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1 Introduction

In this paper, all graphs are considered as finite, simple and undirected planar graphs.
Let V (G), E(G), F (G) and ∆(G) denote the vertex set, the edge set, the face set and the
maximum degree of a graph G, respectively. Let |V (G)|, |E(G)|, |F (G)| denote the number
of vertices, edges and faces in G, respectively. For a vertex v ∈ V (G), let N(v) denote the
set of vertices adjacent to v and d(v) = |N(v)| denote the degree of v. A vertex of degree k

(resp. at least k, at most k) is called a k-vertex (resp. k+-vertex, k−-vertex). An edge uv is
type (a,≤ b) means d(u) = a, d(v) ≤ b. For f ∈ F (G), we write f = [v1, · · · , vk] if v1, . . . , vk

are the vertices on the boundary walk in some fixed order. A k-face [v1, · · · , vk] is called
(d1, · · · , dk) face if d(vi) = di, i = 1, · · · , k.

For any V ′ ⊆ V (G), we denote the graph with vertex set V (G) − V ′ and edge set
{xy ∈ E(G) : {x, y} ⊆ V (G)−V ′} by G−V ′; for any E′ ⊆ E(G), we denote the graph with
vertex set V (G) and edge set E(G)− E′ by G− E′. When V ′ = {v}, we shall simply write
G− v. Let G1 be a subgraph of G and let G2 ⊆ V (G)∪E(G) be a set such that every edge
of G2 has both endpoints in V (G1)∪ (G2 ∩V (G)), then we denote the graph with vertex set
V (G1) ∪ (G2 ∩ V (G)) and edge set E(G1) ∪ (G2 ∩ E(G)) by G1 + G2.
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Acyclic graphs are called forests. A forest whose maximum degree is at most 2 is called
a linear forest. The decomposition of a graph G consists of edge-disjoint subgraphs with
union G. If all the edge-disjoint subgraphs are forests, then we call this decomposition a
forest decomposition.

Decompositions of planar graphs were widely studied. In [1], it proved that every planar
graph can be decomposed into three forests with one forest whose maximum degree is at
most 4. In [2], it proved that a planar graph not containing 4-cycles can be decomposed into
a forest and a graph with maximum degree at most 5, which can not be improved to 3. In
this paper, we focus on the forest decomposition of planar graphs without 5-cycles or K4.

2 The Proof of Theorem 2.1

The purpose of this section is to prove the following result.
Theorem 2.1 Every planar graph without 5-cycles or K4 can be decomposed into two

forests F1, F2 and a linear forest P .
Proof We prove the theorem by reduction to absurdity. Let G be a counter example

with |V (G)| + |E(G)| minimum. The following configurations are excluded from G. These
obvious facts will be frequently used.

(C01) A 5-face;
(C02) A 3-face adjacent to a 4-face;
(C03) A 3-face adjacent to two 3-faces.
Lemma 2.2 G is connected and has no vertex v with d(v) ≤ 2.
Proof If G is disconnected, then one of its components is a counter example with fewer

vertices, a contradiction. Let v ∈ V (G) with d(v) ≤ 2 . Consider the graph G′ := G − v,
by the choice of G, G′ can be decomposed into three forests F ′

1, F ′
2 and P ′ with ∆(P ′) ≤ 2.

When d(v) = 2, let u, w be the other two neighbors of v, and F1 = F ′
1+{vu}, F2 = F ′

2+{vw},
P = P ′. When d(v) = 1, let u be the other neighbor of v, and F1 = F ′

1 + {vu}, F2 = F ′
2,

P = P ′. It is obvious that F1, F2, P are forests and cover G. So ∆(P ) ≤ 2, {F1, F2, P} is a
required decomposition of G, a contradiction.

Lemma 2.3 G has no edge uv with d(u) = 3, d(v) ≤ 4.
Proof Suppose uv is such an edge that d(u) = 3, d(v) ≤ 4. Let w1, w2 be the other

two neighbors of u. Consider the graph G′ := G − {uv, uw1, uw2}, by the choice of G,
G′ can be decomposed into three forests F ′

1, F ′
2 and P ′ with ∆(P ′) ≤ 2. Without loss of

generality, we may further assume that the number of edges in P ′ is minimum. Therefore,
for any w ∈ V (P ′), dF ′i (w) ≥ 1 for i = 1, 2. Hence, dP ′(w) ≤ dG′(w) − 2 for every vertex
w of G′. Hence dP ′(u) = 0, dP ′(v) ≤ dG′(v) − 2 = 4 − 1 − 2 = 1. Let F1 = F ′

1 + {uw1},
F2 = F ′

2 + {uw2}, P = P ′ + {uv}. It is easy to check that F1, F2, P are forests and
cover G. Note that dP (u) = dP ′(u) + 1 = 1, dP (v) = dP ′(v) + 1 ≤ 2, and for any other
vertex w ∈ V (P ) − {u, v}, dP (w) = dP ′(w) ≤ 2. So ∆(P ) ≤ 2, {F1, F2, P} is a required
decomposition of G, a contradiction.

