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Abstract: In this paper, we consider the problem of estimating the unknown parameter

a > 0 of the weighted fractional bridge dX: = faTthdt + dBf’b, 0 <t < T, where B*? is a

weighted fractional Brownian motion of parameters a > —1,]b| < 1,]b| < a + 1. Assume that the

process is observed at discrete time t; = iA,,7 = 0,--- ,n and T,, = n/\,, we construct a least
squares estimator &, of « and prove that &, converges to « in probability as n — oo.
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1 Introduction

The long-range dependence property has become an important aspect of stochastic
models in various scientific areas including hydrology, telecommunication, turbulence, im-
age processing and finance. The best known and most widely used process that exhibits
the long-range dependence property is fractional Brownian motion (fBm in short). The
fBm is a suitable generalization of the standard Brownian motion, but exhibits long-range
dependence, self-similarity and it has stationary increments.

Recently, Es-Sebaiy and Nourdin [9] studied the asymptotic properties of a least squares

estimator for the parameter « of a fractional bridge defined as

Xy
T—1

X, =0, dX; = —« dt+dBff, 0<t<T, (1.1)
where B is a fBm with Hurst parameter H > 1/2, and the process X was observed
continuously. Especially, when H = %, Barczy and Pap [3, 4] studied the various problems

related to the a-Wiener bridge.
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In applications usually the process cannot be observed continuously. Only discrete-time
observations are available. There exists a rich literature on the parameter estimation problem
for diffusion processes driven by fBm based on discrete observations (see, for example, Hu
[10], Hu and Song [11], Es-Sebaiy [8] and the reference.)

Motivated by all these results, in this paper, we will consider the o weighted fractional
bridge (1.1). Assume that the process X is observed equidistantly in time with the step
size t; = i\,,i = 0,--- ,n, and T, = n/\,, denotes the length of the ‘observation window’.
We also assume that T, + A, = T, and A, — 0 when n — oo. Our goal is to study
the asymptotic behavior of the least squares estimator (LSE for short) a,, of a based on the
sampling data X;,,¢ = 0,--- ,n. Our technics used in this work were inspired from Es-Sebaiy
[8].

The least squares estimator @,, aims to minimize

n t.
R Xi,_
i=1 Jti-1 v

This is a quadratic function of «. The minimum is achieved when

tv
n X,
S0 e e,
. =iy T =t
a, = — - . (1.2)

A N XE
n Zl (T—t;—1)?
1=

By (1.1), we can get the following result

=t (1.3)

t; t )Lr
X, ‘ Xt-,l X ’ ti—1 bpab
where M; = a=—= : — ds ———0""B}" 7’5217"' ;1.
i / (Ttu T s) i / Tt

The paper is organized as follows. In Section 2 some known results that we will use are

recalled. The consistency of estimator is proved Section 3.

2 Preliminaries

In this section we introduce some basic facts on the Malliavin calculus for the weighted
fractional Brownian motion B*?. Recall that the weighted fractional Brownian motion B%?
with parameters a > —1,|b| < 1,]b] < a+ 1 is a centered and self-similar Gaussian process
with long/short-range dependence. It admits the relatively simple covariance function as

follows

sAt
E [Bf’ng’b] = R*b(t,s) := / u[(t —u)® + (s — u)’]du, s,t>0. (2.1)
0
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Clearly, for a = 0, b = 0, B*" coincides with the standard Brownian motion B. For a = 0,

we get

E [B}'*B¥"] = 71l

(AR LA PR e (2.2)
which for —1 < b < 1 corresponds to the covariance of the well-known fBm with Hurst index

b+1
2

extend fBm’s, perhaps it may be useful in some applications. This process B*? appeared

and it admits the explicit significance. Hence, wfBm’s are a family of processes which

in Bojdecki et al. [5] in a limit of occupation time fluctuations of a system of independent
particles moving in R? according a symmetric a-stable Lévy process, 0 < a < 2 ( see
also Bojdecki et al. [6, 7]), and it is neither a semimartingale nor a Markov process unless
a = 0,b =0, so many of the powerful techniques from stochastic analysis are not available
when dealing with B*®. The wfBm has properties analogous to those of fBm (self-similarity,
long-range dependence, Holder paths). However, in comparison with fBm, the wfBm has
non-stationary increments and satisfies the following estimates (see Bojdecki et al. [6], Yan
et al. [15]):

