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Abstract: In this paper, a class of initial value problem for the singularly perturbed frac-

tional order nonlinear differential equation is considered. Using the stretched variable method, a

formal solution and its asymptotic expansion are constructed. And the uniformly valid asymptotic

expansion of solution is proved by using the theory of differential inequalities. From obtained result,

we know that this approximate solution possesses good accuracy.
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1 Introduction

In the natural, many physical problems can be solved using the fractional order deriva-
tive. For example, in many complicated seepage flow, heat conduction phenomena and so
on, they can be solved using the idea of fractional order derivative [1]. Fractional order
derivative possesses its broad practice sense. However, solving the fractional order differen-
tial equation is very difficult. In this paper, we obtain asymptotic solution for the fractional
order differential equation using the singularly perturbed theory, and get its valid estimation
using the theory of differential inequalities.

The nonlinear singularly perturbed problem was a very attractive object in the academic
circles [2]. During the past decade, many asymptotic methods were developed, including
the boundary layer method, the methods of matched asymptotic expansion, the method of
averaging and multiple scales. Recently, many scholars such as Hovhannisyan and Vulanovic
[3], Abid, Jieli and Trabelsi [4], Graef and Kong [5], Guarguaglini and Natalini [6] and Barbu
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and Cosma [7] did a great deal of work. Using the method of singular perturbation and others
Mo et al. studied also a class of nonlinear boundary value problems for the reaction diffusion
equations, a class of activator inhibitor system, the shock wave, the soliton, the laser pulse
and the problems of atmospheric physics and so on [8–19]. In this paper, we constructed
asymptotic solution for the fractional order differential equation, and proved it’s uniformly
valid.

The α-th order fractional order derivative Dα
xu of u(x) is defined by

Dα
xu =

1
Γ(1− α)

d

dx

∫ x

0

(x− t)−αu(t)dt,

where Γ is the Gamma function, α is a positive fraction less than 1.
Consider the following singularly perturbed initial value problem,

εDα
xDα

xu + a(x)
du

dx
= f(x, u, ε), x ≥ 0, (1)

u(0, ε) = A(ε), (2)

ε
du

dx
(0, ε) = B(ε), (3)

where ε is a positive small parameters.
We need the following hypotheses:
[H1] α > 0, f(x, u, ε), A(ε) and B(ε) are sufficiently smooth with respect to their argu-

ments in corresponding domains;
[H2] fε > 0, fu ≤ −c < 0, where c is a constant.

2 Outer Solution

From the hypotheses, there is a solution U0(x) of the reduced equation for original
problem (1)–(3):

a(x)
dU0

dx
= f(x,U0, 0), x ≥ 0, (4)

U0(0) = A(0). (5)

We construct the outer solution U of the original problem (1)–(3). Set

U(x, ε) ∼
∞∑

i=0

Ui(x)εi. (6)

Substituting (6) into eq. (1), developing the nonlinear term f(x,U, ε) in ε, and equating
coefficients of the same powers of ε both sides, from the solution U0(x) of the reduced
equations (4), (5), we obtain that

a(x)
dUi

dx
= Fi −Dα

xDα
xUi−1, x ≥ 0, i = 1, 2, · · · , (7)

Ui(0) = Ai, i = 1, 2, · · · , (8)
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where Ai = 1
i!
[∂iA

εi ]ε=0 and Fi (i = 1, 2, · · · ) are determined functions, their constructions are
omitted.

From the defined of the α-th order fractional order derivative Dα
xu, it is easy to see that

eq. (7) can translated by the following Volterra integral equation:
∫ x

0

(x− t)−αUi(t)dt =
∫ x

0

Γ(1− α)
Fi(t)−Dα

t Dα
t Ui−1(t)

a(t)
dt + D0, (9)

where D0 is an arbitrary constant, which is decided by condition (8). From Volterra integral
equation (9) and condition (8), we can obtain the solution Ui(x) (i = 1, 2, · · · ), successively.
Substituting Ui(x) into eq. (6), then we can obtain the outer solution U(x, ε) for the original
problem (1)–(3). But it may not satisfy initial condition (3), so that we need to construct
the initial layer corrective term V near x = 0.

