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Abstract: In this paper, a class of initial value problem for the singularly perturbed frac-
tional order nonlinear differential equation is considered. Using the stretched variable method, a
formal solution and its asymptotic expansion are constructed. And the uniformly valid asymptotic
expansion of solution is proved by using the theory of differential inequalities. From obtained result,
we know that this approximate solution possesses good accuracy.
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1 Introduction

In the natural, many physical problems can be solved using the fractional order deriva-
tive. For example, in many complicated seepage flow, heat conduction phenomena and so
on, they can be solved using the idea of fractional order derivative [1]. Fractional order
derivative possesses its broad practice sense. However, solving the fractional order differen-
tial equation is very difficult. In this paper, we obtain asymptotic solution for the fractional
order differential equation using the singularly perturbed theory, and get its valid estimation
using the theory of differential inequalities.

The nonlinear singularly perturbed problem was a very attractive object in the academic
circles [2]. During the past decade, many asymptotic methods were developed, including
the boundary layer method, the methods of matched asymptotic expansion, the method of
averaging and multiple scales. Recently, many scholars such as Hovhannisyan and Vulanovic
[3], Abid, Jieli and Trabelsi [4], Graef and Kong [5], Guarguaglini and Natalini [6] and Barbu
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and Cosma [7] did a great deal of work. Using the method of singular perturbation and others
Mo et al. studied also a class of nonlinear boundary value problems for the reaction diffusion
equations, a class of activator inhibitor system, the shock wave, the soliton, the laser pulse
and the problems of atmospheric physics and so on [8-19]. In this paper, we constructed
asymptotic solution for the fractional order differential equation, and proved it’s uniformly

valid.

The a-th order fractional order derivative D%u of u(x) is defined by

ml_a)jx /Oz(g; ) ou(t)dt,

where I' is the Gamma function, « is a positive fraction less than 1.

o,
Diu =

Consider the following singularly perturbed initial value problem,

eDIDgu +a(x) S = [a,u,2), >0 (1)
u(0,e) = Afe), 2)
du

20,2) = Ble), (3)

where ¢ is a positive small parameters.

We need the following hypotheses:

[Hi] @ >0, f(x,u,e), A(e) and B(e) are sufficiently smooth with respect to their argu-
ments in corresponding domains;

[Hs] fe >0, fu < —c < 0, where ¢ is a constant.

2 QOuter Solution

From the hypotheses, there is a solution Uy(z) of the reduced equation for original
problem (1)—(3):
dUy
a(x)d— = f(z,Uy,0), >0, (4)
x

Uo(0) = A(0). (5)

We construct the outer solution U of the original problem (1)—(3). Set

Uz,e) ~ > Ui(w)e', (6)

=0
Substituting (6) into eq. (1), developing the nonlinear term f(z, U, ¢) in €, and equating
coefficients of the same powers of € both sides, from the solution Uj(z) of the reduced

equations (4), (5), we obtain that

du;

a(x) T

:Fl‘—DngUl‘_l, .’EZ()’ 7,':]_727...’ (7)

U;(0)=A4;, i=1,2,---, (8)
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where A; = %[a;—ﬂs:o and F; (i =1,2,--+) are determined functions, their constructions are
omitted.
From the defined of the a-th order fractional order derivative DS, it is easy to see that

eq. (7) can translated by the following Volterra integral equation:

/Oz(x — )T (dt = /0 P - a2 = lfzgw“(” dt + Do, (9)

where Dy is an arbitrary constant, which is decided by condition (8). From Volterra integral

equation (9) and condition (8), we can obtain the solution U;(z) (i = 1,2, - ), successively.
Substituting U;(x) into eq. (6), then we can obtain the outer solution U(z, ¢) for the original
problem (1)—(3). But it may not satisfy initial condition (3), so that we need to construct
the initial layer corrective term V near x = 0.

3 Initial Layer Correction
Let the solution of the initial value problem (1)—(3) is the form
u~U(x,e)+V(re) (10)
with

V(r,e) ~ ZV.,-Ei, (11)
i=0

where 7 = z /¢ is a stretched variable [2].
Substituting (10) and (11) into egs. (1)—(3), developing the nonlinear term f, A(e) and

B(e) in € and equating coefficients of the same powers of ¢ in both sides of the equations,

we obtain Jv
DDV, + a(z) d; =Gy, 7>0,i=0,1,2,--, (12)
Vilr=o =0, i=0,1,2,---, (13)
Vilr—o=Bi = Uj[;=0=0, i=0,1,2,---, (14)
where B; = %[i—ffg]gzo, and G, are determined functions which constructions are omitted
too.

From the fractional order differential equation (12), we can obtain the following Volterra
integral systems for (V;, Z;) (1 =0,1,2,---):

/OT[(T — 1) —=T(1 — a)a(t)]|Z:(t)dt = /OT I'(1 — a)G,(t)dt + Dy, (15)

/TF(T—t)V;(t)dt /Tm — a)Zi(t)dt + D, (16)

where D; (i = 1,2) are arbitrary constants, which are decided by conditions (13) and (14).
From the linear Volterra integral system (15), (16) and conditions (13), (14), we can obtain
the solutions (V;, Z;) (i = 0,1,2,---), successively.



242 Journal of Mathematics Vol. 36

Substituting V; (i =0,1,2,---), into eq. (11), we can obtain the initial layer corrective
term V(7,¢) of the solution u(z,e) for the original problem (1)-(3).

