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Abstract: In this paper, we consider a discrete time logistic competition model. The topo-

logical types of fixed points and non-hyperbolic cases are given in order to investigate bifurcations.

By applying the center manifold reduction theorem we prove that transcritical bifurcation occurs

at three fixed points and stable 2-periodic orbits arise through flip bifurcation which happens at

two fixed points.
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1 Introduction

Discrete competition models, including intra-specific competition models and interspe-
cific competition models, play a important role in theoretical ecology and economics (see
e.g. [1, 3, 7, 8]). Intra-specific competition refers to the competition among individuals of
same species and interspecific competition to the competition between two or more species
for some limiting resource. When one species is a better competitor, interspecific compe-
tition negatively influences the other species by reducing population sizes or growth rates,
which in turn affects the population dynamics of the competitor. In 2011, based on the bio-
logical assumptions that each species is modeled by the logistic map, modeled species with
non-overlapping generations, without interspecific competition and that one species will neg-
atively affect the growth of the other species in the interspecific competition, Guzowska, Lúıs
and Elaydi [5] developed the following logistic competition model





xn+1 =
axn(1− xn)

1 + cyn

,

yn+1 =
byn(1− yn)

1 + dxn

,

(1.1)
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where xn ∈ [0, 1] and yn ∈ [0, 1] represent the species x density and species y density at time
n respectively, the parameters a ∈ (0, 4] and b ∈ (0, 4] denote the intrinsic growth rates of
species x and y respectively, and the parameters c ∈ (0, 1) and d ∈ (0, 1) are the competition
parameters of species y and x respectively. As indicted in [5], system (1.1) has one extinction
fixed point E0(0, 0), two exclusion fixed points

E1((a− 1)/a, 0), E2(0, (b− 1)/b)

and one coexistence fixed point E3(x0, y0), where

x0 =
ab− cb + c− b

ab− cd
, y0 =

ab− da− a + d

ab− cd
.

In [5] the stability of the four fixed points were investigated by center manifold theorem
and Schwarzian derivative, the bifurcation scenario at E3 is given in the parameter space,
and, at fixed point E3, fold and flip bifurcations route to chaos are exhibited via numerical
simulations.

Up to now, what bifurcations happen at fixed points E0, E1 and E2 is unknown. In this
paper we discuss analytically these bifurcations. At first we give all topological types of the
three fixed points and all non-hyperbolic cases in order to investigate bifurcations. Then,
we show that system (1.1) undergoes transcritical bifurcation at E0 as (a, b) crossing two
bifurcation curves a = 1 or b = 1. At last, we prove that, at fixed point E1 (resp. E2),
a flip bifurcation occurs for (a, b) crossing curves a = 3 (resp. b = 3) and a transcritical
bifurcation happens for (a, b) crossing b = 1 + d(a− 1)/a (resp. a = 1 + c(b− 1)/b).

2 Transcritical Bifurcation at E0

System (1.1) can be described equivalently by the planar mapping F : R2 → R2,

F (x, y) = (
ax(1− x)

1 + cy
,
by(1− y)
1 + dx

), (2.1)

whose Jacobian is given by

JF (x, y) =




a(1−x)−ax
1+cy

−acx(1−x)
(1+cy)2

−bdy(1−y)
(1+dx)2

b(1−y)−by
1+dx


 . (2.2)

We first give the topological types of fixed point E0 and non-hyperbolic cases.
Lemma 1 Fixed point E0 is non-hyperbolic if and only if a = 1 or b = 1. Otherwise,

E0 is one of the types in Table 1.
Proof By (2.2) the Jacobian evaluated at the fixed point E0(0, 0) is given by

JF (0, 0) =

(
a 0
0 b

)
, (2.3)
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Table 1: The topological types of fixed point E0

conditions types cases

0 < a < 1
0 < b < 1 stable node E0-I

b > 1 saddle E0-II

1 < a < 4
0 < b < 1 saddle E0-III

b > 1 unstable node E0-IV

which has eigenvalues λ1 = a and λ2 = b. Hence it is easy to obtain the results in Table 1
by [4] (see p. 194–200).

From the lemma it is obvious that the bifurcations occur at the fixed point E0 if a = 1
or b = 1.