3 Initial Layer Correction

Let the solution of the initial value problem (1)–(3) is the form

u ∼ U(x, ε) + V (τ, ε) (10)

with

V (τ, ε) ∼
∞∑

i=0

Vτεi, (11)

where τ = x/ε is a stretched variable [2].
Substituting (10) and (11) into eqs. (1)–(3), developing the nonlinear term f,A(ε) and

B(ε) in ε and equating coefficients of the same powers of ε in both sides of the equations,
we obtain

Dα
τ Dα

τ Vi + a(x)
dVi

dτ
= Gi, τ ≥ 0, i = 0, 1, 2, · · · , (12)

Vi|τ=0 = 0, i = 0, 1, 2, · · · , (13)

V ′
i |τ=0 = Bi − U ′

i |τ=0 = 0, i = 0, 1, 2, · · · , (14)

where Bi = 1
i!
[∂iB

εi ]ε=0, and Gi are determined functions which constructions are omitted
too.

From the fractional order differential equation (12), we can obtain the following Volterra
integral systems for (Vi, Zi) (i = 0, 1, 2, · · · ):

∫ τ

0

[(τ − t)−α − Γ(1− α)a(t)]Zi(t)dt =
∫ τ

0

Γ(1− α)Gi(t)dt + D1, (15)

∫ τ

0

Γ(τ − t)Vi(t)dt

∫ τ

0

Γ(1− α)Zi(t)dt + D2, (16)

where Di (i = 1, 2) are arbitrary constants, which are decided by conditions (13) and (14).
From the linear Volterra integral system (15), (16) and conditions (13), (14), we can obtain
the solutions (Vi, Zi) (i = 0, 1, 2, · · · ), successively.
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Substituting Vi (i = 0, 1, 2, · · · ), into eq. (11), we can obtain the initial layer corrective
term V (τ, ε) of the solution u(x, ε) for the original problem (1)–(3).

From eqs. (6) and (11) and the above obtained Ui and Vi (i = 0, 1, 2, · · · ), we obtain
the asymptotic expansion of solution for the initial value problem of 2α-th order fractional
order differential equations (1)–(3):

u ∼
∞∑

i=0

[Ui + Vi]εi, x ≥ 0, 0 < ε ¿ 1. (17)

And we can prove inductively that Vi(τ) (i = 0, 1, 2, · · · ) possess initial layer behavior near
x = 0.

Vi(τ) = O(exp(−kiτ)) = O(exp(−kix/ε)), 0 < ε ¿ 1, i = 0, 1, 2, · · · , (18)

where ki (i = 0, 1, 2, · · · ) are positive constants.

4 Uniform Validity of the Asymptotic Solution

Now we prove that the asymptotic solution obtained above is a uniformly valid asymp-
totic expansion in ε.

Definition There are two smooth functions u and u, if u ≥ u and they satisfy inequal-
ities, respectively:

εDα
xDα

xu + a(x)
du

dx
− f(x, u, ε) ≤ 0, u(0, ε) ≥ A(ε), εu′(0, ε) ≥ B(ε), 0 ≤ x ≤ X0,

εDα
xDα

xu + a(x)
du

dx
− f(x, u, ε) ≥ 0, u(0, ε) ≤ A(ε), εu′(0, ε) ≤ B(ε), 0 ≤ x ≤ X0,

where X0 is a constant large enough, then we say that u and u are upper and lower solutions
of the problem (1)–(3), respectively.

Theorem 1 Assume that [H1], [H2] hold. If u(x, ε) and u(x, ε) are upper and lower
solutions of the initial value problem (1)–(3) for the singularly perturbed fractional order
differential equation, respectively, then there is a solution u(x, ε) of the initial value problem
(1)–(3) such that

u(x, ε) ≤ u(x, ε) ≤ u(x, ε).

Proof We construct two function sequences which are decided by the following recur-
rence relations:

εDα
xDα

xun+1 + a(x)
dun+1

dx
= f(x, un, ε), n = 0, 1, 2, · · · , (19)

un+1(0, ε) = A(ε) ε
dun+1

dx
(0, ε) = B(ε), n = 0, 1, 2, · · · . (20)

Let u0 = u and u0 = u are initial iteration functions of eqs. (19) and (20), respectively,
and we have un and un, successively. Thus we obtain two function sequences {un} and {un}.
Now we consider their convergence.
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Let y0 = u0 − u1, from hypothesis [H2], we have

εDα
xDα

xy0 + a(x)y′0 = εDα
xDα

xu0 + a(x)u′0 − εDα
xDα

xu1 − a(x)u′1
≤ f(x, u0, 0)− f(x, u0, 0) = 0,

y0|x=0 = u0|x=0 − u1|x=0 = 0, y′0|x=0 = u′0|x=0 − u′1|x=0 = 0.

