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Abstract: In this paper, we consider the forest decomposition of planar graphs without 5-
cycles or K4. By the rules of discharging, we prove that every planar graph without 5-cycles or
K4 can be decomposed into three forests with one whose maximum degree is at most 2, which
generalizes the results in [2, 3].

Keywords: edge-decomposition; planar graphs; 5-cycles; Ka

2010 MR Subject Classification: 05C10; 05C70

Document code: A Article ID: 0255-7797(2016)02-0223-11

1 Introduction

In this paper, all graphs are considered as finite, simple and undirected planar graphs.
Let V(G), E(G), F(G) and A(G) denote the vertex set, the edge set, the face set and the
maximum degree of a graph G, respectively. Let |V (G)|, |E(G)|, |F(G)| denote the number
of vertices, edges and faces in G, respectively. For a vertex v € V(G), let N(v) denote the
set of vertices adjacent to v and d(v) = |N(v)| denote the degree of v. A vertex of degree k
(resp. at least k, at most k) is called a k-vertex (resp. kT-vertex, k~-vertex). An edge uv is
type (a, < b) means d(u) = a,d(v) <b. For f € F(G), we write f = [vy,-+- ,vx] if v1,..., 0%
are the vertices on the boundary walk in some fixed order. A k-face [vy,--- , vy is called
(di,- - ,dy) face if d(v;)) =d;, i =1,--- k.

For any V' C V(G), we denote the graph with vertex set V(G) — V' and edge set
{zy € E(G) : {z,y} CV(G)—V'} by G—V"; for any E' C E(G), we denote the graph with
vertex set V(G) and edge set E(G) — E' by G — E'. When V' = {v}, we shall simply write
G —v. Let G be a subgraph of G and let Go C V(G) U E(G) be a set such that every edge
of G5 has both endpoints in V(G1) U (G2 NV (G)), then we denote the graph with vertex set
V(G1) U(GaNV(G)) and edge set E(G1) U (Ga N E(G)) by G1 + Gs.
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Acyclic graphs are called forests. A forest whose maximum degree is at most 2 is called
a linear forest. The decomposition of a graph G consists of edge-disjoint subgraphs with
union G. If all the edge-disjoint subgraphs are forests, then we call this decomposition a
forest decomposition.

Decompositions of planar graphs were widely studied. In [1], it proved that every planar
graph can be decomposed into three forests with one forest whose maximum degree is at
most 4. In [2], it proved that a planar graph not containing 4-cycles can be decomposed into
a forest and a graph with maximum degree at most 5, which can not be improved to 3. In

this paper, we focus on the forest decomposition of planar graphs without 5-cycles or Kjy.

2 The Proof of Theorem 2.1

The purpose of this section is to prove the following result.

Theorem 2.1 Every planar graph without 5-cycles or K, can be decomposed into two
forests Fi, F5 and a linear forest P.

Proof We prove the theorem by reduction to absurdity. Let G be a counter example
with |V(G)| 4+ |E(G)| minimum. The following configurations are excluded from G. These
obvious facts will be frequently used.

(Col) A b5-face;

(Co2) A 3-face adjacent to a 4-face;

(Cp3) A 3-face adjacent to two 3-faces.

Lemma 2.2 G is connected and has no vertex v with d(v) < 2.

Proof If GG is disconnected, then one of its components is a counter example with fewer
vertices, a contradiction. Let v € V(G) with d(v) < 2 . Consider the graph G’ := G — v,
by the choice of G, G’ can be decomposed into three forests Fy, Fjj and P’ with A(P") < 2.
When d(v) = 2, let u, w be the other two neighbors of v, and Fy = F|{+{vu}, Fy = Fj+{vw},
P = P’. When d(v) = 1, let u be the other neighbor of v, and F; = F| + {vu}, Fy = F3,
P = P’. Tt is obvious that Fy, F», P are forests and cover G. So A(P) < 2, {Fy,F», P} is a
required decomposition of GG, a contradiction.

Lemma 2.3 G has no edge uv with d(u) = 3, d(v) < 4.

