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Abstract: In this paper, we study the large deviation problem for the matrixvalued Ornstein-

Uhlenbeck processes. By constructing the exponedtial martingale, we obtain a large deviation upper

bound for its empirical process, which extends the corresponding result for Hermitian Brownian

motion.
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1 Introduction

Random matrix theory is focused on the asymptotic properties of random matrices
as their dimension tends to infinity. The spectral characteristics of a random matrix are
conveniently studied via its empirical spectral distribution. In the 1950s, motivated by
numerical experiments, Wigner (see [1]) proved that the empirical spectral distribution of
an n× n Hermitian matrix with on and upper diagonal entries being independent Gaussian
random variables converges to the semi-circle law µsc with density

ρ(x) =

{ 1
2π

√
4− x2, |x| ≤ 2;

0, |x| > 2.

It was later shown that the distribution of the matrix entries did not play a significant role
and convergence to the semicircle law holds under more general conditions and holds for
many other ensembles (see [2, 3]), and much of work devoted to weaken the assumptions
about the ensembles (see [4]). The weakest known condition was given by Pastur (see [5])
and it was proved necessary by Girko (see [6]).

Dyson (see [7]) considered a matrix-valued random process with matrix entries are
independent Brownian motions, i.e., symmetric (resp. Hermitian) Brownian motion. It can
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be described on the space Hn,γ , γ = 1, symmetric (resp. γ = 2, Hermitian) matrices of
dimension n, as the random process Hn,γ , γ = 1, 2 with entries {Hk,l

n,γ(t), t > 0}:

Hk,l
n,γ =

{
1√
nγ

(
Bk,l + i(γ − 1)B′

k,l

)
, if k < l;

√
2√

nγ
Bl,l, if k = l,

where (Bk,l, B
′
k,l), 1 ≤ k ≤ l ≤ N is a collection of independent real valued standard

Brownian motions. This leads to more effective tools, such as the method of stochastic
analysis and the theory of martingale, for the study of Gaussian random matrices since a
standard Gaussian variable with mean 0 and variance 1 can be seen as a standard Brownian
motion at time 1. The eigenvalue processes of Hn,γ corresponding to a diffusion model of an
interacting particles system with electrostatic inter-particle repulsion which can be described
by n coupled Itô stochastic equations:

dλi(t) =
√

2√
nγ

dβi(t) +
1
n

∑
j:j 6=i

1
λi(t)− λj(t)

dt, i = 1, · · · , n,

where βi, i = 1, · · · , n are independent Brownian motions. The associated empirical process

Ln(t) :=
1
n

N∑
i=1

δλi(t)

is an element of M1(R), the space of probability measure on R, where δx denotes the unit
mass at x. Then, under quit general assumptions, the sequence Ln(·) was shown to converge
in law to a determinstic M1(R)-valued process provided that Ln(0) → µ in distribution, and
thus a dynamic proof of Wigner’s theorem was established (see [8]).

Chan (see [9]) studied the role of the Wigner semi-circle law from the point of view
of symmetric matrix which entries are independent Ornstein-Uhlenbeck processes, it can be
described on the space of n-dimension symmetric matrices as the random process Xt:

dXt = −1
2
Xtdt +

1
2
√

n

(
dB + dBT

)
, (1.1)

where B is a standard matrix-valued Brownian motion and BT denotes the transpose of
B. He also derived a system of Itô stochastic equations for the eigenvalues of Xt which
corresponds to a diffusion model of an interacting particles system with linear drift towards
the origin and electrostatic inter-particle repulsion, i.e.,

dλi(t) =
1√
n

dβi(t) +
1
2n

∑
k 6=i

1
λi(t)− λk(t)

dt− 1
2
λi(t)dt, i = 1, · · · , n, (1.2)

where βi, i = 1, . . . , n are independent Brownian motions. Its associated empirical process
converges weakly to a measure-valued process which characterized by a weak solution of
a deterministic ordinary differential equation and the Wigner semi-circle law is one of the
equilibrium points of this limiting equation.
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The purpose of this paper is to study the large deviation properties of the law of the
empirical process associate with X defined by (1.1). This problem was studied by several
authors, Dawsont et al. (see [10]) studied it from the McKean-Vlasov limit, Duvillard et al.
(see [11]) studied the same problem for symmetric (Hermitian) Brownian motion and it was
completed by Guionnet et al. (see [12]).

2 Main Result and the Proof

We first state the assumptions and some notations for our result.