Can(tV )it — s < E [(Bf’b - ng)?} < CoyltV s)°[t — s[P+! (2.3)

for s,t > 0, where C, ;, and ¢, ; stand for positive constants and whose value may be different
in different appearance. Thus Kolmogorov’s continuity criterion implies that wfBm is Holder

continuous of order § for any § < (1 +b). The process B®" is ¢t self similar, and

certainly, the self similar index HTl does not coincide with the Holder index 17“’ . However,
the Holder indices of many popular self-similar Gaussian processes coincide with their self
similar indices such as fractional Brownian motion, sub-fractional Brownian motion and bi-
fractional Brownian motion. That is causing trouble for the research, and it is also our a
motivation to study the weighted-fractional Brownian motion. More studies on wfBm could
be found in Garzén [13], Shen et al. [14], Yan et al. [15].

As a Gaussian process, it is possible to construct a stochastic calculus of variations
with respect to the Gaussian process B%®, which will be related to the Malliavin calculus.
Some surveys and complete literatures could be found in Alés et al. [1] and Nualart [12]. We
recall here the basic definitions and results of this calculus. The crucial ingredient is the
canonical Hilbert space H (is also said to be reproducing kernel Hilbert space) associated
to the wfBm which is defined as the closure of the linear space £ generated by the indicator
functions {1}y 4, ¢ € [0, T} with respect to the scalar product (104, Ljo,s])n = R**(¢, s). The
application £ > ¢ — B(y) is an isometry from £ to the Gaussian space generated by B®®
and it can be extended to H. The Hilbert space H can be written as

H={e:[0,T] =R | [lolln < oo},

where

ol = / / o(D)o(s) (1, 5)drds
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with ¢(t,s) = b(t A s)*(t Vs —t A s)’"L. Notice that the elements of the Hilbert space H
may not be functions but distributions of negative order. We can use the subspace |H| of H

which is defined as the set of measurable function ¢ on [0, 7] such that

loliBy = / / () () (s, r)dsdr < oo. (2.4)

It is not difficult to show that |H| is a Banach space with the norm ||¢|||»| and £ is dense in
|H|, and

L([0,T]) C L% C |H| C H. (2.5)
For b > 0 we denote by S the set of smooth functionals of the form
F= f(me((pl)v T 7Ba7b(§0n))7

where f € Cg°(R™) (f and all its derivatives are bounded) and ¢; € H,i =1,2,--- ,n. The

Malliavin derivative of a function F' € § as above is given by
Da,bF _ Ba,b L. Ba,b " ;.
;:1 B, (B (@), B on))

The derivative operator D" is then a closable operator from L?(Q)) into L?(Q;H). We

denote by D2 the closure of S with respect to the norm

I1E||1.2 = v/ E|F|? + E| D“*F|3,.

The divergence integral §%° is the adjoint operator of D*°. That is, we say that a random
variable u in L?(2;’H) belongs to the domain of the divergence operator §**, denoted by
Dom(5%%), if E [(D*F,u)3| < c||F||12(q) for every F € S. In this case §*(u) is defined by
the duality relationship

E [F§“"(u)] = E(D""F, u) (2.6)

T
for any v € D2, We will use the notation 6*°(u) = / usdB*" to express the Skorohod
0

¢
integral of a process w, and the indefinite Skorohod integral is defined as / u dB*" =
0

5a’b(u]l[07t]).
If u € DY?(|H|), u € Domd, then we have (see Nualart [12])

Bls(w)]* < Cap (IBullfry + E(IDulfgep)) -

where the constant C, , depends only on a,b. As a consequence, applying (2.5) we have

LT ((0,7]) LTFAFS ([0,T]2)

BIS@)? < Cu (||Eu||2 . L E(IDu? ) . (27)
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For every n > 1, let H,, be the n-th Wiener chaos of B*®, that is, the closed linear
subspace of L?(Q) generated by the random variables {H, (B**(h)),h € H,||h|lx = 1},
where H,, is the n-th Hermite polynomial. The mapping I,,(h®") = n!H,, (B**(h)) provides
a linear isometry between the symmetric tensor product H®™ (equipped with the modified
norm ||.|[xen = ﬁ”-”H@’") and H,. For every f,g € H®" the following multiplication
formula holds E(I,(f)I,(g)) = n!{f, g)pen.