Theorem 1 If a (resp. b) crosses 1 and b 6= 1 (resp. a 6= 1), then the map F undergoes
a transcritical bifurcation at fixed point E0(0, 0).

Proof We prove one case that a crosses 1 and b 6= 1. The proof of the other case is
similar. From 0 < c < 1, 0 < d < 1, 0 < x < 1 and 0 < y < 1, map (2.1) can expand the
following form at a = 1 :

(
x

y

)
→

(
x

by

)
−

(
x2 + cxy +O(3)

by2 + bdxy +O(3)

)
, (2.4)

where O(3) is a function with order at least 3 in the variables. We choose ε = a − 1 as a
bifurcation parameter to study the bifurcation of the mapping F at the fixed point E0(0, 0),
where |ε| ¿ 1. We consider a perturbation of (2.4) as follows:

(
x

y

)
→

(
x

by

)
−

(
x2 − xε + cxy +O(3)
by2 + bdxy +O(3)

)
. (2.5)

System (2.4) can be rewritten in the following suspended form



x

ε

y


 →




x

ε

by


−




x2 − xε + cxy +O(3),
0

by2 + bdxy +O(3),


 . (2.6)

By the center manifold theory (see p. 33–35 in [2]) the center manifold of system (2.6) can
expressed locally as follows:

W c(O) = {(x, y, ε) ∈ R3|y = h(x, ε), h(0, 0) = Dh(0, 0) = 0, |x| < ε, |ε| < δ},

where ε and δ are sufficient small positives. Assume that h(x, ε) has the following form

y = h(x, ε) = c1x
2 + c2xε + c3ε

2 +O(3), (2.7)

which must satisfy

h
(
x− x2 + xε− cxh(x, ε) +O(3), ε

)
= bh(x, ε)− bh2(x, ε)− bdxh(x, ε) +O(3) (2.8)
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by the center manifold theorem. Comparing coefficients of x2, xε and ε2 in (2.8) we obtain
that

c1 = c2 = c3 = 0,

and (2.7) has the determinative form

y = h(x, ε) = O(3). (2.9)

Substituting (2.9) into the first two equations in (2.6) yields
(

x

ε

)
→

(
x− x2 + xε +O(3)

ε

)
,

which defines a one-dimensional mapping (x, ε) → f1(x, ε) by

f1(x, ε) = x− x2 + xε +O(3).

From
∂2f1

∂x∂ε

∣∣∣∣
(x,ε)=(0,0)

= 1 (2.10)

and
∂2f1

∂x2

∣∣∣∣
(x,ε)=(0,0)

= −2,

we get that the map F undergoes a transcritical bifurcation on the center manifold at E0

(see p. 504–507 in [10]). This completes the proof.

3 Flip Bifurcation and Transcritical Bifurcation at E1 and E2

In order that E1 has biological significance, we have a > 1. By (2.2) the Jacobian
evaluated at the fixed point E1 is given by

JF ((a− 1)/a, 0) =

(
2− a − c

a
(a− 1)

0 ab
ad+a−d

)
, (3.1)

whose eigenvalues are λ1 = 2 − a and λ2 = ab/(ad + a − d). Hence we have the following
results.

Lemma 2 The fixed point E1 is not hyperbolic if and only if a = 3 or b = 1+d(a−1)/a.
Otherwise, E1 is one of the types in Table 2.

Proof Solving |λ1| = |2 − a| < 1 yields 1 < a < 3. Obviously λ2 > 0, from λ2 =
ab/(ad + a − d) < 1 we get 0 < b < 1 + d(a − 1)/a. Hence E1 is stable node for 1 < a ≤ 3
and 0 < b < 1 + d(a − 1)/a (refers to case E1-I). Similarly, we can obtain the other three
cases in Table 2. This completes the proof.