H1 The initial values µn(0) := Ln(0) =
1
n

n∑
i=1

δλi(0) are weak convergence to some

limiting measure µ, where λ1(0), . . . , λn(0) are the initial condition of (1.2).
H2 sup

n
〈µn(0), log(1 + x2)〉 < +∞.

Let C([0, T ],R) be the space of continuous function on [0, T ] equipped with the uni-
form convergence topology and C([0, T ],M1(R)) be the space of continuous measure-valued
processes furnished with the topology generated by the weak topology on M1(R) and the
uniform convergence topology on [0, T ]. Denote

D =
{

f : f ∈ C2,1
b (R× [0, T ]) and x∂xf(x, t) is bounded

}

and

〈f, v〉 =
∫

f(x)v(dx), f ∈ D

for any measure v.
Next, we introduce a candidate for a rate function on C([0, T ],M1(R)). By Itô formula

and (1.2) for any f ∈ C2,1
b (R× [0, T ]),

f
(
t, λi(t)

)
=f

(
0, λi(0)

)
+

∫ t

0

∂sf(s, λi(s))ds

+
∫ t

0

∂xf
(
s, λi(s)

)
dλi(s) +

1
2

∫ t

0

∂2
xf

(
s, λi(s)

)
d〈λi(s)〉

=f
(
0, λi(0)

)
+

∫ t

0

∂sf
(
s, λi(s)

)
ds +

1√
n

∫ t

0

∂xf
(
s, λi(s)

)
dβi

+
∫ t

0

∂xf
(
s, λi(s)

)
(

1
2n

∑
j:j 6=i

1
λi − λj

− 1
2
λi

)
ds +

1
2n

∫ t

0

∂2
xf

(
s, λi(s)

)
ds.

Thus

〈f(t, ·), Ln(t)〉

=〈f(0, ·), Ln(0)〉+
∫ t

0

〈
∂sf(s, ·), Ln(s)

〉
ds + Mn

f (t) +
1
2n

∫ t

0

〈
∂2

xf(s, ·), Ln(s)
〉
ds

+
∫ t

0

{
1

4n2

∑
j 6=i

∂xf
(
s, λi(s)

)− ∂yf
(
s, λj(s)

)

λi − λj

− 1
2n

n∑
i=1

∂xf
(
s, λi(s)

)
λi(s)

}
ds
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=〈f(0, ·), Ln(0)〉+
∫ t

0

〈
∂sf(s, ·), Ln(s)

〉
ds + Mn

f (t) +
1
2n

∫ t

0

〈
∂2

xf(s, ·), Ln(s)
〉
ds

− 1
2

∫ t

0

〈
x∂xf(s, ·), Ln(s)

〉
ds +

1
4

∫ t

0

∫∫

x6=y

∂xf
(
s, x

)− ∂yf
(
s, y

)

x− y
dLn(s)(x)dLn(s)(y)ds

=〈f(0, ·), Ln(0)〉+
∫ t

0

〈
∂sf(s, ·), Ln(s)

〉
ds + Mn

f (t) +
1
4n

∫ t

0

〈
∂2

xf(s, ·), Ln(s)
〉
ds

− 1
2

∫ t

0

〈
x∂xf(s, ·), Ln(s)

〉
ds +

1
4

∫ t

0

∫∫
∂xf(s, x)− ∂yf(s, y)

x− y
dLn(s)(x)dLn(s)(y)ds,

where Mn
f (t), t ≤ T is a martingale given by

Mn
f (t) =

1
n3/2

n∑
i=1

∫ t

0

∂xf
(
s, λi(s)

)
dβi.

For any f , g ∈ D, s ≤ t and v ∈ C([0, T ],M1(R)), set

Ss,t(v, f) =
∫

f(x, t)dvt(x)−
∫

f(x, s)dvs(x)−
∫ t

s

∫
∂uf(x, u)dvu(x)du

+
1
2

∫ t

0

∫
x∂xf(x, u)dvu(x)du− 1

4

∫ t

s

∫∫
∂xf(x, u)− ∂yf(y, u)

x− y
dvu(x)dvu(y)du,

(2.1)

〈f, g〉s,t
v =

∫ t

s

∫
∂xf(x, u)∂xg(x, u)dvu(x)du

and

S
s,t

(v, f) = Ss,t(ν, f)− 1
2
〈f, f〉s,t

v .

Our main result is as follows:
Theorem 2.1 Under the Assumption H1 and H2,

{
Ln(t), t ∈ [0, T ]

}
n≥1

obeys a large
deviation upper bound on C([0, T ],M1(R)) with speed n2 and with good rate function

S(v) =





S0,T (v) := sup
f∈D

sup
0≤s≤t≤T

S
s,t

(v, f), if v0 = µ;

∞, otherwise.