Thus from the extremum principle [2], we have y0 ≥ 0. That is u0 ≥ u1.
If un ≥ un+1, set y0 = un − un+1, then we have

εDα
xDα

xyn + a(x)y′n = εDα
xDα

xun + a(x)u′n − εDα
xDα

xun+1 − a(x)u′n+1

≤ f(x, u(n−1), ε)− f(x, un, ε) ≤ 0,

yn|x=0 = un|x=0 − un−1|x=0, y′n|x=0 = u′n|x=0 − u′n−1|x=0).

Thus yn ≥ 0, that is un ≥ un+1 (n ≥ 1).
From inductive method, we know u = u0 ≥ u1 ≥ · · · ≥ un ≥ un+1 ≥ · · · .

Analogously, we have u = u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ · · · and un ≥ un, n =
0, 1, 2, · · · .

From the above, and the Arzela-Ascoli theorem, there is a solution u(x, ε) of the initial
value problem (1)–(3) such that u(x, ε) ≤ u(x, ε) ≤ u(x, ε). The proof of Theorem 1 is
completed.

Theorem 2 Under hypotheses [H1], [H2], there is a solution u(x.ε) of the initial value
problem (1)–(3) for the singularly perturbed fractional order differential equation, which
possesses the following uniformly valid asymptotic expansion in ε on x ∈ [0, X0].

u =
m∑

i=0

[Ui(x) + Vi(x/ε)]εi + O(εm+1), x ∈ [0, X0], 0 < ε ¿ 1. (21)

Proof First, we construct the auxiliary functions α(x, ε), β(x, ε):

α(x, ε) =
m∑

i=0

[Ui(x) + Vi(x/ε)]εi − rεm+1 x ∈ [0, X0], (22)

β(x, ε) =
m∑

i=0

[Ui(x) + Vi(x/ε)]εi + rεm+1 x ∈ [0, X0], (23)

where r is a positive constant large enough to be chosen below, m is an arbitrary positive
integer.

Obviously, we have
α(x, ε) ≤ β(x, ε), (24)

and for ε small enough, there is a positive constant δ1 such that

β(0, ε) =
m∑

i=0

[Ui(0) + Vi(0)]εi + rεm+1,

≥ A(ε)− δ1ε
m+1 + rεm+1 = A(ε) + (r − δ1)εm+1.



244 Journal of Mathematics Vol. 36

Thus selecting r ≥ δ1, we have
β(0, ε) ≥ A(ε). (25)

Analogously, we have

α(0, ε) ≤ A(ε), εα′(0, ε) ≤ B(ε) ≤ εβ′(0, ε). (26)

Now we prove that

εDα
xDα

xα + a(x)
dα

dx
− f(x, α, ε) ≥ 0, 0 < x ≤ X0, (27)

εDα
xDα

xβ + a(x)
dβ

dx
− f(x, β, ε) ≤ 0, 0 < x ≤ X0. (28)

In fact, from the hypotheses and eq. (18), for ε small enough, there is a positive constant
δ2, such that

εDα
xDα

xβ + a(x)
dβ

dx
− f(x, β, ε)

= εDα
xDα

x

m∑
i=0

[Ui(x) + Vi(x/ε)]εi + a(x)
m∑

i=0

[U ′
i(x) + V ′

i (x/ε)]εi

−f(x,

m∑
i=0

[Ui(x) + Vi(x/ε)]εi + rεm+1, ε)

≤ −f(x,U0, 0)−
m∑

i=0

[fu(x,U0)Ui + Fi −Dα
xDα

xUi−1 − a(x)U ′
i ]ε

i

+
m∑

i=0

[Dα
τ Dα

τ Vi + a(x)V ′
i −Gi]εi + [f(x,

m∑
i=0

[Ui(x) + Vi(x/ε)]εi, ε)

−f(x,

m∑
i=0

[Ui(x) + Vi(x/ε)]εi + rεm+1, ε)] + δ2ε
m+1 ≤ (−cr + δ2)εm+1.

Selecting r ≥ δ2/c, then we have eq. (28). Analogously, we can prove eq. (27). From
eqs. (24)–(27), α and β are upper and lower solutions respectively. From Theorem 1, there
is a solution u(x, ε) of the initial value problem (1)–(3) such that α(x, ε) ≤ u(x, ε) ≤ β(x, ε).
And from eqs. (22) and (23), we have relation (21). The proof of Theorem 2 is completed.
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奇摄动分数阶微分方程的渐近解
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摘要: 本文研究了一类奇摄动非线性分数阶微分方程初值问题. 利用伸长变量构造出解的形式展开

式, 并利用微分不等式理论, 证明了解的一致有效的渐近式. 所得的结果具有较好精度的近似解.
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