Proof Suppose uv is such an edge that d(u) = 3, d(v) < 4. Let wy, ws be the other
two neighbors of u. Consider the graph G’ := G — {uv,vw;,uws}, by the choice of G,
G’ can be decomposed into three forests F|, Fy and P’ with A(P’) < 2. Without loss of
generality, we may further assume that the number of edges in P’ is minimum. Therefore,
for any w € V(P’), dp:(w) > 1 for i = 1, 2. Hence, dp/(w) < dg/(w) — 2 for every vertex
w of G'. Hence dp/(u) =0, dp/(v) < dg(v) —2=4—-1—-2=1. Let F} = F| + {uw,},
Fy, = F) + {uwy}, P = P’ 4 {uwv}. It is easy to check that Fy, F,, P are forests and
cover G. Note that dp(u) = dp/(u) +1 =1, dp(v) = dp/(v) + 1 < 2, and for any other
vertex w € V(P) — {u,v}, dp(w) = dp/(w) < 2. So A(P) < 2, {Fy, F5, P} is a required
decomposition of GG, a contradiction.

Lemma 2.4 G has no (3, 5)-alternating cycle.
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Proof Let C = [vjvy---v9.] be a (3, b)-alternating cycle in G, i.e., d(v;) = 3, for
1=1,3,---,2r —1; and d(v;) = 5, for i = 2,4, --- ,2r. Consider the graph G’ := G — E(C),
since |V(G')|+|E(G")| < |[V(G)|+|E(G)], by the choice of G, G’ can be decomposed into three
forests Fy, Fy and P’ with A(P’) < 2. Without loss of generality, we may further assume
that the number of edges in P’ is minimum. Therefore, for each v € V(P’), dp;(u) > 1,
dpy(u) > 1; for each u € G', dp/(u) < dgr(u) — 2. So dp/(v;) =0 when i =1,3,---,2r — 1,
dp/(v;) <1 wheni=2,4,---,2r. Let w; (¢=1,3,---,2r — 1) be the other neighbors of v;.

What is more, we can assume that v;w; € F|. Let F} = FY,
F2 :FQI—I—{Uﬂ}H_l, 22173, ,27’—1},P:P/+{’Ui’l}i+1, 222,4, 72T—2}.

Tt is easy to check that Fy, Fy, P are forests and cover G. Note that dp(v;) = dp/(v;)+1 =1,
1=1,3,--- ,2r—land dp(v;) =dp:(v;)+1 <2,i=2,4,--- ,2r, for other u € V(P), dp(u) =
dp(u) < 2. So A(P) <2, {F, Fy, P} is a required decomposition of G, a contradiction.

Let d(x) denote the size of a face f. Since G is a planar graph, by Euler’s formula
[V(G)| — |E(G)| + |F(G)| =2, we have

Y @) —6)+ > (df)—6)=—6(V(G)| - |E@G)| +|F(G)|) = -12<0. (1)
veV(G) fer(@)

Define ch(v) = 2d(v) — 6 for each vertex v € V(G) and ch(f) = d(f) — 6 for each face

f € F(G) be the initial charges. So the total sum of charges is negative. In the following,

we will assign a new charges ch/(x) for each z € V(G) U F(G) according to the discharging

rules. Since our rules only move charges around and do not affect the sum, the total sum of

charge keep fixed after the discharging is done. So we have

Z ch'(x) = Z ch(r) = —-12 < 0. (2)

€V (G)UF(G) 2€V(G)UF(G)

Let v € V(G) with d(v) = 6. We say that v is weak of type 1, if v is incident to four
3-faces, denote by 61; we say v is strong of type 1, if v is incident to at least one 3-face and
incidents to at most three 3-faces. v is weak of type 2, if v is incident to six 4-faces and all
the neighbors of v are 3-vertices, denote by 65; otherwise, i.e. v is incident to at least one
3-face and at most five 4-faces or v is incident to six 4-faces, but at least one neighbor is not
3-vertex, then we call it strong of type 2. Let na(v) (resp. ng(v) ) denote the number of
the 3-faces (resp. 4-faces) incident to v. The vertices and faces of G discharge their initial
charges by the following rules:

R 1 Let f = [vjvgu3] be a 3-face.