Let f,g : [0,7] — R be Hoélder continuous functions of orders o« € (0,1) and g €
(0,1) with :,g + B > 1. Young proved that the Riemann-Stieltjes integral (so-called Young

integral) [ fdg, exists. Moreover, if « = 8 € (3,1) and F : R* — R is a function of class

oF
C!, the integrals / a7 —(fu, gu)df, and / 3 —(fu, 9u)dg, exist in the Young sense and the
g

following change of variables formula holds:
¢ t
or oF
P(fog) = Flfogn) + [ Gr(huaddhr [ Golfuaddan eIl @29
0

As a consequence, if i % and (ug, t € [0,T]) be a process with Holder paths of order

a>1-— Hb , the integral / dB%*" is well-defined as Young integral. Suppose that for
any t € [0,T],u; € DV2(|H|), a

/ / |Doug| (A 8)*(tVs—tAs)dsdt < 0o as..
o Jo

Then by the same argument as in Alos and Nualart [2], we have

t t t ot
/ usdB*" = / u 6 B 4 b/ / D, (r As)(rVs—rAs)tdrds. (2.9)
0 0 o Jo

In particular, when ¢ is a non-random Hélder continuous function of order o > 1 — 1—“’ , we

have . .
/ 0, dB*" = / ;6 B>" = B“b(¢p). (2.10)
0 0
In addition, for all p, ¢ € |H|,

T T T T
E </ cdeB?’b/ @bsng’b) = b/ / Guthy(u AV) (uV v —uAv)  dudv.  (2.11)
0 0 o Jo

3 Asymptotic Behavior of the Least Squares Estimator

Throughout this paper we assume a > —1, b < 1,]b| < a + 1. We will study eq. (1.1)
driven by a weighted fractional Brownian motion B*® and o > 0 is the unknown parameter
to be estimated for discretely observed X. It is readily checked that we have the following

explicit expression for X;:

t
Xt:(T—t)a/ (T —s)~“dB*, 0<t<T,
0
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where the integral can be understood as Young integral. In order to study the asymptotic

behavior of the least squares estimator, let us introduce the following processes
t
A, = / (T — s)~*dB*", 0<t<T.
0

Hence, we have

For simplicity, we assume that the notation a,,>b,, means that there exists positive constants

C = Cy, > 0 (depending only on H, v and its value may differ from line to line) so that

sup |a,|/|b,| < C < 0.
n>1

We first give the following lemmas.
Lemma 3.1 Let  >0,-1<a<0,0<b<1,b<a+ 1. Then

T, T,
n X n X
dBab s 6a,bBa,b .
A e A L

B, = b/OT" /OT(T C )T — ) s (r — )P dsdr (3.2)

lim 3, = bB(a,b)B(b,a + 1)T*.

where

and

Proof By (2.9), we have

T, X,
g T —s

Tn X Ty, T, X
- /0 T_SS‘Sa’ng’b+b/ / Df’bTiT(TAS)a(T\/S—rAs)b‘ldrds

-Tr

Tn X, n
= / = 5 pet ¢ b/ / (T —7r)* T — s)"*s"(r — s)" dsdr
g T'—s

T,
"X
—_ 5abBab -
/0 T + 8

On the other hand,

lim 8, = b lim / — ) YT — 5)"s%(r — s)" 'dsdr

n—oo n—oo

_ // (T — 8)s(r — 5)"\dsdr
= // (T — s)"“s%(r — s)""'drds

= b/ s “(T—s)“ds/ ro (s —r)P=%r
0 0
= bB(a,b)B(b,a + 1)T*",
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This completes the proof.
Lemma 3.2 Let -1 <a<0,0<b<1,2a—1<b<a+1, then

X,
E
(7

Proof In fact, we have

)2 <2bB(1 — a,b)B(b—2a+ 1,a+ 1)(T — t)** 210720+ 0 <t < T.

t gt
EA? —b/ / (T —u) (T —v) " *(uAv)"(uVo—uAv) " dudv
0 Jo

t u
= Zb/ / (T —u)~ (T — v)"*v*(u — v)"*dvdu
Ot Ot
= Qb/ / (T —u)™ (T — v) v (u — v)"'dudv
Ot v )
= 2b/ / u " Y(T — v)* (v — u)*~*dudv
T—t JT—t
t v
< 2b/ / w0 (T — v)*(v — u)* *dudv
0o Jo

T v
= 2b/ v (T - U)ad’v/ (v — )" du
0 0
=2bB(1 — a,b)B(b — 2+ 1,a + 1)T* =2+,
So we obtain that

X,
E
(7

Lemma 3.3 Assume —1 <a < 0,0<b<1,1-b<2a<1+4+b<a+2 andlet

)2 <2bB(1 — a,b)B(b—2a+ 1,a+ 1)(T — t)** 27t =20+1 0 <t < T.