Lemma 2.4 G has no (3, 5)-alternating cycle.
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Proof Let C = [v1v2 · · · v2r] be a (3, 5)-alternating cycle in G, i.e., d(vi) = 3, for
i = 1, 3, · · · , 2r− 1; and d(vi) = 5, for i = 2, 4, · · · , 2r. Consider the graph G′ := G−E(C),
since |V (G′)|+|E(G′)| < |V (G)|+|E(G)|, by the choice of G, G′ can be decomposed into three
forests F ′

1, F ′
2 and P ′ with ∆(P ′) ≤ 2. Without loss of generality, we may further assume

that the number of edges in P ′ is minimum. Therefore, for each u ∈ V (P ′), dF ′1(u) ≥ 1,
dF ′2(u) ≥ 1; for each u ∈ G′, dP ′(u) ≤ dG′(u) − 2. So dP ′(vi) = 0 when i = 1, 3, · · · , 2r − 1,
dP ′(vi) ≤ 1 when i = 2, 4, · · · , 2r. Let wi (i = 1, 3, · · · , 2r − 1) be the other neighbors of vi.
What is more, we can assume that viwi ∈ F ′

1. Let F1 = F ′
1,

F2 = F ′
2 + {vivi+1, i = 1, 3, · · · , 2r − 1}, P = P ′ + {vivi+1, i = 2, 4, · · · , 2r − 2}.

It is easy to check that F1, F2, P are forests and cover G. Note that dP (vi) = dP ′(vi)+1 = 1,
i = 1, 3, · · · , 2r−1 and dP (vi) = dP ′(vi)+1 ≤ 2, i = 2, 4, · · · , 2r, for other u ∈ V (P ), dP (u) =
dP ′(u) ≤ 2. So ∆(P ) ≤ 2, {F1, F2, P} is a required decomposition of G, a contradiction.

Let d(x) denote the size of a face f . Since G is a planar graph, by Euler’s formula
|V (G)| − |E(G)|+ |F (G)| = 2, we have

∑

v∈V (G)

(2d(v)− 6) +
∑

f∈F (G)

(d(f)− 6) = −6(|V (G)| − |E(G)|+ |F (G)|) = −12 < 0. (1)

Define ch(v) = 2d(v) − 6 for each vertex v ∈ V (G) and ch(f) = d(f) − 6 for each face
f ∈ F (G) be the initial charges. So the total sum of charges is negative. In the following,
we will assign a new charges ch′(x) for each x ∈ V (G) ∪ F (G) according to the discharging
rules. Since our rules only move charges around and do not affect the sum, the total sum of
charge keep fixed after the discharging is done. So we have

∑

x∈V (G)∪F (G)

ch′(x) =
∑

x∈V (G)∪F (G)

ch(x) = −12 < 0. (2)

Let v ∈ V (G) with d(v) = 6. We say that v is weak of type 1, if v is incident to four
3-faces, denote by 61; we say v is strong of type 1, if v is incident to at least one 3-face and
incidents to at most three 3-faces. v is weak of type 2, if v is incident to six 4-faces and all
the neighbors of v are 3-vertices, denote by 62; otherwise, i.e. v is incident to at least one
3-face and at most five 4-faces or v is incident to six 4-faces, but at least one neighbor is not
3-vertex, then we call it strong of type 2. Let n4(v) (resp. n¤(v) ) denote the number of
the 3-faces (resp. 4-faces) incident to v. The vertices and faces of G discharge their initial
charges by the following rules:

R 1 Let f = [v1v2v3] be a 3-face.
R 1.1 d(v1) = 3, d(v2) = d(v3) = 5 or d(v1) = 3, d(v2) ≥ 6, d(v3) ≥ 6, f gets 3

2
from

v2, v3, respectively.
R 1.2 d(v1) = 3, d(v2) = 5, d(v3) = 6, if v3 is weak of type 1, f gets 3

2
from v2, v3

respectively; if v3 is strong of type 1 or d(v3) ≥ 7, f gets 1 from v2, gets 2 from v3.
R 1.3 d(v1) ≥ 4, d(v2) ≥ 4, d(v3) ≥ 4, f gets 1 from each incidenting vertex.
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R 2 Let f = [v1v2v3v4] be a 4-face.

R 2.1 d(v1) = 3, (v2) = 5, d(v3) = 3, d(v4) = 6, if v4 is weak of type 2, f gets 1 from
v2, v4 respectively; if v4 is strong of type 2, f gets 2

3
from v2, gets 4

3
from v4.