R 1.1 d(v) = 3, d(v2) = d(vs) =5 or d(vy) = 3, d(v2) > 6, d(v3) > 6, f gets 2 from
v, 3, respectively.

R 1.2 d(vy) = 3, d(v2) = 5, d(vs) = 6, if v3 is weak of type 1, f gets 2 from vy, v3
respectively; if vz is strong of type 1 or d(v3) > 7, f gets 1 from vy, gets 2 from vs.

R 1.3 d(vy) >4, d(ve) >4, d(v3) >4, f gets 1 from each incidenting vertex.
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R 2 Let f = [v1v2u314] be a 4-face.

R 2.1 d(vy) = 3, (v2) =5, d(vs) = 3, d(vs) = 6, if vy is weak of type 2, f gets 1 from
v, v4 respectively; if vy is strong of type 2, f gets % from vy, gets % from vy.

R 2.2 d(v) =3, (v2) =5, d(vs) =3, d(vs) > 7, f gets 2 from v, gets 3 from v;.

R 2.3 d(vy) =3, (v2) > 6, d(v3) = 3, d(vy) > 6, f gets 1 from vq, vy, respectively.

R 24 d(vi) = 3, (v2) = 5, d(vs) = 4, d(vy) = 5, or d(vy) = 3, (v2) > 6, d(v3) = 4,
d(vy) > 6, f gets % from vq, vy, respectively, gets % from vs.

R 2.5 d(vy) =3, (v2) =5, d(vs) =4, d(vq) > 6, f gets 1—72 from wvo, gets % from vs, gets
% from vy.

R 2.6 d(v1) =3, (v2) > 5, d(vs) > 5, d(vs) > 5, f gets 2 from vy, v3, v4, respectively.

R 2.7 d(vy) >4, (v2) >4, d(v3) >4, d(vs) > 4, f gets 5 from each adjacent vertex.

In the rest of the paper, we show that the final charge ch/(x) is nonnegative for each
z € V(G) U F(G), which is a contradiction to formula (2), then we can complete the proof.

From the discharging rules, it is obvious that ¢h/(f) > 0 for arbitrary f € F(G). Next

we consider v € V(G), let d(v) = d. By Lemma 2.2, we know d > 3.

Case 1 d =3.
For arbitrary 3-vertex v, it is obvious that ch/(v) = ch(v) =2 x 3 —6 = 0.
Case2 d=4.

When na (v) = 0, then ng(v) < 4, we have ¢h/(v) > 2x4—6—-4x 4 =0by R 2.4, R 2.5,
R 2.7. When na (v) = 1, then ng(v) < 1, we have ¢h/(v) > 2x4—6—(1+3) =2 > 0by R 1.3,
R 2.4, R 2.5, R 2.7. When na(v) =2, then ng(v) = 0, we have ch/(v) >2x4—-6—-2x1=0

by R 1.3.
Case 3 d=5.
Let vy, v, -+ ,v5 be the neighbors of v in the clock direction.

Case 3.1 na(v)=0.

If no(v) <4, then ch/(v) >2x5—-6—-4x1=0Dby R 2. Now we assume ng(v) = 5.
Denote the five 4-faces incident to v by f; = [vv;wvi44], i =1, ,5.

Lemma 2.5 The type of (5, 3, 62, 3) 4-faces are not incident to each other. Therefore,
at most two (5, 3,62, 3) 4-faces are incident to v.

Proof Let f; = [vvjwyvs], fo = [vvowaus], d(wy) = d(we) = 6, and wy, we are weak
of type 2, then wi, vy, wy must be contained in one 4-face, denote by f3 = [wivowax].
What is more, d(z) = 3. Consider the graph G’ := G — E(f1) — E(f2) — E(f3), since
V(G| + |E(G)| < |V(G)| + |E(G)], G’ can be decomposed into three forests F|, Fj and
P’ with A(P’) < 2. Without loss of generality, we may further assume that the number
of edges in P’ is minimum. Therefore, for any v € V(P'), dp/(u) > 1 for i = 1,2, and
dp(u) < dg(u) —2. Then we get dp/(v) = 0, dp/(v1) = 0, dp/(wy1) < 1, dpi(ve) = 0,
dp(wy) < 1, dp/(v3) = 0, dpr(x) = 0. We can further assume that the edges incident to
vy, vz, = in G’ are in F|. Let F} = F| + {wive}, F5 = Fj + {vvs, viwy, vowsy, wax},

P = P' 4+ {vvy, vvy, wiz, wovs}. It is easy to check that Fy, F,, P are forests and cover
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G. And

dp $):dp/($)+1:1

for other u € V(P), dp(u) = dp/(u) < 2. So A(P) <2, {F}, F», P} is a required decomposi-
tion of G, a contradiction.