T,
" X a a
Fr, —/O ﬁé B Then
b2
lim E(F7 )= 53(1 —a,0)B(b—2a+1,a+1)B(a,b)B2a+ b — 1,a + 1)T?*+20=2

Proof By the isometry property of the double stochastic integral I, the variance of
Frp is given by
b2
B =L,
where
ITn = / (T—tl)a_l(T—81)_a(T—t2)a_1(T—52)_a(81 /\Sg)a
(0,Tn]*
(81 V S9 — 851 A Sz)bil(tl AN tg)a(tl V tg - tl VAN tg)bildsldSthdtQ.

Now, we study Ir,, by setting

/ —51) 7T — 82)7*(51 A 52)"(51 V 52 — 81 A 52)" " dsydss,
[0,T, ]2

/ — 1) THT — )7t Aty)(ty V ty — ) Aty)P Tt dts.
0,T), ]2
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We have Iy, = I115. In a similar way

Il = / (T—Sl)_a(T—Sg)_a(Sl Asz)“(sl \/82 — 81 /\Sg)b_ldsldSQ
[0,T,]?

—  B(a,b)B(b+2a—1,a+ )T n— oo
and
I, - B(1—a,b)B(b—2a+ 1,0+ 1)T72 5 - .
Thus the proof is finished.

The following theorem give the consistency of the least squares estimator @, of a.
Theorem 3.1 Let a >1/2,-1<a<0,—a<b<1,1-b<2a<l+4+b+a<2a+2.If

A, —0, T,=nA, —->T
asn — oo and T,, + A\,, = T. Then we have
&nia, n — 00,

where —— means convergence in probability.
Proof By (1.3), we have

n
w2 M
~ B i=1
Qp — Q= — n 2
An ti_
“ Z (T t1—11)2
=1
Let 0 < e < 1, we obtain
n
M,
P(la,—a|>¢e) = P =1 > e

n X2
al, Z ti—1
no (T—ti-1)?
i=

< P(ZiMi >€(1—5)> +P<

= Bi(n)+ B(n).
First, we consider the term Bj(n), we have

o
72 M, 1—
n 2 > ¢ 5))

ti
« a
n Z[MZ B / Xtifl(sa’bBt )b]
ti—1

i=1

Bi(n) = P(
g
+p(

IA

> %5(1 — 5))
> %5(1 — 5))

n

Xy, X
g Z / ( ti-1 t )50.,sz1,17
ti—a1

n i1 T—ti,1 T—1
T,
rX 1
+P ( Z/ T _t téa’be’b > ga(l — 5))
0

= Bi1(n) + Bi2(n) + Bis(n).
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For the term Bj ;(n), using Lemma 3.2, we obtain

ti
E ’[Mi - / X, 0%"B™
_ ti—1

i

i=1
o\ /2 9\ 1/2
’ X, Xy

< E - dt
= QZ( < —tz 1> ) /t;l< (T—ti_l T—t> >

n " x X o\ 1/2
> (T_til)a_lf E( e > dt
<

x o\ 1/2
a—1 — t
s [ () ) o

n ti X 2 1/2 n t De 2 1/2
< Al Bt dt E i dt
o N o\ 1/2 n N o\ 1/2
‘ Xt,7 ! Xtv
< Aot E|——" dt E d dt
<o |2 (2(5)) 2 (2())
1 Yt i=1 Y ti-1
WA
So we get
o — b
ZE‘[Ml_/ Xti—l(sa’bB;Lb] EAZ&_I'
ni4a ti—1
Hence

A2a71
e(l—¢)

For the term By »(n), it follow the fact that for 0 <¢ < T,

Byi(n) >

X, 1 X a— a— a—
T_tlti.il - T_tt = _[((T_t) t— (T_tlfl) 1)Atz‘—1 +(T_t) 1(At _Ati—l)]'

We have

Xt b
_ 6a,bBll7
( —tl 1 T—t> ¢
Z/ - t)a71 - (T - ti—l)ail)Atifléa’ng’b
ti—1
Z / — )0 (A — Ay, )5 B

+E
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Using inequality (2.7) and EA, = 0,D¥ A, = (T — s)"*1j0,4(s), we have

E

n t;
Z/ (T =)™ = (T = tia)* ") Ar,_, 8By
i=17ti—1

n

Ty,
/ ST =6 = (T tm0)™ ) Ary Ly ()5 B
0 =1
< (=
Tn Tn
Sca,b,a / /
0 0

=F

1/2

T, n
/0 DT =) = (T = ti)* ) Au L,y ()5 BE®
=1

| )

