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Abstract: In this paper, we consider a discrete time logistic competition model. The topo-
logical types of fixed points and non-hyperbolic cases are given in order to investigate bifurcations.
By applying the center manifold reduction theorem we prove that transcritical bifurcation occurs
at three fixed points and stable 2-periodic orbits arise through flip bifurcation which happens at
two fixed points.
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1 Introduction

Discrete competition models, including intra-specific competition models and interspe-
cific competition models, play a important role in theoretical ecology and economics (see
e.g. [1, 3, 7, 8]). Intra-specific competition refers to the competition among individuals of
same species and interspecific competition to the competition between two or more species
for some limiting resource. When one species is a better competitor, interspecific compe-
tition negatively influences the other species by reducing population sizes or growth rates,
which in turn affects the population dynamics of the competitor. In 2011, based on the bio-
logical assumptions that each species is modeled by the logistic map, modeled species with
non-overlapping generations, without interspecific competition and that one species will neg-
atively affect the growth of the other species in the interspecific competition, Guzowska, Luis
and Elaydi [5] developed the following logistic competition model
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where z,, € [0,1] and y,, € [0, 1] represent the species = density and species y density at time
n respectively, the parameters a € (0,4] and b € (0,4] denote the intrinsic growth rates of
species x and y respectively, and the parameters ¢ € (0,1) and d € (0, 1) are the competition
parameters of species y and x respectively. As indicted in [5], system (1.1) has one extinction

fixed point Ey(0,0), two exclusion fixed points
Ei((a—1)/a,0), E»(0,(b—1)/b)

and one coexistence fixed point F3(zo,yo), where

ab—cb+c—0b ab—da—a+d

To = ab—cd = T ab—cd

In [5] the stability of the four fixed points were investigated by center manifold theorem
and Schwarzian derivative, the bifurcation scenario at Fs is given in the parameter space,
and, at fixed point Fj3, fold and flip bifurcations route to chaos are exhibited via numerical
simulations.

Up to now, what bifurcations happen at fixed points Ey, E; and Es is unknown. In this
paper we discuss analytically these bifurcations. At first we give all topological types of the
three fixed points and all non-hyperbolic cases in order to investigate bifurcations. Then,
we show that system (1.1) undergoes transcritical bifurcation at Fy as (a,b) crossing two
bifurcation curves a = 1 or b = 1. At last, we prove that, at fixed point E; (resp. FE,),
a flip bifurcation occurs for (a,b) crossing curves a = 3 (resp. b = 3) and a transcritical
bifurcation happens for (a,b) crossing b =1+ d(a —1)/a (resp. a =14 ¢(b—1)/b).

2 Transcritical Bifurcation at Ej

System (1.1) can be described equivalently by the planar mapping F : R? — R?,

az(l—z) by(l—y)

F = 2.1
(@) = (B A, (21)
whose Jacobian is given by
a(l—z)—az  —acz(l—x)
I+cy (1+cy)?
JF(z,y) = . (2.2)
—bdy(1—y)  b(1-y)—by
(14dx)? 1+dx

We first give the topological types of fixed point Ey and non-hyperbolic cases.

Lemma 1 Fixed point Ej is non-hyperbolic if and only if a = 1 or b = 1. Otherwise,
Ejy is one of the types in Table 1.

Proof By (2.2) the Jacobian evaluated at the fixed point Ey(0,0) is given by

JF(0,0) = <g 2) : (2.3)
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Table 1: The topological types of fixed point Ej

conditions types cases
O<a<l 0<b<1 stable node Ey-1
a
b>1 saddle Ey-11
0<b<1 saddle Ey-111
l<a<4
b>1 unstable node | Fyp-IV

which has eigenvalues A\; = a and Ay = b. Hence it is easy to obtain the results in Table 1
by [4] (see p. 194-200).

From the lemma it is obvious that the bifurcations occur at the fixed point Fq if a = 1
orb=1.

Theorem 1 If a (resp. b) crosses 1 and b # 1 (resp. a # 1), then the map F undergoes
a transcritical bifurcation at fixed point Ey(0,0).