If there is no (5,4, 5, 3) 4-face incident to v, then ¢h/(v) > 2x5—-6—(1x2+2x3) =0
by R 2. Now we assume that there is at least one (5,4,5,3) 4-face incident to v. Let f; be
such a 4-face and suppose d(vy) = 3, d(wy) = 5, d(vy) = 4.

Lemma 2.6 d(ws) > 6 or d(vs) # 3. Both cases we can get ch/(z) > 0.

Proof Suppose d(ws2) =5 and d(v3) = 3, Consider the graph G’ := G — E(f1) — E(f2).
Since |V(G")| + |E(G')| < |V(G)| + |E(G)|, G' can be decomposed into three forests F|, F}
and P’ with A(P’) < 2. Without loss of generality, we may further assume that the number
of edges in P’ is minimum. Then we get dp/(v) = 0, dp/(v1) =0, dp(w1) < 1, dp/(ve) = 0,
dp(wy) <1, dp/(vs) = 0. We can further assume that the edges incident to vy, ve, vz in G’
are in F|. Let Fy = F|, Fy» = F} + {vvy, wiva, wavs}, P = P’ 4 {vvg, vvs3, viwy, vows }. It is
easy to check that F}, F5, P are forests and cover G. And

dp(v) = dp(v) +2=2,dp(v1) = dp(v1) + 1 = 1,dp(w1) = dp/(w1) +1 <2,
dp(’l/g) = dp/(’l)g) + 2= 2, dp(wg) = dp/(wQ) + 1 S 2,
dp(’Ug) = dp/(l}g) + 1=1

for other u € V(P), dp(u) = dp:/(u) < 2. So A(P) < 2, {F1, F», P} is a required decomposi-
tion of G, a contradiction. So d(vy) > 6 or d(vy) # 3.
If d(wy) > 6, then

. 3 7 2
ch(v)22x5—6—(1+ﬁ—|—1x2+§):0
by R 2; if d(vs) # 3, then ch/(v) >2x5—-6—(34+4+1x2+2)>0by R 2.
Case 3.2 na(v) = 1.
no(v) < 2,80 ch'(v) >2x5-6—(2+1x2) =
Case 3.3 na(v) =2.
no(v) <1,s0 ch/(v) >2x5-6—(3x2+1)=0byR1,R2.
Case 3.4 na(v) = 3.
Let f1 = [vviva], fo = [vvaus], f3 = [vvsvs] denote the three 3-faces. If there exists one
3-face that does not contain any 3-vertex, then ch/(v) >2x5—-6— (2 x2+1)=0by R 1.

Now we assume that all three 3-faces contain a 3-vertex, then there are two configurations

>0byR1,R2.

1
2

to consider.
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(C1) d(v1) = d(vs) = d(vs) = 3;

(C2) d(vg) = d(vs) = 3.

Lemma 2.7 For (C1), d(vg) > 7, ch’'(v) > 0.

Proof Suppose d(vy) < 6, Consider the graph G’ := G — E(f1) — E(f2) — E(f3), since
V(G| + |E(G")| < [V(G)|+ |E(G)|, G' can be decomposed into three forests Fy, Fj and
P’ with A(P’) < 2. Without loss of generality, we may further assume that the number of

edges in P’ is minimum. Then we get dp/(v) = 0, dp/(v1) = 0, dpr(v2) < 1, dpi(v3) = 0,
dpi(vs) = 0. We can further assume that the edges incident to vy, vs, v5 in G are in FY. Let
Fy = F{+{vuy}, Fy = Fj+{vvy, vvg, vav3, 0405}, P = P’ +{vvz, vvs, v102}. It is easy to check
that Fy, Fy, P are forests and cover G. And dp(v) =2, dp(vy) =1, dp(v2) < 2, dp(v3) =1,
dp(vs) = 1, for other u € V(P), dp(u) = dp/(u) < 2. So A(P) < 2, {Fy, F5, P} is a required
decomposition of G, a contradiction. So d(v) > 7 and ¢h/(v) >2x5—-6— (1 x2+2) >0
by R1.