R 2.2 d(v1) = 3, (v2) = 5, d(v3) = 3, d(v4) ≥ 7, f gets 2
3

from v2, gets 4
3

from v4.

R 2.3 d(v1) = 3, (v2) ≥ 6, d(v3) = 3, d(v4) ≥ 6, f gets 1 from v2, v4, respectively.

R 2.4 d(v1) = 3, (v2) = 5, d(v3) = 4, d(v4) = 5, or d(v1) = 3, (v2) ≥ 6, d(v3) = 4,
d(v4) ≥ 6, f gets 3

4
from v2, v4, respectively, gets 1

2
from v3.

R 2.5 d(v1) = 3, (v2) = 5, d(v3) = 4, d(v4) ≥ 6, f gets 7
12

from v2, gets 1
2

from v3, gets
11
12

from v4.

R 2.6 d(v1) = 3, (v2) ≥ 5, d(v3) ≥ 5, d(v4) ≥ 5, f gets 2
3

from v2, v3, v4, respectively.

R 2.7 d(v1) ≥ 4, (v2) ≥ 4, d(v3) ≥ 4, d(v4) ≥ 4, f gets 1
2

from each adjacent vertex.

In the rest of the paper, we show that the final charge ch′(x) is nonnegative for each
x ∈ V (G) ∪ F (G), which is a contradiction to formula (2), then we can complete the proof.

From the discharging rules, it is obvious that ch′(f) ≥ 0 for arbitrary f ∈ F (G). Next
we consider v ∈ V (G), let d(v) = d. By Lemma 2.2, we know d ≥ 3.

Case 1 d = 3.

For arbitrary 3-vertex v, it is obvious that ch′(v) = ch(v) = 2× 3− 6 = 0.

Case 2 d = 4.

When n4(v) = 0, then n¤(v) ≤ 4, we have ch′(v) ≥ 2×4−6−4× 1
2

= 0 by R 2.4, R 2.5,
R 2.7. When n4(v) = 1, then n¤(v) ≤ 1, we have ch′(v) ≥ 2×4−6−(1+ 1

2
) = 1

2
≥ 0 by R 1.3,

R 2.4, R 2.5, R 2.7. When n4(v) = 2, then n¤(v) = 0, we have ch′(v) ≥ 2×4−6−2×1 = 0
by R 1.3.

Case 3 d = 5.

Let v1, v2, · · · , v5 be the neighbors of v in the clock direction.

Case 3.1 n4(v) = 0.

If n¤(v) ≤ 4, then ch′(v) ≥ 2 × 5 − 6 − 4 × 1 = 0 by R 2. Now we assume n¤(v) = 5.
Denote the five 4-faces incident to v by fi = [vviwivi+1], i = 1, · · · , 5.

Lemma 2.5 The type of (5, 3, 62, 3) 4-faces are not incident to each other. Therefore,
at most two (5, 3, 62, 3) 4-faces are incident to v.

Proof Let f1 = [vv1w1v2], f2 = [vv2w2v3], d(w1) = d(w2) = 6, and w1, w2 are weak
of type 2, then w1, v2, w2 must be contained in one 4-face, denote by f3 = [w1v2w2x].
What is more, d(x) = 3. Consider the graph G′ := G − E(f1) − E(f2) − E(f3), since
|V (G′)| + |E(G′)| < |V (G)| + |E(G)|, G′ can be decomposed into three forests F ′

1, F ′
2 and

P ′ with ∆(P ′) ≤ 2. Without loss of generality, we may further assume that the number
of edges in P ′ is minimum. Therefore, for any u ∈ V (P ′), dF ′i (u) ≥ 1 for i = 1, 2, and
dP ′(u) ≤ dG′(u) − 2. Then we get dP ′(v) = 0, dP ′(v1) = 0, dP ′(w1) ≤ 1, dP ′(v2) = 0,
dP ′(w2) ≤ 1, dP ′(v3) = 0, dP ′(x) = 0. We can further assume that the edges incident to
v1, v3, x in G′ are in F ′

1. Let F1 = F ′
1 + {w1v2}, F2 = F ′

2 + {vv3, v1w1, v2w2, w2x},
P = P ′ + {vv1, vv2, w1x, w2v3}. It is easy to check that F1, F2, P are forests and cover
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G. And

dP (v) = dP ′(v) + 2 = 2, dP (v1) = dP ′(v1) + 1 = 1,

dP (w1) = dP ′(w1) + 1 ≤ 2, dP (v2) = dP ′(v2) + 1 = 1,

dP (w2) = dP ′(w2) + 1 ≤ 2, dP (v3) = dP ′(v3) + 1 = 1,

dP (x) = dP ′(x) + 1 = 1

for other u ∈ V (P ), dP (u) = dP ′(u) ≤ 2. So ∆(P ) ≤ 2, {F1, F2, P} is a required decomposi-
tion of G, a contradiction.