Thanks to the exponential tightness result established in [9], to prove Theorem 2.1, by
the usual scheme (see [13]), we only need to show that the rate function is good and a weak
large deviation upper bound holds. We first recall the exponential tightness result (see [9]
Theorem 3.3):

Lemma 2.2 Under the Assumption H1 for any L > 0, there exists a compact set
KL ⊂M1(R) such that

lim sup
n→∞

1
n2

log P (Ln /∈ KL) ≤ −L.
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Next, we show that S is good and a weak large deviation upper bound holds for{
Ln(t), t ∈ [0, T ]

}
n≥1

.
Lemma 2.3 S is a good rate function, i.e., S is a non-negative function and for any

l ≥ 0, the level set
{
v ∈ C([0, T ],M1(R)) : S(v) ≤ l

}
is compact.

Proof First, we have

S0,T (v) = sup
f∈D

sup
0≤s≤t≤T

(
Ss,t(v, f)− 1

2
〈f, f〉s,t

v

)

= sup
f∈D

sup
0≤s≤t≤T

sup
λ∈R

(
Ss,t(v, λf)− 1

2
〈λf, λf〉s,t

v

)
= sup

f∈D
sup

0≤s≤t≤T

(
Ss,t(v, f)

)2

2〈f, f〉s,t
v

. (2.2)

Hence, S is non-negative for v0 = µ, and as a supremum of continuous functions on
C([0, T ],M1(R)), S is lower semi-continuous. Thus, we only need to show that the level
set of S is compact. By Lemma 5.4 in [10], it is suffice to show that it is contained in a
compact set of the form:

K =
{

v ∈ C([0, T ],M1(R)), vt ∈ C,∀t ∈ [0, T ]
}
∩

(⋂
n≥0

{
t → vt(gn) ∈ Cn

})
, (2.3)

where C and Cn are compact subsets of M1(R) and C([0, T ],R), respectively, (gn)n≥0 is a
family of bounded continuous functions dense in Cc(R).

According to Prohorov’s theorem, C in (2.3) can be taken as

C(`) =
⋂

m∈N

{
v ∈M1(R) : v(|x| ≥ `m) ≤ 1

m

}

with a positive real valued sequence ` = (`m)m∈N. Moreover, by Arzéla-Ascoli’s theorem and
the fact that t → vt(gn) (∀n ∈ N) is uniformly bounded on C([0, T ],P(R)) for gn is bounded,
we can take Cn in (2.3) of the form

C(δ) =
⋂

m∈N

{
h ∈ C([0, T ],R), sup

|t−s|≤δm

|h(t)− h(s)| ≤ 1
m

}

with a positive sequence δ = (δm)m∈N. Thus, to finish the proof, we need to show that for
any v ∈ {

S(ν) ≤ l
}

(∀l > 0) and any integer m,

• there is a positive real number `l
m such that

sup
0≤s≤T

vs(|x| ≥ `l
m) ≤ 1

m
. (2.4)

• there exists a positive real number δl
m such that

sup
|t−s|≤δl

m

|vt(f)− vs(f)| ≤ 1
m

, ∀f ∈ D. (2.5)
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For 0 < ε ≤ 1, set fε(x) = log(1 + x2(1 + εx2)−1) ∈ D, then

α := sup
0<ε≤1

‖∂xfε‖∞ + sup
0<ε≤1

‖x∂xfε‖∞ + sup
0<ε≤1

‖∂2
xfε‖∞ < +∞,

and
∣∣∣∣
∂xfε(x)− ∂yfε(y)

x− y

∣∣∣∣ ≤ α.

Taking f = fε in the supremum of (2.2), we have that for any t ∈ [0, T ] and any v ∈ {
S(·) ≤

l
}
,

(
Ss,t(v, fε)

)2 ≤ 2l 〈fε, fε〉s,t
v ≤ 2α2lt. (2.6)

Thus by (2.1), we have

vt(fε) ≤ v0(fε) +
5
4
αt + α

√
2lt ≤ v0(fε) + 2αt + 2α

√
lt,

let ε ↓ 0, by monotone convergence theorem, we have

sup
t∈[0,T ]

vt(1 + x2) ≤ 〈µ, log(1 + x2)〉+ 2α(T +
√

lT ) = C0 + 2α(T +
√

lT ).