Lemma 2.8 For (C2), ch/(v) > 0.

Proof When d(vs) =5, if d(v1) > 6 and d(vs) > 6, since vy, v3 cannot be 6-vertices
and weak of type 1 by (Co3), ¢ch/(v) > 2x5—6— (1 x2+ 2) >0 by R 1. Otherwise, by
symmetry, suppose d(v;) = 5. Consider the graph G’ := G — E(f1) — E(f2) — E(f3), since
V(G| + |E(G")| < |V(G)| + |E(G)], G’ can be decomposed into three forests F|, F}, P’
with A(P") < 2. Without loss of generality, we may further assume that the number of
edges in P’ is minimum. Then we get that dp/(v) =0, dp/(v1) < 1, dp/(v2) =0, dpr(vg) < 1,
dp(vs) = 0. We can further assume that the edges incident to vs in G’ are in F]. Let
Fy = F| 4+ {vvs, vavs}, F» = F) + {vvy, vvg, vgvs}, P = P+ {vvg, vvs, viva}. It is easy
to check that Fy, Fy, P are forests and cover G. And dp(v) = 2, dp(v1) < 2, dp(ve) = 1,
dp(vg) <2, dp(vs) =1, for other u € V(P), dp(u) = dp/(u) < 2. So A(P) <2, {Fy, Fy, P}
is a required decomposition of G, a contradiction.

When d(vy) > 6, if vy, v3 can not be 5-vertices in the same time, then
ch’(v)22x5—6—(1+gx2):0
by R 1. Otherwise, suppose d(v;) =5, d(vs) = 5. Consider the graph
G':=G - E(fi) — E(f) — E(f3),

since |V(G')| + |E(G")| < |V(GQ)| + |E(G)], G’ can be decomposed into three forests F7,
Fj and P’ with A(P’) < 2. Without loss of generality, we may further assume that the
number of edges in P’ is minimum. Then we get that dp:(v) =0, dp/(v1) < 1, dp:(ve) = 0,
dpr(v3) <1, dp(vs) = 0. We can further assume that the edges incident to vs in G’ are in
F|. Let Fy = F| + {vvg, vouz}, Fy» = F5 + {vvy, vve, vyvs}, P = P+ {vvs, vvs, viva}.
It is easy to check that Fy, F,, P are forests and cover G. And dp(v) = 2, dp(v1) < 2,
dp(ve) =1, dp(vs) <2, dp(vs) =1, for other u € V(P), dp(u) = dp(u) < 2. So A(P) <2,
{F, F,, P} is a required decomposition of G, a contradiction.
Case 4 d = 6.
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Let v1,vs, -+, vg be the neighbors of v in the clock direction. If v is weak of type 2,
then ch/(v) =2x6—-6—1x6=0 by R 2.1. Now suppose v is strong of type 2.

Lemma 2.9 There is at most one (6,3, 5, 3) 4-face incidenting to v.

Proof Suppose that there are two (6, 3,5,3) 4-faces fi, f2 incident to v, let

f1 = [vviwvy],
by symmetry, there are three cases to consider, fo = [vvawaus] or fo = [Vv3w3vy] OF
fo = [vvswyvs).

Case 2.9.1 f5 = [vvawavs].