If there is no (5, 4, 5, 3) 4-face incident to v, then ch′(v) ≥ 2× 5− 6− (1× 2+ 2
3
× 3) = 0

by R 2. Now we assume that there is at least one (5, 4, 5, 3) 4-face incident to v. Let f1 be
such a 4-face and suppose d(v1) = 3, d(w1) = 5, d(v2) = 4.

Lemma 2.6 d(w2) ≥ 6 or d(v3) 6= 3. Both cases we can get ch′(x) ≥ 0.
Proof Suppose d(w2) = 5 and d(v3) = 3, Consider the graph G′ := G−E(f1)−E(f2).

Since |V (G′)|+ |E(G′)| < |V (G)|+ |E(G)|, G′ can be decomposed into three forests F ′
1, F ′

2

and P ′ with ∆(P ′) ≤ 2. Without loss of generality, we may further assume that the number
of edges in P ′ is minimum. Then we get dP ′(v) = 0, dP ′(v1) = 0, dP ′(w1) ≤ 1, dP ′(v2) = 0,
dP ′(w2) ≤ 1, dP ′(v3) = 0. We can further assume that the edges incident to v1, v2, v3 in G′

are in F ′
1. Let F1 = F ′

1, F2 = F ′
2 + {vv1, w1v2, w2v3}, P = P ′ + {vv2, vv3, v1w1, v2w2}. It is

easy to check that F1, F2, P are forests and cover G. And

dP (v) = dP ′(v) + 2 = 2, dP (v1) = dP ′(v1) + 1 = 1, dP (w1) = dP ′(w1) + 1 ≤ 2,

dP (v2) = dP ′(v2) + 2 = 2, dP (w2) = dP ′(w2) + 1 ≤ 2,

dP (v3) = dP ′(v3) + 1 = 1

for other u ∈ V (P ), dP (u) = dP ′(u) ≤ 2. So ∆(P ) ≤ 2, {F1, F2, P} is a required decomposi-
tion of G, a contradiction. So d(v2) ≥ 6 or d(v2) 6= 3.

If d(w2) ≥ 6, then

ch′(v) ≥ 2× 5− 6− (
3
4

+
7
12

+ 1× 2 +
2
3
) = 0

by R 2; if d(v3) 6= 3, then ch′(v) ≥ 2× 5− 6− ( 3
4

+ 1
2

+ 1× 2 + 2
3
) > 0 by R 2.

Case 3.2 n4(v) = 1.

n¤(v) ≤ 2, so ch′(v) ≥ 2× 5− 6− ( 3
2

+ 1× 2) = 1
2
≥ 0 by R 1, R 2.

Case 3.3 n4(v) = 2.

n¤(v) ≤ 1, so ch′(v) ≥ 2× 5− 6− ( 3
2
× 2 + 1) = 0 by R 1, R 2.

Case 3.4 n4(v) = 3.

Let f1 = [vv1v2], f2 = [vv2v3], f3 = [vv4v5] denote the three 3-faces. If there exists one
3-face that does not contain any 3-vertex, then ch′(v) ≥ 2× 5− 6− ( 3

2
× 2 + 1) = 0 by R 1.

Now we assume that all three 3-faces contain a 3-vertex, then there are two configurations
to consider.
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(C1) d(v1) = d(v3) = d(v5) = 3;
(C2) d(v2) = d(v5) = 3.
Lemma 2.7 For (C1), d(v2) ≥ 7, ch′(v) > 0.
Proof Suppose d(v2) ≤ 6, Consider the graph G′ := G−E(f1)−E(f2)−E(f3), since

|V (G′)| + |E(G′)| < |V (G)| + |E(G)|, G′ can be decomposed into three forests F ′
1, F ′

2 and
P ′ with ∆(P ′) ≤ 2. Without loss of generality, we may further assume that the number of
edges in P ′ is minimum. Then we get dP ′(v) = 0, dP ′(v1) = 0, dP ′(v2) ≤ 1, dP ′(v3) = 0,
dP ′(v5) = 0. We can further assume that the edges incident to v1, v3, v5 in G′ are in F ′

1. Let
F1 = F ′

1+{vv2}, F2 = F ′
2+{vv1, vv4, v2v3, v4v5}, P = P ′+{vv3, vv5, v1v2}. It is easy to check

that F1, F2, P are forests and cover G. And dP (v) = 2, dP (v1) = 1, dP (v2) ≤ 2, dP (v3) = 1,
dP (v5) = 1, for other u ∈ V (P ), dP (u) = dP ′(u) ≤ 2. So ∆(P ) ≤ 2, {F1, F2, P} is a required
decomposition of G, a contradiction. So d(v2) ≥ 7 and ch′(v) ≥ 2× 5− 6− (1× 2 + 2