From the lemma, it is obvious that the bifurcation occurs at the fixed point E1 if a = 3
or b = 1 + d(a− 1)/a. Let u = x− (a− 1)/a and v = y. Then we get map F̃ : R2 → R2,

(
u

v

)
→

(
(2− a)u− c

a
(a− 1)v − au2 − c(2− a)uv + c2

a
(a− 1)v2 +O1(3)

ab
a+d(a−1)

v − a2bd
(a+d(a−1))2

uv − ab
a+d(a−1)

v2 +O2(3)

)
. (3.2)
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Table 2: The topological types of fixed point E1

conditions types cases

1 < a < 3
0 < b < 1 + d(a− 1)/a stable node E1-I
1 + d(a− 1)/a < b < 4 saddle E1-II

3 < a < 4
0 < b < 1 + d(a− 1)/a saddle E1-III
1 + d(a− 1)/a < b < 4 unstable node E1-IV

Note that there isn’t the term u3 in O1(3) and the term v3 in O2(3). Its Jacobian evaluated
at the O, JF̃ (0, 0), is equal to JF ((a− 1)/a, 0). One can easily see that the matrix JF̃ (0, 0)
has eigenvectors (1, 0)T and

(
ad + a− b

(2− a)(ad + a− d)− ab
,
c

a
(a− 1)

)T

corresponding to λ1 = 2 − a and λ2 = ab/(ad + a − d), respectively, where T denotes the
transpose of matrices. One can check that λ1 6= λ2 if a = 3 or b = 1 + d(a− 1)/a. Hence the
matrix JF̃ (0, 0) can be diagonalized by the change of variables (u, v)T = H1(ξ, η)T , where

H1 =




1 ad+a−b
(2−a)(ad+a−d)−ab

0 c
a
(a− 1)


 ,

and therefore the map F̃ can be changed into the mapping G : R2 → R2,

(
ξ

η

)
→

(
h10ξ

g01η

)
+

(
h20ξ

2 + h11ξη + h02η
2 +O1(3)

g11ξη + g02η
2 +O2(3)

)
, (3.3)

where

h10 := 2− a, g01 :=
ab

ad + a− d
, h20 := −a, g11 = −a2bd/(ad + a− d)2,

h11 := (−11a4bd− 17a2bd2 + 6d2ab + 19a3bd + 2a5bd + 17a3bd2 − a3b2d + a2b2d

−7a4bd2 − 10a2bd− 4a4d2b + 7a3d2b− 6a4db + 8a3db− 6a2d2b− 4a2db

−2a3b2 + 2a5db + a5b + 12a2d + a6d3 + a5b− 4a4b + 4a3b + 3a6d2

+3a6d− 2a4b + 2a3b + 2d2ab + 42a2d2 − 12ad2 − 60a3d2 − 30a3d

+21a4d3 + 45a4d2 − 35a3d3 − 7a5d3 − 18a5d2 + 34a2d3 + 30a4d

−15a5d− 18ad3 − 4a3 − 4a5 + 6a4 + 4d3 + a6 + a5bd2 + a4b2d + a4b2

+a5d2b− 3a3b2d + 2da2b2)a/((ad + a− d)(−3ad− 2a + 2d

+a2d + a2 + ab)(−3ad− 2a + 2d + a2d + a2 + ab)(a− 1)),
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h02 := a(−ca4d2b + 3ca3d2b− 2ca4db + 4ca3db− 3ca2d2b− 2ca2db− 6ca2bd + ca5bd2

+2ca5bd + ca4b2 + 9ca3bd2 − 7ca2bd2 − 5ca4bd2 − 9ca4bd− 2ca3b2 − 2ca3b2d

+ca2b2d + ca4b2d + ca3b3 + 2cd2ab + 13ca3bd− 8a2bd + a3b3 + a5b + 3ca4

−ca5 + 2cd3 − 2ca3 − 4a4b− 4a3b2 + 2a4b2 + a5bd2 + 2a5bd + ca5b− 4ca4b

−2ca3b2 + ca4b2 + 4ca3b− ca4b + ca3b + cd2ab + 6ca2d + 21ca2d2 − 6cad2

−27ca3d2 − 15ca3d + 6ca4d3 + 15ca4d2 − 14ca3d3 − ca5d3 − 3ca5d2

+16ca2d3 + 12ca4d− 3ca5d− 9cad3 + 13a3bd2 − 12a2bd2 − 6a4bd2

−10a4bd− 6a3b2d + 4a2b2d + 2a4b2d + 4d2ab + 16a3bd− 3ca3b2d + 2cda2b2

+ca4b2d + 4a3b)/(c(−3ad− 2a + 2d + a2d + a2 + ab)(a− 1)(−3ad− 2a

+2d + a2d + a2 + ab)2),

g02 := a2b(dca− dc− 3ad− 2a + 2d + a2d + a2 + ab)/(c(a− 1)(−3ad− 2a

+2d + a2d + a2 + ab)(ad + a− d)).