Consider the graph G’ := G — E(f1) — E(f2), since |V(G')|+ |E(G")| < |[V(G)|+|E(G)|,
G’ can be decomposed into three forests F|, Fj, P’ with A(P’) < 2. Without loss of
generality, we may further assume that the number of edges in P’ is minimum. Then we get
that dp/(v) < 1, dp/(v1) =0, dpr(wy) < 1, dp(v2) =0, dpr(ws) < 1, dp:(v3) = 0. What is
more, we can assume that the edges incident to vy, vz in G’ are in F|. Let F} = F| + {vv,},
Fy = Fy+{vvy, wivs, wavs}, P = P +{vvs, vywy, vaws}. It is easy to check that Fy, Fy, P

are forests and cover G. And

dP(U) S dp/(U) +1 S 27dp(’01) = dp/(Ul) +1= 1,
dp(wl) < dp/(wl) +1< 2,dp(’[12) = dp/(l)g) +1=1,
) <d

for other u € V(P), dp(u) = dp/(u) < 2. So A(P) <2, {F}, F», P} is a required decomposi-
tion of G, a contradiction.

Case 2.9.2 fo = [vvsw3vy].

Consider the graph G’ := G — E(f1) — E(f2), since |[V(G")|+|E(G")| < |[V(G)|+|E(G)],
G’ can be decomposed into three forests F|, Fj and P’ with A(P’') < 2. Without loss of
generality, we may further assume that the number of edges in P’ is minimum. Then we
get that dp/(v) < 1, dp/(v1) = 0, dp/(w1) < 1, dp(ve) = 0, dp/(v3) = 0, dpr(w3) < 1,
dpr(vg) = 0. What is more, we can assume that the edges incident to vy, ve, v3, v4 in G’ are
in F|. Let Fy = F|, Fy = F} + {vvy, vvg, wyvg, v3ws, }, P = P’ + {vve, vv3, viwy, w3vs}. It is

easy to check that F}, F5, P are forests and cover G. And

dp(v) =dp/(v) +2=2,dp(vy) =dp(v1) +1 =1,
dp(w1) < dp/(wy) +1<2,dp(ve) = dpr(v2) +1 =1,
dp(vs) =dpr(vs) +1 =1,dp(ws) < dpr(wsz) +1 < 2,
dp(vy) =dpr(vy) +1=1

for other uw € V(P), dp(u) = dp/(u) < 2. So A(P) <2, {F,, F,, P} is a required decomposi-

tion of GG, a contradiction.
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Case 2.9.3 f5 = [vvswyvs].

Consider the graph G’ := G — E(f1) — E(f2), since |[V(G")|+|E(G")| < |[V(GQ)|+|E(G)],
G’ can be decomposed into three forests F|, Fj, P’ with A(P’) < 2. Without loss of
generality, we may further assume that the number of edges in P’ is minimum. Then we get
that dp/(v) =0, dp/(v1) =0, dp(wy) < 1,dp(v2) = 0,dpr(v4) =0, dp/(wy) < 1, dpi(v5) = 0.
What is more, we can assume that the edges incident to vy, ve, v4, vs in G’ are in F|. Let
Fy, = F|, F5 = F} + {vvy, vvg, wivs, wavs}, P = P + {vvy, vus, viwy, vaws}. It is easy to
check that Fy, Fy, P are forests and cover G. And

dp(v) =dp/(v) +2=2,dp(vy) =dp(vy) +1 =1,
dp(wy) <dp/(w1) +1<2,dp(v2) =dp/(v2) +1=1,
dp(vs) = dp:(ve) +1=1,dp(ws) < dpr(wy) +1 <2,
dp(vs) = dpr(vs) +1=

for other v € V(P), dp(u) = dp/(u) < 2. So A(P) <2, {F, F,, P} is a required decomposi-
tion of GG, a contradiction.

Case 4.1 na(v) =0.

If ng(v) < 5, then ch/(v) > 2x 6 —6— (4+ 3) > 0 by R 2. Now suppose ng(v) = 6,
if there is no (6, 3, 5, 3) 4-face incident to v, then ch/(v) > 2x6 -6 —-1x6 =0 by R
2. There must be one (6, 3, 5, 3) 4-face incident to v, if there is one 4-face which are not
incident to a 3-vertex, then ch’(v) > 2x6—6— (5 + 3 +1x4) >0 by R 2. Now suppose
fi = [vvywyvs] is a (6, 3, 5, 3) 4-face, and all 4-faces incident to v contain a 3-vertex, if
d(ws) = 3 or d(wy) = 3 or d(ws) = 3, then