3
) > 0

by R1.
Lemma 2.8 For (C2), ch′(v) ≥ 0.
Proof When d(v4) = 5, if d(v1) ≥ 6 and d(v3) ≥ 6, since v1, v3 cannot be 6-vertices

and weak of type 1 by (C03), ch′(v) ≥ 2 × 5 − 6 − (1 × 2 + 3
2
) > 0 by R 1. Otherwise, by

symmetry, suppose d(v1) = 5. Consider the graph G′ := G − E(f1) − E(f2) − E(f3), since
|V (G′)| + |E(G′)| < |V (G)| + |E(G)|, G′ can be decomposed into three forests F ′

1, F ′
2, P ′

with ∆(P ′) ≤ 2. Without loss of generality, we may further assume that the number of
edges in P ′ is minimum. Then we get that dP ′(v) = 0, dP ′(v1) ≤ 1, dP ′(v2) = 0, dP ′(v4) ≤ 1,
dP ′(v5) = 0. We can further assume that the edges incident to v5 in G′ are in F ′

1. Let
F1 = F ′

1 + {vv3, v2v3}, F2 = F ′
2 + {vv1, vv2, v4v5}, P = P ′ + {vv4, vv5, v1v2}. It is easy

to check that F1, F2, P are forests and cover G. And dP (v) = 2, dP (v1) ≤ 2, dP (v2) = 1,
dP (v4) ≤ 2, dP (v5) = 1, for other u ∈ V (P ), dP (u) = dP ′(u) ≤ 2. So ∆(P ) ≤ 2, {F1, F2, P}
is a required decomposition of G, a contradiction.

When d(v4) ≥ 6, if v1, v3 can not be 5-vertices in the same time, then

ch′(v) ≥ 2× 5− 6− (1 +
3
2
× 2) = 0

by R 1. Otherwise, suppose d(v1) = 5, d(v3) = 5. Consider the graph

G′ := G− E(f1)− E(f2)− E(f3),

since |V (G′)| + |E(G′)| < |V (G)| + |E(G)|, G′ can be decomposed into three forests F ′
1,

F ′
2 and P ′ with ∆(P ′) ≤ 2. Without loss of generality, we may further assume that the

number of edges in P ′ is minimum. Then we get that dP ′(v) = 0, dP ′(v1) ≤ 1, dP ′(v2) = 0,
dP ′(v3) ≤ 1, dP ′(v5) = 0. We can further assume that the edges incident to v5 in G′ are in
F ′

1. Let F1 = F ′
1 + {vv4, v2v3}, F2 = F ′

2 + {vv1, vv2, v4v5}, P = P ′ + {vv3, vv5, v1v2}.
It is easy to check that F1, F2, P are forests and cover G. And dP (v) = 2, dP (v1) ≤ 2,
dP (v2) = 1, dP (v3) ≤ 2, dP (v5) = 1, for other u ∈ V (P ), dP (u) = dP ′(u) ≤ 2. So ∆(P ) ≤ 2,
{F1, F2, P} is a required decomposition of G, a contradiction.

Case 4 d = 6.
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Let v1, v2, · · · , v6 be the neighbors of v in the clock direction. If v is weak of type 2,
then ch′(v) = 2× 6− 6− 1× 6 = 0 by R 2.1. Now suppose v is strong of type 2.

Lemma 2.9 There is at most one (6, 3, 5, 3) 4-face incidenting to v.
Proof Suppose that there are two (6, 3, 5, 3) 4-faces f1, f2 incident to v, let

f1 = [vv1w1v2],

by symmetry, there are three cases to consider, f2 = [vv2w2v3] or f2 = [vv3w3v4] or

f2 = [vv4w4v5].

Case 2.9.1 f2 = [vv2w2v3].
Consider the graph G′ := G−E(f1)−E(f2), since |V (G′)|+ |E(G′)| < |V (G)|+ |E(G)|,

G′ can be decomposed into three forests F ′
1, F ′

2, P ′ with ∆(P ′) ≤ 2. Without loss of
generality, we may further assume that the number of edges in P ′ is minimum. Then we get
that dP ′(v) ≤ 1, dP ′(v1) = 0, dP ′(w1) ≤ 1, dP ′(v2) = 0, dP ′(w2) ≤ 1, dP ′(v3) = 0. What is
more, we can assume that the edges incident to v1, v3 in G′ are in F ′

1. Let F1 = F ′
1 + {vv2},

F2 = F ′
2+{vv1, w1v2, w2v3}, P = P ′+{vv3, v1w1, v2w2}. It is easy to check that F1, F2, P

are forests and cover G. And

dP (v) ≤ dP ′(v) + 1 ≤ 2, dP (v1) = dP ′(v1) + 1 = 1,

dP (w1) ≤ dP ′(w1) + 1 ≤ 2, dP (v2) = dP ′(v2) + 1 = 1,

dP (w2) ≤ dP ′(w2) + 1 ≤ 2, dP (v3) = dP ′(v3) + 1 = 1

for other u ∈ V (P ), dP (u) = dP ′(u) ≤ 2. So ∆(P ) ≤ 2, {F1, F2, P} is a required decomposi-
tion of G, a contradiction.