Theorem 2 If 1 < a < 4, then the map F undergoes flip bifurcation at the fixed point
E1 as a crossing 3 and b 6= 1+ d(a− 1)/a. More concretely, for the restriction of mapping F

to a one-dimensional center manifold, a stable 2-periodic orbit emerges near the fixed point
E1 for a− 3 > 0 small.

Proof We choose a as bifurcation parameter. Rewrite system (3.3) in the suspended
form 


ξ

a

η


 →




h10ξ

−a

g01η


 +




h20ξ
2 + h11ξη + h02η

2 +O1(3)
0

g11ξη + g02η
2 +O2(3)


 , (3.4)

so as to involve the parameter a explicitly in the discussion. The suspended system (3.4)
has a two-dimensional center manifold

W c
1 (O) = {(ξ, η, a) ∈ R3 : η = h1(ξ, a), h1(0, 3) = Dh1(0, 3) = 0, |ξ| < ε1, |a−3| < δ1}, (3.5)

where ε1 and δ1 are sufficient small positives. Assume that h1(ξ, a) has the following form

η = h1(ξ, a) = b1ξ
2 + b2ξa + b3a

2 +O1(3), (3.6)

which must satisfy

h1(h10ξ + h20ξ
2 + h11ξh1(ξ, a) + h02h

2
1(ξ, a) +O(3), a)

=g01h1(ξ, a) + g11ξh1(ξ, a) + g02h
2
1(ξ, a)

(3.7)

by the center manifold theorem (see p. 33–35 in [2]). Comparing coefficients of ξ2, aξ and
a2 in (3.7) we obtain that b1 = b2 = b3 = 0, and (3.6) has the determinative form

y = h1(ξ, a) = O1(3). (3.8)
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Substituting (3.14) into the first two equations in (3.4) yields
(

ξ

a

)
→

(
(2− a)ξ − aξ2 +O1(4)

−a

)
,

which defines a two-dimensional mapping (ξ, a) → f2(ξ, a) by f2(ξ, a) = (2−a)ξ−aξ2+O1(4).
From that there isn’t the term u3 in O1(3) in system (3.2), it is not difficult to follow that
there isn’t the term ξ3 in O1(4). One can check that

∂2f2

∂ξ∂a

∣∣∣∣
(ξ,a)=(0,3)

= −1

and [
1
2

(
∂2f2

∂ξ2

)2

+
1
3

(
∂3f2

∂ξ3

)]∣∣∣∣∣
(ξ,a)=(0,3)

= 18 > 0.

Hence the transversality condition and non-degeneracy condition of Theorem 4.3 in [9] are
satisfied, which implies that a flip bifurcation occurs at ξ = 0 as a crossing 3 and a stable
cycle of period two arises in system (3.3). So the map F undergoes flip bifurcation at the
fixed point E1 on the center manifold if a crosses 3 and b 6= 1 + d(a− 1)/a.

Theorem 3 If a 6= 3 and (a, b) crosses b = 1 + d(a− 1)/a, then system (2.1) undergoes
a transcritical bifurcation at the fixed point E1.

Proof We choose b as bifurcation parameter. Rewrite system (3.3) in the suspended
form 


ξ

b

η


 →




h10ξ

b

g01η


 +




h20ξ
2 + h11ξη + h02η

2 +O1(3)
0

g11ξη + g02η
2 +O2(3)


 . (3.9)

The suspended system (3.9) has a two-dimensional center manifold

W c
2 (O) =

{
(ξ, η, b) ∈ R3 : ξ = h2(η, b), h2(0, b0) = Dh2(0, b0) = 0,

|η| < ε2, |b− b0)| < δ2} ,
(3.10)

where ε2 and δ2 are sufficient small positives and b0 = 1 + d(a− 1)/a. Assume that h2(η, b)
has the following form

ξ = h2(η, b) = a1η
2 + a2ηb + a3b

2 +O(3), (3.11)

which must satisfy

h2(g01η + g11ηh2(η, b) + g02η
2 +O2(3), b) (3.12)