4

2
ch’(v)22x6—6—(§+§+1x4)20

by R 2. So we assume d(ws) > 4, d(wy) > 4, d(ws) > 4. Since every four face is incident
to 3-vertex, there are at least two vertices of v3, vy, vs, v be 3-vertices, at least one is non
3-vertices, we assume that d(vs) = 3,d(vs) = 3 (the other cases are similar). If d(vs) > 5 or
d(vs) > 5, then

4 2
ch’(v)22><6—6—(§+1+§><2+1><2)>0

by R 2; if d(vs) = 4 and d(vs) = 4 then

4 11
() > 2% 6—6— (=414 = x4)=
ch'(v) >2x6—6 (3—1- +12><) 0

by R 2; if d(v3) = 3 and d(vs) = 4, then if d(wy) > 6 or d(ws) > 6, we have
4 3 11
W(v)>2x6—6—(=+1 Sr)=
ch'(v) >2x6—-6 (3+ ><3+4+12) 0

by R 2. So we assume d(v3) = 3, d(vs) = 4, d(wy) = 5 and d(ws) = 5, then we consider the
graph G' := G — E(f1) — -+ — E(fs), since |[V(G")| + |E(G")| < |[V(G)| + |E(G)|, G’ can be
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decomposed into three forests F}, Fy, P’ with A(P’) < 2. Without loss of generality, we may
further assume that the number of edges in P’ is minimum. Then we get that dp/(v) = 0,
dp/(v1) =0, dp(wy) < 1, dpr(v3) =0, dp/(v3) = 0, dp(vy) =0, dpr(wy) < 1, dp:(v5) = 0,
dp(ws) <1, dp(ve) = 0, what is more, we can assume that the edges incident with vs in
G'" are in F]. Let Fy = F| + {vvy, wiva, wavz, wivy, vews}, Fo = Fy + {vvy, vvs, vve},
P = P’ + {vvs, vvs, viwy, wavs, wsvg}. It is easy to check that Fy, Fy, P are forests and
cover GG. And

dp(v) =dp/(v) +2=2,dp(vy) =dp/(vy) +1 =1,
dp(wy) =dp/(wy) +1 < 2,dp(ve) =dpr(v) +1 =1,
p(vz) =dp(v3) +1=1,dp(vy) =dp(vg) +1 =1,
(
(

S

dp(ws) = dp(ws) +1 < 2,dp(vs) = dpr(vs) +1 =1,
dp U}5) = dp/(U)g,) + 1 S Q,dp(’l}g) = dp/(’l)ﬁ) + 1=1

for other uw € V(P), dp(u) = dp/(u) < 2. So A(P) <2, {Fy, F», P} is a required decomposi-
tion of GG, a contradiction.

Case 4.2 na(v) = 1.

There are at most three 4-faces incident to v, and at most one of the three 4-faces is
(6, 3, 5, 3) 4-face, so ch'(v) >2x6—-6—(2+3+1x2)>0R1,R2.

Case 4.3 na(v) = 2.

When ng(v) < 1, then ¢h/(z) > 2x6—6—(2x2+3) > 0by R 1, R 2; when ng(v) = 2,
let f1 = [vviva], fo = [vvaus], fs = [vvswavs], fa = [vvswsvg]. If d(ws) > 6, d(ws) > 6, then
ch'(v) > 2x6—6—(2x14+2x2) = 0by R 1, R 2. So we assume that d(ws) = 5, by Lemma 2.9,
d(wy) > 6, if fi or f, does not contain a 3-vertex, then ch’(v) > 2x6—6—(3+14+2+3) >0
by R 1, R 2. Now we assume that both f; and f; contain a 3-vertex, then there are two
configurations to consider

(C1) d(v1) = d(vs) = 3;

(C2) d(vqg) = 3.

Lemma 2.10 For (C1), d(vz) > 6, so ch’(v) > 0.