Proof We prove one case that a crosses 1 and b # 1. The proof of the other case is
similar. From 0 < ¢ < 1,0 < d < 1,0 <z < 1 and 0 < y < 1, map (2.1) can expand the

following form at a =1 :

(:r)_}( x )_( % + cxy + O(3) >’ (2.4)
Y by by? + bdzy + O(3)

where O(3) is a function with order at least 3 in the variables. We choose € = a — 1 as a
bifurcation parameter to study the bifurcation of the mapping F' at the fixed point Ey(0,0),
where |e| < 1. We consider a perturbation of (2.4) as follows:

<:p>_}(a¢ >_<x2_:ce—|—cxy+0(3)>- (2.5)
Yy by by? + bdzy + O(3)

System (2.4) can be rewritten in the following suspended form

x T z? — xe + cxy + O(3),
e | — € — 0 . (2.6)
y by by? + bdzy + O(3),

By the center manifold theory (see p. 33-35 in [2]) the center manifold of system (2.6) can

expressed locally as follows:
We(0) = {(z,y,e) € R*|y = h(z,¢€),h(0,0) = Dh(0,0) =0, |z| < &, |e| < 6},
where ¢ and ¢ are sufficient small positives. Assume that h(x,€) has the following form
y = h(z,€) = c12° + cowe + c3€” + O(3), (2.7)
which must satisfy

h(z — 2° + ze — cah(z,€) + O(3),€) = bh(z,€) — bh*(x,€) — bdxh(z,€) + O(3) (2.8)
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by the center manifold theorem. Comparing coefficients of 2%, xe and €2 in (2.8) we obtain
that

Cl = Ca2 = C3 = O,
and (2.7) has the determinative form
y = h(z,e) = O(3). (2.9)

Substituting (2.9) into the first two equations in (2.6) yields

(:r > . ( x—x2+xe+(9(3)>

which defines a one-dimensional mapping (x,€) — fi(x,€) by

fi(z,€) =z — 2® + ze + O(3).

From o
5 gl =1 (2.10)
TOE | (2,0)=(0,0)
and 52
9 : -
L7 |(2,6)=(0,0)

we get that the map F undergoes a transcritical bifurcation on the center manifold at Ej
(see p. 504-507 in [10]). This completes the proof.

3 Flip Bifurcation and Transcritical Bifurcation at F; and FE,

In order that E; has biological significance, we have a > 1. By (2.2) the Jacobian
evaluated at the fixed point F; is given by

JF((a—1)/a,0) = (2 o Tala- ”) ! (3.1)

0 ad+a—d

whose eigenvalues are \; = 2 —a and A\ = ab/(ad + a — d). Hence we have the following
results.

Lemma 2 The fixed point E; is not hyperbolic if and only ifa = 3 or b = 14+d(a—1)/a.
Otherwise, E; is one of the types in Table 2.

Proof Solving |A\| = |2 —a| < 1 yields 1 < a < 3. Obviously Ay > 0, from Ay =
ab/(ad+a—d) <1weget 0<b<1l+d(a—1)/a. Hence E; is stable node for 1 < a <3
and 0 < b < 1+d(a—1)/a (refers to case E;-I). Similarly, we can obtain the other three
cases in Table 2. This completes the proof.

From the lemma, it is obvious that the bifurcation occurs at the fixed point F; if a = 3
orb=1+d(a—1)/a. Let u=2z — (a —1)/a and v = y. Then we get map F : R> — R?,

( u ) B ( (2 —a)u— g(a—1)v—au2—c(2—a)uv+§(a— 1)v? 4+ 01(3) ) 32

ab a’bd ab 2
v atda-D ¥~ G- W T ara@—nV T 0s(3)
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Table 2: The topological types of fixed point Ey

conditions types cases

0<b<1l+d(a—1)/a | stable node Ei-1
1<a<3

1+dla—1)/a<b< 4 saddle E-11

0<b<l+d(a—-1)/a saddle Eq-111
3<a<4

1+d(a—1)/a <b<4 | unstable node | E;-IV

Note that there isn’t the term u? in O;(3) and the term v in O5(3). Its Jacobian evaluated
at the O, JF(0,0), is equal to JF((a—1)/a,0). One can easily see that the matrix JF (0, 0)
has eigenvectors (1,0)7 and

ad+a—>b c T
<(2—-aXad4-a__d)__ab’a(a-—1)>

corresponding to Ay = 2 — a and \y = ab/(ad + a — d), respectively, where T" denotes the
transpose of matrices. One can check that Ay # Ao if a =3 or b = 1+ d(a —1)/a. Hence the
matrix JF(0,0) can be diagonalized by the change of variables (u,v)” = H;(&,n)T, where

1 ad+a—b
(2—a)(ad+a—d)—ab

H1: )
0 a1

and therefore the map F can be changed into the mapping G : R?2 — R2,

h hook? + h hoen? + O1(3
£ . 10§ n 20§ + h11én + 20277 + 01(3) ’ (3.3)
n go17 91161 + go2n® + O2(3)
where
h = 2—a = aib hog := —a = —ade/(ad +a— d)2
10 = ’gm'_ad—i-a—d’ 20 = , g11 = )
hyy = (—1la*bd — 17a®bd* + 6d*ab + 19a°bd + 2a°bd + 17a°bd? — a*b*d + a*b*d