= h10h2(η, b) + h20h
2
2(η, b) + h11ηh2(η, b) + h02η

2 +O1(3) (3.13)

by the center manifold theorem (see p. 33–35 in [2]). Comparing coefficients of η2, bη and
b2 in (3.12) we obtain that a1g

2
01 = h02 + a1h01, a2g01 = a2h10, a3 = a3h10, from which we

find a2 = a3 = 0 and

a1 =
h02

g2
01 − h10

.
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Hence (3.11) has the determinative form

ξ = h2(η, b) =
h02

g2
01 − h10

η2 +O(3). (3.14)

Substituting (3.14) into the last two equations in (3.9) yields



b

η


 →




b

g01η + g02η
2 + g11h02

g2
01−h01

η3 +O(4)


 ,

which defines a two-dimensional mapping (η, b) → f3(η, b) by

f3(η, b) = g01η + g02η
2 +

g11h02

g2
01 − h01

η3 +O(4).

By a > 1 and d > 0 we obtain that

∂2f3

∂η∂b
|(η,b)=(0,b0) =

a

(a− 1)d + a
> 0 (3.15)

and

∂2f3

∂η2

∣∣∣∣
(η,b)=(0,b0)

=
2a2

[
1 + d

a
(a− 1)

]
g1(a)

c(a− 1)[(a− 1)d + a]g2(a)
> 0, (3.16)

where
g1(a) = (1 + d)a2 + (−2d + dc− 1)a− d(−1 + c)

and
g2(a) = (1 + d)a2 + (−2d− 1)a + d.

In fact, from a > 1, 0 < d < 1 and 0 < c < 1, one can check that g1(1) = g2(1) = 0,

g′1(a) = (2a− 1) + 2d(a− 1) + dc > 0

and
g′2(a) = (2a− 1) + 2d(a− 1) > 0,

which imply that g1(a) > 0 and g2(a) > 0. Hence (3.16) is true, and the mapping G

undergoes a transcritical bifurcation on the center manifold at E1 if a > 1, a 6= 3 and
b = 1 + (a− 1)b/a. The proof is completed.

Using the same arguments we have the following results.
Theorem 4 If 1 < b < 4, then the map F undergoes flip bifurcation at the fixed point

E2 when b crosses 3 and a 6= 1 + c(b− 1)/b. More concretely, the bifurcation is supercritical
and a stable 2-periodic orbit emerges near the fixed point E2 when b > 3. If b 6= 3 and (a, b)
crosses a = 1+c(b−1)/b, the transcritical bifurcation occurs at the fixed point E2 in system
(2.1).



No. 3 Bifurcations of Guzowska-Lúıs-Elaydi model 473

Sometimes flip bifurcation is also called period-doubling bifurcation (see p.114 in [9]).
Theorem 2 (resp. Theorem 4) shows that a 2-periodic oscillation of the population sizes in
species x (resp. y) emerges near the equilibrium (a− 1)/a (resp. (b− 1)/b).

4 Conclusion

In this paper we only discuss the codimension 1 local bifurcations at fixed points E0, E1

and E2. In fact, if a = 1 and b = 1 in Theorem 1, the map F has a double multiplier 1,
which implies that 1:1 resonance may occur at the fixed point E0 (see p. 410–415 in [9]).
If a = 3 (resp. b = 3) and b = 1 + d(a − 1)/a (resp. a = 1 + c(b − 1)/a), the map F has
eigenvalues -1 and 1. A fold-flip bifurcation may occur at the fixed point E1 (resp. E2) in
the system (2.1) (see e.g. [6]). All of these codimension 2 bifurcations will involve more
complicated computation. We leave these to our next work.
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关于Guzowska-Lúıs-Elaydi模型的分岔

钟吉玉

(岭南师范学院数学与计算科学学院, 广东湛江 524048)

摘要: 本文考虑了一个离散的Logistic竞争模型. 为了讨论分岔, 给出了不动点的拓扑类型及非双曲

的情况. 应用中心流行约化定理, 证明了跨临界分岔会在三个不动点上发生. 本文还证明了在两个不动点处,

跳跃分岔会发生, 同时稳定的周期2轨会出现.
关键词: Logistic竞争模型; 跨临界分岔; 跳跃分岔; 周期2轨; 中心流行
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