Proof If it is not true, then by Lemma 2.3, assume d(vy) = 5. Consider the graph

G :=G—-E(fi)— E(f2) — E(f3) — E(f4),

since G’ has fewer edges than GG, G’ can be decomposed into three forests F, F3 and P’ with
A(P') < 2. Without loss of generality, we may further assume that the number of edges
in P’ is minimum. Then we get that dp/(v) = 0, dp/(v1) = 0, dp/(ve) = 0, dp/(v3) = 0,
dpi(vy) = 0, dpr(vs) = 0, dpr(ws) < 1, dp/(vs) = 0, what is more, we can assume that
the edges incident to v, vs,v4,v6 in G’ are in F|. Let Fy = F| + {vvy,vvg, v4wy, v5ws },

Fy = F) + {vvg, vv3, 0109, wavs}, P = P’ + {vvy, vus, vous, wsve}. It is easy to check that
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Fy, Fy, P are forests and cover G. And

dp(v) =dp/(v) +2=2,dp(v1) =dp/(v1) =0,
dp(ve) = dp:(v2) +1=1,dp(v3) = dp(v3) + 1 =1,
dp(vy) =dpr(vs) +1=1,dp(vs) =dp(vs) +1 =1,
dp(ws) = dp/(w5) +1 < 2,dp/(vs) =dpr(vs) +1 =1

for other uw € V(P), dp(u) = dp/(u)
tion of G, a contradiction. So d(vs)

< 2. So A(P) <2, {Fy, F5, P} is a required decomposi-
> 6,

4
ch’(v)22x6—6—(gx2+§+l)>0

by R 1, R 2.

Lemma 2.11 For (C2), at least one of vy, vy is a 6T-vertex, So ch/(v) > 0.

Proof If it is not true, then by Lemma 2.3, d(v;) = d(v3) = 5. Consider the graph
G' := G — E(f1) — E(f2) — E(f3s) — E(fs), then G’ has fewer edges since G, G’ can be
decomposed into three forests Fy, Fj and P’ with A(P’) < 2. Without loss of generality,
we may further assume that the number of edges in P’ is minimum. Then we get that
dp(v) =0, dp(v1) < 1, dp/(v2) = 0, dp(v3) < 1, dpr(vg) =0, dp/(v5) = 0, dp(ws) < 1,
dp(vg) = 0. What is more, we can assume that the edges incident to vy, vg in G’ are in F.
Let Fy = F| + {vvg, vvs, vv6},

! /
Fy = Fy + {vvs, v1v2, vgwy, wavs, wsve }, P = P" + {vvy, vvg, vav3, v5ws }.

It is easy to check that Fi, Fy, P are forests and cover G. And

dp(v) =dp(v) +2=2,dp(v1) =dp/(v1) +1 <2,
dp(ve) =dp/(va) +1=1,dp(vs) = dpr(v3) +1 <2,
dp(vy) =dp(vy) +1=1,dp(vs) =dp(vs5) +1=1,
dp(ws) = dp/(ws) +1 < 2,dp/(vs) =dpr(vs) +1 =1

for other u € V(P), dp(u) = dp:/(u) < 2. So A(P) < 2, {F}, F», P} is a required decomposi-
tion of G, a contradiction. Therefore, d(vy) > 6 or d(vs) > 6,

4 3
ch’(v)22x676—(§+2+1+5)>0

by R 1, R 2.

Case 4.4 na(v) =3.

When na(v) = 3, there is no 4-faces incident to v, so ch/(v) >2x6—-6—2x 3 =0 by
R 1.

Case 4.5 na(v) = 4.

When na(v) = 4, v is weak of type 2, so ch'(v) >2x6—-6—2x4=0by R 1.
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Caseb5 d> 1.
When na (v) = 0, the number of (v, 3,5,3) 4-faces incident to v is at most d(v) — 4, the
proof is similar to the case for 6-vertex, then

ch’(v)ZQxd(v)—G—(gx(d(v)—4)—|—1><4)20

by R 2. When 0 < na(v) < [2d(v)],
mmﬁz2xﬂM—6—@ngm+§x(ﬂ@—nMW—ZDEO

by R 1, R 2. When na(v) = [2d(v)], ch’/(v) > 2 x d(v) =6 —2 X na(v) > 0by R 1.
In all the cases, for arbitrary x € V(G) U F(G), we get ch’(x) > 0, a contradiction.
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