Then by Chebyshev’s inequality and Assumption H2, for any v ∈ {
S(·) ≤ l

}
and any

K ∈ R+,

sup
t∈[0,T ]

vt(|x| ≥ K) = sup
t∈[0,T ]

vt(x2 ≥ K2)

≤ supt∈[0,T ] vt(1 + x2)
1 + K2

≤ C0 + 2α(T +
√

lT )
1 + K2

.

So (2.4) is proved. Again by (2.6), we have for any f ∈ D,

Ss,t(v, f) ≤
√

2l 〈f, f〉s,t
v ≤

√
2l

∥∥f ′
∥∥
∞

√
|t− s|.

Thus by (2.1), for any v ∈ {
S(·) ≤ l

}
and 0 ≤ s ≤ t ≤ T ,

∣∣〈f, vt − vs〉
∣∣ ≤

√
2l

∥∥f ′
∥∥
∞

√
|t− s|+ 1

4

∥∥f ′′
∥∥
∞|t− s|+ 1

2
‖xf ′(x)‖∞|t− s|.

This complete the proof of (2.5).
To end the proof of the main result, we would only need to show that

{
Ln(t), t ∈

[0, T ]
}

n≥1
obeys the weak upper bound of large deviation.

Lemma 2.4 For v ∈ C([0, T ],M1(R)),

lim
r→0

lim sup
n→∞

1
n2

log P
(
Ln ∈ B(v, r)

) ≤ −S(v),

where B(v, r) denotes the open ball with center v and radius r.



No. 2 Large deviation upper bound for the law of matrix-valued Ornstein-Uhlenbeck process 259

Proof First, since Ln(0) is deterministic and converges to µ, if v0 6= µ,

lim
r→0

lim sup
n→∞

1
n2

log P
(
Ln ∈ B(v, r)

)
= −∞.

Second, take v ∈ C([0, T ],M1(R)) and f ∈ D, by (2.1), we have that Ss,t(Ln, f) −
1
n
ε(f)s,t

Ln
, s ≤ t is a martingale for the filtration of the Brownian motion β, and equals to

1
n3/2

n∑
i=1

∫ t

s

∂xf
(
s, λi(s)

)
dβi(s),

its bracket is 〈f, f〉s,t
Ln

, where

ε(f)s,t
v =

1
4

∫ t

s

〈
∂2

xf(s, ·), vs

〉
ds.

Since f ′ is uniformly bounded, we have for v ∈ C([0, T ],M1(R)),

M(v, f)(t) = exp
{

n2Ss,t(v, f)− n2

2
〈f, f〉s,t

v + nε(f)s,t
v

}

is a martingale. Moreover, C([0, T ],R) 3 v → S̄s,t(v, f) = Ss,t − 1
2
〈f, f〉s,t

v is continuous as
f and its two derivatives are bounded continuous whereas the function

v →
∫ t

s

∫
∂2

xf(s, x)dvu(x)du

is uniformly bounded by T‖∂2
xf‖∞. Therefore, for any v ∈ C([0, T ],M1(R)) and r > 0, we

have for s ≤ t ≤ T ,

P
(
Ln ∈ B(v, r)

)
= E

(
M(Ln, f)
M(Ln, f)

1Ln∈B(v,r)

)

≤ exp

{
−n2 inf

µ∈B(v,r)

(
Ss,t(µ, f)− 1

2
〈f, f〉s,t

µ

)
+ sup

µ∈B(v,r)

nε(f)s,t
µ

}

= exp

{
−n2S̄s,t(v, f) + sup

µ∈B(v,r)

nε(f)s,t
µ

}
,

where we have used the fact that E
(
M(Ln, f)(t)

)
= 1 since the process

{
M(Ln, f)(t), s ≤ t

}

is a martingale. Hence, for any f ∈ D,

lim
r→0

lim sup
n→∞

1
n2

log P
(
Ln ∈ B(v, r)

) ≤ −S
s,t

(v, f),

optimizing over f gives

lim
r→0

lim sup
n→∞

1
n2

log P
(
Ln ∈ B(v, r)

) ≤ − sup
f∈D

sup
0≤s≤t≤T

S
s,t

(v, f) ≤ −S0,T (v, f).

Thus the proof is completed.
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矩阵值 Ornstein-Uhlenbeck 过程的大偏差上界

陈 磊

(江苏师范大学数学与统计学院, 江苏徐州 221116)

摘要: 本文研究了矩阵值Ornstein-Uhlenbeck 过程的大偏差问题. 通过构造指数鞅, 得到了矩阵

值Ornstein-Uhlenbeck过程的经验谱过程的大偏差上界, 推广了厄米特布朗运动相应的结果.
关键词: 大偏差; Ornstein-Uhlenbeck 过程; 经验过程
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