Case 2.9.2 f2 = [vv3w3v4].
Consider the graph G′ := G−E(f1)−E(f2), since |V (G′)|+ |E(G′)| < |V (G)|+ |E(G)|,

G′ can be decomposed into three forests F ′
1, F ′

2 and P ′ with ∆(P ′) ≤ 2. Without loss of
generality, we may further assume that the number of edges in P ′ is minimum. Then we
get that dP ′(v) ≤ 1, dP ′(v1) = 0, dP ′(w1) ≤ 1, dP ′(v2) = 0, dP ′(v3) = 0, dP ′(w3) ≤ 1,
dP ′(v4) = 0. What is more, we can assume that the edges incident to v1, v2, v3, v4 in G′ are
in F ′

1. Let F1 = F ′
1, F2 = F ′

2 + {vv1, vv4, w1v2, v3w3, }, P = P ′ + {vv2, vv3, v1w1, w3v4}. It is
easy to check that F1, F2, P are forests and cover G. And

dP (v) = dP ′(v) + 2 = 2, dP (v1) = dP ′(v1) + 1 = 1,

dP (w1) ≤ dP ′(w1) + 1 ≤ 2, dP (v2) = dP ′(v2) + 1 = 1,

dP (v3) = dP ′(v3) + 1 = 1, dP (w3) ≤ dP ′(w3) + 1 ≤ 2,

dP (v4) = dP ′(v4) + 1 = 1

for other u ∈ V (P ), dP (u) = dP ′(u) ≤ 2. So ∆(P ) ≤ 2, {F1, F2, P} is a required decomposi-
tion of G, a contradiction.
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Case 2.9.3 f2 = [vv4w4v5].
Consider the graph G′ := G−E(f1)−E(f2), since |V (G′)|+ |E(G′)| < |V (G)|+ |E(G)|,

G′ can be decomposed into three forests F ′
1, F ′

2, P ′ with ∆(P ′) ≤ 2. Without loss of
generality, we may further assume that the number of edges in P ′ is minimum. Then we get
that dP ′(v) = 0, dP ′(v1) = 0, dP ′(w1) ≤ 1, dP ′(v2) = 0,dP ′(v4) = 0, dP ′(w4) ≤ 1, dP ′(v5) = 0.
What is more, we can assume that the edges incident to v1, v2, v4, v5 in G′ are in F ′

1. Let
F1 = F ′

1, F2 = F ′
2 + {vv1, vv4, w1v2, w4v5}, P = P ′ + {vv2, vv5, v1w1, v4w4}. It is easy to

check that F1, F2, P are forests and cover G. And

dP (v) = dP ′(v) + 2 = 2, dP (v1) = dP ′(v1) + 1 = 1,

dP (w1) ≤ dP ′(w1) + 1 ≤ 2, dP (v2) = dP ′(v2) + 1 = 1,

dP (v4) = dP ′(v4) + 1 = 1, dP (w4) ≤ dP ′(w4) + 1 ≤ 2,

dP (v5) = dP ′(v5) + 1 = 1

for other u ∈ V (P ), dP (u) = dP ′(u) ≤ 2. So ∆(P ) ≤ 2, {F1, F2, P} is a required decomposi-
tion of G, a contradiction.

Case 4.1 n4(v) = 0.

If n¤(v) ≤ 5, then ch′(v) ≥ 2 × 6 − 6 − (4 + 4
3
) > 0 by R 2. Now suppose n¤(v) = 6,

if there is no (6, 3, 5, 3) 4-face incident to v, then ch′(v) ≥ 2 × 6 − 6 − 1 × 6 = 0 by R
2. There must be one (6, 3, 5, 3) 4-face incident to v, if there is one 4-face which are not
incident to a 3-vertex, then ch′(v) ≥ 2× 6− 6− ( 4

3
+ 1

2
+ 1× 4) > 0 by R 2. Now suppose

f1 = [vv1w1v2] is a (6, 3, 5, 3) 4-face, and all 4-faces incident to v contain a 3-vertex, if
d(w3) = 3 or d(w4) = 3 or d(w5) = 3, then

ch′(v) ≥ 2× 6− 6− (
4
3

+
2
3

+ 1× 4) = 0

by R 2. So we assume d(w3) ≥ 4, d(w4) ≥ 4, d(w5) ≥ 4. Since every four face is incident
to 3-vertex, there are at least two vertices of v3, v4, v5, v6 be 3-vertices, at least one is non
3-vertices, we assume that d(v4) = 3, d(v6) = 3 (the other cases are similar). If d(v3) ≥ 5 or
d(v5) ≥ 5, then