—7a*bd?® — 10a*bd — 4a*d*b + Ta’d*b — 6a*db + 8a’db — 6a*d*b — 4a*db
—2a3b? 4 2a°db 4 a®b + 12a*d + a®d® + a®b — 4a*b + 4ab + 3a°d?
+3a°d — 2a*b + 2a®b + 2d%ab + 42a°d* — 12ad* — 60a*d* — 30a>d
+21a*d® + 45a*d* — 35a*d® — Ta®d® — 18a°d* + 34a*d® + 30a*d
—15a°d — 18ad® — 4a® — 4a® + 6a* + 4d* + a® + a°bd® + a*b*d + a*b?
+a®d*b — 3a*b*d 4 2da*b*)a/((ad + a — d)(—3ad — 2a + 2d

+a*d + a* + ab)(—3ad — 2a + 2d + a*d + a® + ab)(a — 1)),
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hoa = a(—cad’b+ 3ca*d*b — 2ca*db + 4ca’db — 3ca*d*b — 2ca’db — 6ca’bd + ca’bd?
+2ca’bd + ca’b? + 9cabd? — Tcabd? — 5ea*bd? — Ica’bd — 2ca®b® — 2ca®b?d
+ca’b?d + ca*b®d + ca®b® + 2cd*ab + 13ca®bd — 8a®bd + a®b® + ab + 3ca®
—ca® + 2cd® — 2ca® — 4a*b — 4a®V? 4 2a*b* + a°bd* + 2a°bd + ca®b — 4ca*b
—2ca’b? + cab® + 4ca®b — ca*b + ca®b + cd’ab + 6ca’d + 21ca’*d® — 6cad?
—27ca’d? — 15ca®d + 6ca*d® + 15ca*d? — 14ca’d® — ca®d® — 3ca®d?
+16ca’d® + 12ca*d — 3ca’d — 9cad® + 13a®bd* — 12abd* — 6a*bd*
—10a*bd — 6a°b*d + 4a*b?d + 2a*b*d + 4d*ab + 16a*bd — 3ca’b*d + 2cda’b?
+cab?*d + 4a°b) /(c(—3ad — 2a + 2d + a*d + a® + ab)(a — 1)(—3ad — 2a
+2d + a*d + a* + ab)?),

go2 = a’b(dca —dc — 3ad — 2a + 2d + a*d + a® + ab)/(c(a — 1)(—3ad — 2a
+2d + a*d + a® + ab)(ad + a — d)).

Theorem 2 If 1 < a < 4, then the map F' undergoes flip bifurcation at the fixed point
E; as a crossing 3 and b # 1+ d(a — 1)/a. More concretely, for the restriction of mapping F
to a one-dimensional center manifold, a stable 2-periodic orbit emerges near the fixed point
E; for a — 3 > 0 small.

Proof We choose a as bifurcation parameter. Rewrite system (3.3) in the suspended

§ hio€ hao&? + ha1&n + hoan® + O1(3)
a | — —a + 0 , (3.4)
Ui go17M g11€n + go2n* + O2(3)

so as to involve the parameter a explicitly in the discussion. The suspended system (3.4)

has a two-dimensional center manifold
WE(0) = {(€,m,a) € R® : = hy(€,a),h1(0,3) = Dhy(0,3) = 0,|¢| < e1,]a—3| < 6,1}, (3.5)
where ¢, and ¢; are sufficient small positives. Assume that hq(§, a) has the following form
n="hi(§a) =0+ bofa+ bza® + O (3), (3.6)
which must satisfy

hi(hio€ + hao€? 4+ hi1€hi (€, a) + hozhi (€, a) + O(3),a)

(3.7)
=go1h1(§, a) + g11€h1 (€, a) + goahi (€, a)

by the center manifold theorem (see p. 33-35 in [2]). Comparing coefficients of £2,a¢ and
a? in (3.7) we obtain that by = by = by = 0, and (3.6) has the determinative form

y=hi(§a) =0:(3). (3.8)
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Substituting (3.14) into the first two equations in (3.4) yields

(£>_ﬁ<9—ﬂﬁ—aé+0ﬂ®>

which defines a two-dimensional mapping (£,a) — f2(&, a) by f2(€,a) = (2—a)é—a&?+O;(4).
From that there isn’t the term u® in O;(3) in system (3.2), it is not difficult to follow that
there isn’t the term &3 in O;(4). One can check that

021, .
9€0a | (¢ 4)—(0.3)
and ,
L (9f, 1 (2°f
- - =1 .
[2<88> +3<6@ 0
(€,0)=(0,3)

Hence the transversality condition and non-degeneracy condition of Theorem 4.3 in [9] are
satisfied, which implies that a flip bifurcation occurs at & = 0 as a crossing 3 and a stable
cycle of period two arises in system (3.3). So the map F undergoes flip bifurcation at the
fixed point E; on the center manifold if a crosses 3 and b # 1+ d(a — 1)/a.