ST =) = (T —ti)* D Ar, T,y (8)
i=1

14a+b
2 P)
Tfatb

dsdt

Tn  Tn ™ —2
T </ / Z ‘((T - t)a_l - (T - ti_l)a_l)(T - 5)—&’ T Ly (D)0, (s)dsdt
0 0 =1

14+a+b
2

)

14+a+b
" ti ti_ Coa 2
=Cab.a (Z/ (T =)' (T - ti—l)a_l)ﬁdt/ 1(T - 5)1+5+bd5>
i=1Yti—1 0
1+;+b
n ti 202 detadb
e (5[ 88Fa) T conmal
i=1"ti—1
On the other hand,
ENN / (T — t)*" (A, — A,,_,)6** B
i=1 Y ti-1
T, n
=E Z(T - t)ail(At - Atri71>1(ti71,ti]<t>6a7bB1§L’b
0 =1
R 1+a+b
T pTn| ™ TFaTb 2
Sca’b’a (/ / Z(T - t)a_lD?b(At - Ati—l)l(tiflyti](t) dsdt
0 0 1=1
14+a+b
Ty T, ™ 5 2
SCa,b,a ( Z |(T _ t)aleg,b(At _ Atifl) TFatb 1(t,i1,ti](t)d3dt>
0 =1
Ty T, 7 , #
T (/ D (T =0 (T —s)) T 1[tim](s)l(t“,ti}(t)dsdt)
G
14+a+b
" ti 2a—2 ¢ —2a
:Ca,b,a Z/ (T — t) Ttatbh dt/ (T — g)mds
i=1 Jti—1 ti—1
1+a+b

2

n ti t
<Capa (Z / (T — t) Bt / (T - tn)lﬁids>
i=1 Jti—1 ti—1

2b+2a 14+atb

SCa,b,a (nA'rILJrGH)) 2 S Ca,b,ozn A?L-H) .
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So we get

n t.

¢ Xz, X
E Z i1 6a,ng7b >n AZ—H) )

; . T—ti, T-—t

=1 i—1
Thus

Thn
Hence B;2(n) > %. For the term Bj 3(n), by setting Fr, = /0

°E
n

> AZ,+b-

i X:. X
Z/ tioa t (5a’bB;l’b
— Jtia T—t_1 T-—1

1

Xy
T—1¢

Lemma 3.3, we get

T,
« nXt a,b na,b
/ 0"’ B,
0

B =P
13() < n T-—1

> %6(1 - a))
3o ? 2 1
<o) B

As consequence,

I N 1
e(l1—e) + e(l—e¢) * e2(1 —¢)2n?’

Bi(n) >

Second, we estimate the term By(n),

CVAn - Xt',l 2
Tt )}
23 () -l
n t: 2 2
a ‘ X, X
<P||= - — dt
w(inf |(E) - ()
T 2
« " Xt
Pl |- dt —1 2
+ <n/0 <T—t> >a/>

= Bg,l(n) + BQ}Q(TL).

>6/2>

We first consider Bs(n). Since

n ts 2 2
(6% ‘ Xt,-71 Xt
E|— E —_— - dt
n i=1 /ti—l <T_ti_1) <T_t) ]
n t; 2 2
« ‘ Xt,-71 Xt
<-— E E(| =—— ) - dt
n i=1 /t;—l <T_ti—1> (T_t>

a ' Xt-71 Xt
=n E\m——) +E dt
_n;/ti—l ( <Tti—1> + (Tt) )
n ts 9 9
o ' Xt,-71 Xtv
=n E\m——| +E : dt

20 ¢ 2a—1 2a—1
SXZA;‘ > A20-1

i=1

§** B by using

(3.3)
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By Markov inequality, we obtain

AQa—l

B > -2
21(n) > B

Now, we estimate the term Bs2(n). Applying the change of variable formula (2.8), we get

T, 2 T,
[} " Xt 1 XT " Xt a,b
2 dt—1= o 5B — 8, ).
n/o (T—t) n(a—1) <2An /0 7B

Hence
Xr, 1 Xy o ou
B
(gl

By Markov inequality and Lemma 3.2, we obtain

Az 1]

B > — + —.
22(n) e?T?  en?  en
Therefore Aol A2 ) . Azacl A2 .
B > —= - —+—< = - —. 3.4
2(n) & € + g2T? + en? + en— € + e?T? + en (34)

Combining (3.3) and (3.4), this completes the proof.
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