ch′(v) ≥ 2× 6− 6− (
4
3

+ 1 +
2
3
× 2 + 1× 2) > 0

by R 2; if d(v3) = 4 and d(v5) = 4 then

ch′(v) ≥ 2× 6− 6− (
4
3

+ 1 +
11
12
× 4) = 0

by R 2; if d(v3) = 3 and d(v5) = 4, then if d(w4) ≥ 6 or d(w5) ≥ 6, we have

ch′(v) ≥ 2× 6− 6− (
4
3

+ 1× 3 +
3
4

+
11
12

) = 0

by R 2. So we assume d(v3) = 3, d(v5) = 4, d(w4) = 5 and d(w5) = 5, then we consider the
graph G′ := G−E(f1)− · · · −E(f6), since |V (G′)|+ |E(G′)| < |V (G)|+ |E(G)|, G′ can be
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decomposed into three forests F ′
1, F ′

2, P ′ with ∆(P ′) ≤ 2. Without loss of generality, we may
further assume that the number of edges in P ′ is minimum. Then we get that dP ′(v) = 0,
dP ′(v1) = 0, dP ′(w1) ≤ 1, dP ′(v2) = 0, dP ′(v3) = 0, dP ′(v4) = 0, dP ′(w4) ≤ 1, dP ′(v5) = 0,
dP ′(w5) ≤ 1, dP ′(v6) = 0, what is more, we can assume that the edges incident with v5 in
G′ are in F ′

1. Let F1 = F ′
1 + {vv4, w1v2, w2v3, w3v4, v6w6}, F2 = F ′

2 + {vv1, vv5, vv6},
P = P ′ + {vv2, vv3, v1w1, w4v5, w5v6}. It is easy to check that F1, F2, P are forests and
cover G. And

dP (v) = dP ′(v) + 2 = 2, dP (v1) = dP ′(v1) + 1 = 1,

dP (w1) = dP ′(w1) + 1 ≤ 2, dP (v2) = dP ′(v2) + 1 = 1,

dP (v3) = dP ′(v3) + 1 = 1, dP (v4) = dP ′(v4) + 1 = 1,

dP (w4) = dP ′(w4) + 1 ≤ 2, dP (v5) = dP ′(v5) + 1 = 1,

dP (w5) = dP ′(w5) + 1 ≤ 2, dP (v6) = dP ′(v6) + 1 = 1

for other u ∈ V (P ), dP (u) = dP ′(u) ≤ 2. So ∆(P ) ≤ 2, {F1, F2, P} is a required decomposi-
tion of G, a contradiction.

Case 4.2 n4(v) = 1.

There are at most three 4-faces incident to v, and at most one of the three 4-faces is
(6, 3, 5, 3) 4-face, so ch′(v) ≥ 2× 6− 6− (2 + 4

3
+ 1× 2) > 0 R 1, R 2.

Case 4.3 n4(v) = 2.

When n¤(v) ≤ 1, then ch′(x) ≥ 2×6−6− (2×2+ 4
3
) > 0 by R 1, R 2; when n¤(v) = 2,

let f1 = [vv1v2],f2 = [vv2v3], f3 = [vv4w4v5], f4 = [vv5w5v6]. If d(w4) ≥ 6, d(w5) ≥ 6, then
ch′(v) ≥ 2×6−6−(2×1+2×2) = 0 by R 1, R 2. So we assume that d(w5) = 5, by Lemma 2.9,
d(w4) ≥ 6, if f1 or f2 does not contain a 3-vertex, then ch′(v) ≥ 2×6−6−( 4

3
+1+2+ 3

2
) > 0

by R 1, R 2. Now we assume that both f1 and f2 contain a 3-vertex, then there are two
configurations to consider

(C1) d(v1) = d(v3) = 3;

(C2) d(v2) = 3.

Lemma 2.10 For (C1), d(v2) ≥ 6, so ch′(v) ≥ 0.

Proof If it is not true, then by Lemma 2.3, assume d(v2) = 5. Consider the graph

G′ := G− E(f1)− E(f2)− E(f3)− E(f4),

since G′ has fewer edges than G, G′ can be decomposed into three forests F ′
1, F ′

2 and P ′ with
∆(P ′) ≤ 2. Without loss of generality, we may further assume that the number of edges
in P ′ is minimum. Then we get that dP ′(v) = 0, dP ′(v1) = 0, dP ′(v2) = 0, dP ′(v3) = 0,
dP ′(v4) = 0, dP ′(v5) = 0, dP ′(w5) ≤ 1, dP ′(v6) = 0, what is more, we can assume that
the edges incident to v1, v3, v4, v6 in G′ are in F ′