Theorem 3 If a # 3 and (a,b) crosses b = 1+ d(a — 1)/a, then system (2.1) undergoes
a transcritical bifurcation at the fixed point FEj.

Proof We choose b as bifurcation parameter. Rewrite system (3.3) in the suspended

form
13 hio€ hao&? + h11&n + hoan® + O1(3)
3 I N 0 . (3.9)
Ui goi7 g11€n + go2n* + Oa(3)

The suspended system (3.9) has a two-dimensional center manifold

WZC(O) = {(£7n7 b) eR®: §= h2(777 b)a h2(07bO) = Dh2(07 bO) =0,
(3.10)
I < €2,[b—bo)| < da},

where €5 and 0, are sufficient small positives and by = 1+ d(a — 1)/a. Assume that ha(n,b)

has the following form

& = ha(n,b) = a1n® + agnb + asb® + O(3), (3.11)

which must satisfy
ha(go1n + g11nha(n,b) + goan” + O2(3),b) (3.12)
= hioha(n,b) 4+ haoh3(n,b) + hiinha(n,b) + hoan® + O1(3) (3.13)

by the center manifold theorem (see p. 33-35 in [2]). Comparing coefficients of n?, by and
b% in (3.12) we obtain that a;g3; = ho2 +arho1, a2go1 = ashio, as = azhy, from which we

find ag = a3 = 0 and
ho2

) = —5—.
2
951 — h1o
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Hence (3.11) has the determinative form

€= ol b) = =% +O(3). (3.14)

Substituting (3.14) into the last two equations in (3.9) yields

b b
- )
n goun + goan® + A0 + O(4)

which defines a two-dimensional mapping (n,b) — f3(n,b) by

h .
f3(n,b) = go1n + goan” + &7}3 +04).

931 — hot
By a > 1 and d > 0 we obtain that
d*fs a
— >0 3.15
881)'("1’ =(0,bp) = (a—l)d+a> ( )
and
0? 20 [1+4(a—1 a
JZB = L+ ia = D] o:(a) >0, (3.16)
M |y py—opey  cla—1)[(a—1)d +algs(a)
where
gi(a) = (1 +d)a® + (=2d + dc — 1)a — d(—1 +¢c)
and

g2(a) = (1 +d)a* + (—2d — 1)a + d.

In fact, from a > 1,0 < d <1 and 0 < ¢ < 1, one can check that g,(1) = g2(1) =0,
gi(a)=(2a—1)+2d(a—1)+dc>0

and
gs(a) = (2a — 1) +2d(a — 1) > 0,

which imply that g;(a) > 0 and g2(a) > 0. Hence (3.16) is true, and the mapping G
undergoes a transcritical bifurcation on the center manifold at E; if a > 1, a # 3 and
b=1+ (a—1)b/a. The proof is completed.

Using the same arguments we have the following results.

Theorem 4 If 1 < b < 4, then the map F undergoes flip bifurcation at the fixed point
E; when b crosses 3 and a # 1+ ¢(b—1)/b. More concretely, the bifurcation is supercritical
and a stable 2-periodic orbit emerges near the fixed point Ey when b > 3. If b # 3 and (a, b)
crosses a = 1+ ¢(b—1)/b, the transcritical bifurcation occurs at the fixed point Es in system
(2.1).



No. 3 Bifurcations of Guzowska-Luis-Elaydi model 473

Sometimes flip bifurcation is also called period-doubling bifurcation (see p.114 in [9]).
Theorem 2 (resp. Theorem 4) shows that a 2-periodic oscillation of the population sizes in
species z (resp. y) emerges near the equilibrium (a — 1)/a (resp. (b—1)/b).

4 Conclusion

In this paper we only discuss the codimension 1 local bifurcations at fixed points Fy, E;
and F,. In fact, if a = 1 and b = 1 in Theorem 1, the map F has a double multiplier 1,
which implies that 1:1 resonance may occur at the fixed point Ey (see p. 410-415 in [9]).
If a =3 (resp. b=3) and b =1+ d(a—1)/a (resp. a =1+ ¢(b—1)/a), the map F has
eigenvalues -1 and 1. A fold-flip bifurcation may occur at the fixed point E; (resp. FEs) in
the system (2.1) (see e.g. [6]). All of these codimension 2 bifurcations will involve more

complicated computation. We leave these to our next work.
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