p^k}[\mathbf{i}])$ , where p is a prime congruent to 3 modulo 4,  $k \ge 1$ . Then the height  $h_{\alpha}$  of  $\alpha$  is  $h_{\alpha} = \lceil \log_2 \frac{k}{\lambda} \rceil$ , where  $p^x \parallel a, p^y \parallel b$  and  $\lambda = \min\{x, y\} \ge 1$ .

**Proof** Since  $p \equiv 3 \pmod{4}$ ,  $\alpha \in D(\mathbb{Z}_{p^k}[\mathbf{i}])$  if and only if p|a and p|b. Let  $p^x \parallel a, p^y \parallel b$ and  $\lambda = \min\{x, y\} \ge 1$ . Then  $\alpha = p^{\lambda}\beta$ , where  $\beta = \overline{a}_1 + \overline{b}_1\mathbf{i}$  and  $p \nmid \gcd(a_1, b_1)$ . Hence  $\beta \in U(\mathbb{Z}_{p^k}[\mathbf{i}])$ . So  $\alpha^{2^j} = (p^{\lambda})^{2^j}\beta^{2^j} = \overline{0}$  if and only if  $2^j\lambda \ge k$ , if and only if  $j \ge \log_2 \frac{k}{\lambda}$ . So  $h_{\alpha} = \lceil \log_2 \frac{k}{\lambda} \rceil$ .

**Theorem 2.13** Suppose  $\alpha = \overline{a} + \overline{b}\mathbf{i} \in D(\mathbb{Z}_{p^k}[\mathbf{i}])$ , where p is a prime congruent to 1 modulo 4,  $k \ge 1$ . Then the height  $h_{\alpha}$  of  $\alpha$  is

$$h_{\alpha} = \begin{cases} \lceil \log_2 \frac{k}{\lambda} \rceil, & p^x \parallel a, \ p^y \parallel b, \ k = \min\{x, y\} \ge 1, \\ j, & p \nmid a, p \nmid b, \text{ and } j \text{ is the least nonnegative integer} \\ & \text{ such that both } p^k \mid (N(\alpha))^{2^j} \text{ and } 2 \nmid o(2\operatorname{Re}(\alpha^{2^j})) \end{cases}$$

where  $\operatorname{Re}(\gamma) = \overline{c}$  if  $\gamma = \overline{c} + \overline{d}\mathbf{i}$ .

**Proof** Since  $p \equiv 1 \pmod{4}$ ,  $\alpha = \overline{a} + \overline{b}\mathbf{i} \in D(\mathbb{Z}_{p^k}[\mathbf{i}])$  if and only if  $p|a^2 + b^2$ .

First, suppose  $p|\operatorname{gcd}(a, b)$ . Let  $p^x \parallel a, p^y \parallel b$ , where  $x \ge 1$  and  $y \ge 1$ . Let  $\lambda = \min\{x, y\}$ . Then  $\alpha = p^{\lambda}\beta$ , where  $\beta = \overline{a}_0 + \overline{b}_0\mathbf{i}$  with  $p \nmid \operatorname{gcd}(a_0, b_0)$ . Hence,  $\alpha^{2^j} = \overline{0}$  for some  $j \ge 1$ . Now, suppose that  $\alpha^2 = p^{2\lambda}(\overline{a}_1 + \overline{b}_1\mathbf{i})$ , where  $\overline{a}_1 = \overline{a}_0^2 - \overline{b}_0^{-2}$  and  $\overline{b}_1 = 2\overline{a}_0\overline{b}_0$ . Then, clearly  $p \nmid \operatorname{gcd}(a_1, b_1)$  since  $p \nmid \operatorname{gcd}(a_0, b_0)$ . So we can conclude that  $\alpha^{2^j} = p^{2^j\lambda}(\overline{a}_j + \overline{b}_j\mathbf{i})$  with  $p \nmid \operatorname{gcd}(a_j, b_j)$ . Therefore  $\alpha^{2^j} = \overline{0}$  if and only if  $2^j\lambda \ge k$ , if and only if  $j \ge \log_2 \frac{k}{\lambda}$ . So  $h_\alpha = \lceil \log_2 \frac{k}{\lambda} \rceil$ .

Second, suppose  $p|a^2 + b^2$  but  $p \nmid \gcd(a, b)$ . Then  $\alpha^{2^j} \neq \overline{0}$  for any  $j \ge 0$ . It is easy to show that if  $\alpha^{2^j} = \overline{c} + \overline{d}\mathbf{i}$ , then  $p \nmid \gcd(c, d)$ . Moreover, by Theorem 2.10 and Lemma 2.8,  $\alpha^{2^j}$  lies on a *t*-cycle of  $\Gamma_2(p^k)$  if and only if  $p^k|N(\alpha)^{2^j}$  and  $\overline{2c}$  lies on a *t*-cycle of  $\Gamma_1(p^k)$ , if and only if *j* is the least nonnegative integer such that both  $p^k|N(\alpha)^{2^j}$  and  $2 \nmid o(\overline{2c})$ . Hence the result follows.

1,

#### References

- Somer L, Křížek M. On a connection of number theory with graph theory[J]. Czech. Math. J., 2004, 54(129): 465–485.
- [2] Wei Yangjiang, Nan Jizhu, Tang Gaohua. The cubic mapping graph for the ring of Gaussian integers modulo n[J]. Czech. Math. J., 2011, 61: 1023–1036.
- [3] Xu Chengjie, Yi Zhong, Zheng Ying. On the zero-divisor graphs of formal triangular matrix rigns[J].
  J. Math., 2013, 33(5): 891–901.
- [4] Somer L, Křížek M. Structure of digraphs associated with quadratic congruences with composite moduli[J]. Discrete Math., 2006, 36: 2174–2185.
- [5] Somer L, Křížek M. On symmetric digraphs of the congruence  $x^k \equiv y \pmod{n}$ [J]. Discrete. Math., 2009, 309: 1999–2009.
- [6] Su Huadong, Tang Gaohua. The prime spectrum and zero-divisors of Z<sub>n</sub>[i][J]. J. Guangxi Teach. Edu. Univ., 2006, 23(4): 1−4.
- [7] Tang Gaohua, Su Huadong, Yi Zhong. The structure of the unit group of Z<sub>n</sub>[i][J]. J. Guangxi Nor. Univ., 2010, 28(2): 38–41.
- [8] Sha Min. Digraphs from endomorphisms of finite cyclic groups [DB]. J. Combin. Math. Combin. Comp., 2011.

## $\mathbb{Z}_n[\mathbf{i}]$ 的平方映射图

韦扬江,唐高华

(广西师范学院数学与统计学院,广西南宁 530023)

**摘要:** 本文研究了模 *n* 高斯整数环  $\mathbb{Z}_n[\mathbf{i}]$  的平方映射图  $\Gamma(n)$ . 利用数论、图论与群论等方法,获得了  $\Gamma(n)$  中顶点  $\overline{0}$  及  $\overline{1}$  的入度,并研究了  $\Gamma(n)$  的零因子子图的半正则性. 同时,获得了  $\Gamma(n)$  中顶点的高度公式. 推广了 Somer 等人给出的模 *n* 剩余类环平方映射图的相关结论.

关键词: 模 n 高斯整数环; 半正则性; 高度 MR(2010)主题分类号: 05C05; 11A07; 13F10

中图分类号: O153.3; O156.1; O157.5