1. Let F1 = F ′
1 + {vv1, vv6, v4w4, v5w5},

F2 = F ′
2 + {vv2, vv3, v1v2, w4v5}, P = P ′ + {vv4, vv5, v2v3, w5v6}. It is easy to check that
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F1, F2, P are forests and cover G. And

dP (v) = dP ′(v) + 2 = 2, dP (v1) = dP ′(v1) = 0,

dP (v2) = dP ′(v2) + 1 = 1, dP (v3) = dP ′(v3) + 1 = 1,

dP (v4) = dP ′(v4) + 1 = 1, dP (v5) = dP ′(v5) + 1 = 1,

dP (w5) = dP ′(w5) + 1 ≤ 2, dP ′(v6) = dP ′(v6) + 1 = 1

for other u ∈ V (P ), dP (u) = dP ′(u) ≤ 2. So ∆(P ) ≤ 2, {F1, F2, P} is a required decomposi-
tion of G, a contradiction. So d(v2) ≥ 6,

ch′(v) ≥ 2× 6− 6− (
3
2
× 2 +

4
3

+ 1) > 0

by R 1, R 2.
Lemma 2.11 For (C2), at least one of v1, v2 is a 6+-vertex, So ch′(v) > 0.
Proof If it is not true, then by Lemma 2.3, d(v1) = d(v3) = 5. Consider the graph

G′ := G − E(f1) − E(f2) − E(f3) − E(f4), then G′ has fewer edges since G, G′ can be
decomposed into three forests F ′

1, F ′
2 and P ′ with ∆(P ′) ≤ 2. Without loss of generality,

we may further assume that the number of edges in P ′ is minimum. Then we get that
dP ′(v) = 0, dP ′(v1) ≤ 1, dP ′(v2) = 0, dP ′(v3) ≤ 1, dP ′(v4) = 0, dP ′(v5) = 0, dP ′(w5) ≤ 1,
dP ′(v6) = 0. What is more, we can assume that the edges incident to v4, v6 in G′ are in F ′

1.
Let F1 = F ′

1 + {vv2, vv5, vv6},

F2 = F ′
2 + {vv3, v1v2, v4w4, w4v5, w5v6}, P = P ′ + {vv1, vv4, v2v3, v5w5}.

It is easy to check that F1, F2, P are forests and cover G. And

dP (v) = d′P (v) + 2 = 2, dP (v1) = dP ′(v1) + 1 ≤ 2,

dP (v2) = dP ′(v2) + 1 = 1, dP (v3) = dP ′(v3) + 1 ≤ 2,

dP (v4) = dP ′(v4) + 1 = 1, dP (v5) = dP ′(v5) + 1 = 1,

dP (w5) = dP ′(w5) + 1 ≤ 2, dP ′(v6) = dP ′(v6) + 1 = 1

for other u ∈ V (P ), dP (u) = dP ′(u) ≤ 2. So ∆(P ) ≤ 2, {F1, F2, P} is a required decomposi-
tion of G, a contradiction. Therefore, d(v1) ≥ 6 or d(v3) ≥ 6,

ch′(v) ≥ 2× 6− 6− (
4
3

+ 2 + 1 +
3
2
) > 0

by R 1, R 2.
Case 4.4 n4(v) = 3.

When n4(v) = 3, there is no 4-faces incident to v, so ch′(v) ≥ 2× 6− 6− 2× 3 = 0 by
R 1.

Case 4.5 n4(v) = 4.

When n4(v) = 4, v is weak of type 2, so ch′(v) ≥ 2× 6− 6− 3
2
× 4 = 0 by R 1.
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Case 5 d ≥ 7.

When n4(v) = 0, the number of (v, 3, 5, 3) 4-faces incident to v is at most d(v)− 4, the
proof is similar to the case for 6-vertex, then

ch′(v) ≥ 2× d(v)− 6− (
4
3
× (d(v)− 4) + 1× 4) ≥ 0

by R 2. When 0 < n4(v) < b 2
3
d(v)c,

ch′(v) ≥ 2× d(v)− 6− (2× n4(v) +
4
3
× (d(v)− n4(v)− 2)) ≥ 0

by R 1, R 2. When n4(v) = b 2
3
d(v)c, ch′(v) ≥ 2× d(v)− 6− 2× n4(v) ≥ 0 by R 1.

In all the cases, for arbitrary x ∈ V (G) ∪ F (G), we get ch′(x) ≥ 0, a contradiction.
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不含有5-圈和k4平面图的森林分解
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摘要: 本文研究了不含有5-圈和K4的平面图的森林分解问题. 利用权转移法, 证明了任意不含有5-圈

和K4的平面图能分解成三个森林, 且其中有一个森林的最大度不超过2, 这一结果推广了文献[2, 3]中的结论.
关键词: 边分解; 平面图; 5-圈; K4

MR(2010)主题分类号: 05C10; 05C70 中图分类号: O157.5