From egs. (6) and (11) and the above obtained U; and V; (i = 0,1,2,---), we obtain
the asymptotic expansion of solution for the initial value problem of 2a-th order fractional
order differential equations (1)—(3):

u~ Y Ui+ Ve, 220, 0<e<1. (17)
=0

And we can prove inductively that V;(7) (i = 0,1,2,--+) possess initial layer behavior near
z =0.
Vi(t) = O(exp(—k;7)) = O(exp(—kiz/e)), 0<e< 1, i=0,1,2,---, (18)

where k; (i =0,1,2,---) are positive constants.
4 Uniform Validity of the Asymptotic Solution

Now we prove that the asymptotic solution obtained above is a uniformly valid asymp-
totic expansion in €.
Definition There are two smooth functions w and u, if @ > u and they satisfy inequal-

ities, respectively:

-
eDe DT + a(z) s — f(z,7,e) < 0, W(0,e) > Ae), €@ (0,¢) > B(e), 0<z < Xo,
X
d
eD®D%u + a(:r)d—u — fla,ue) > 0, u(0,€) < A(e), e/ (0,2) < B(e), 0<az < Xo,
Xr

where X is a constant large enough, then we say that u and u are upper and lower solutions
of the problem (1)—(3), respectively.

Theorem 1 Assume that [H;], [Hs] hold. If u(x,e) and u(x,e) are upper and lower
solutions of the initial value problem (1)—(3) for the singularly perturbed fractional order
differential equation, respectively, then there is a solution u(z, ) of the initial value problem
(1)—(3) such that

u(z,e) <ulx,e) <ulzx,e).

Proof We construct two function sequences which are decided by the following recur-

rence relations:

dun+1

EDngun-i-l_l—a(m) d :f($7un7€)7 n:071727"'7 (19)
X
dunJrl
Unt1(0,6) = A(e) e T (0,e) =B(e), n=0,1,2,---. (20)

Let up = u and u, = u are initial iteration functions of eqs. (19) and (20), respectively,
and we have %,, and u,,, successively. Thus we obtain two function sequences {u, } and {u,, }.

Now we consider their convergence.
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Let g, = ug — u1, from hypothesis [Hs|, we have
eD; DYy + a(2)yy = eD§ Dy + a(x)dy — Dy DYy — ala)u)
S f(x,ﬂo,O)*f(.’E,ﬂo,O):O,
Tolz=0 = Uole=0 — U1 |z=0 = 0, Tola=0 = Uple=0 — U |s=0 = 0.
Thus from the extremum principle [2], we have 7, > 0. That is wy > u;.
If W, > Up1, set Yy = Up — Upy1, then we have
eDe DYy, + a(x)y, = eDy Dy, + a(x)u, — eDy Doty 1 — a(x)t,, 4
< f(xaﬂ(n—l)vg)_f(xaﬂTL?E) SO?
yn|1’=0 = ﬂn|9rf=0 - ﬂn—1|ac=0a g:z|af=0 = Hux:o - ﬂ’/l’7,71|1‘:0)'

Thus 7,, > 0, that is @, > U, 41 (n > 1).

From inductive method, we know u = g >

%

2Ty > Ty >

IN Sl
=

Analogously, we have u = u, < uy < ---
0,1,2,- .

From the above, and the Arzela-Ascoli theorem, there is a solution u(z, ) of the initial
value problem (1)—(3) such that u(x,e) < wu(z,e) < w(x,e). The proof of Theorem 1 is
completed.

Theorem 2 Under hypotheses [H;], [Hz|, there is a solution u(x.€) of the initial value
problem (1)-(3) for the singularly perturbed fractional order differential equation, which
possesses the following uniformly valid asymptotic expansion in € on z € [0, Xo].

u=>Y [Ui(z) + Vi(z/e)le' + O(e™), z€[0,X), 0<e< 1. (21)
i=0

Proof First, we construct the auxiliary functions a(x,¢), 5(z,¢):

m

afz,e) = Z[Ui(x) T Vi(z/e)|et — re™ x € [0, X, (22)
B(z,e) = Z[Ui(x) + Vi(z/e)|e! + re™t z € [0, Xl (23)

where r is a positive constant large enough to be chosen below, m is an arbitrary positive
integer.
Obviously, we have
a(z,e) < B(x,e), (24)

and for ¢ small enough, there is a positive constant d; such that

B0,e) = Y [Ui(0) + Vi(0)]e" +re™*,
i=0
A(e) — 1™ 4™t = A(e) + (r — 61)e™ T

v
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Thus selecting r > 01, we have

8(0,e) = A(e). (25)
Analogously, we have
a(0,e) < A(e), ea’(0,e) < B(e) <ef'(0,¢). (26)
Now we prove that
da
eDSDSa + a(x)% — flz,a,e) >0, 0<z< X, (27)
eDmeﬂ—l—a(x)@—f(x,ﬁ,e)go, 0 <z < Xo. (28)

In fact, from the hypotheses and eq. (18), for e small enough, there is a positive constant
0, such that
d
DDA+ a(e) D — f(x, )

m m

= eDyDY Y [Ui(w) + Vi(w/e)le' +a(z) Y _[Ui(x) + Vi (z/e)]e’

i=0 =0
—f(z,) [Ui(x) + Vi(z/e)le" + re™T ¢)
=0
< —f(@,Up,0) = Y [fula,Us)U; + F; — DIDSUi_y — a(x)U])e’
1=0
+_[DID3V +a(@)V] = Gile' + [f(z, ) _[Ui() + Vi(w/e)le’ e)
i=0 =0

f(z, Z (@) + Vi(z/e)]e" + re™ T e)] + 8™ < (—er + §p)e™ T
=0

Selecting r > d2/c, then we have eq. (28). Analogously, we can prove eq. (27). From
egs. (24)—(27), a and (3 are upper and lower solutions respectively. From Theorem 1, there
is a solution u(zx, €) of the initial value problem (1)—(3) such that a(x,¢) < u(x,e) < f(z,¢).
And from egs. (22) and (23), we have relation (21). The proof of Theorem 2 is completed.
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