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Abstract: In this paper, we study the central extension of the finite-dimensional special Lie
superalgebra S(m,n;t), where F is an algebracially closed field of prime characteristic p > 2. By
computing the skew outer derivations of S(m,n;t) to S(m,n;t)", we obtain the second cohomology
group H?(S(m,n;t),F) is trivial. As applications, we determine the central extension of S(m, n;t)
is trivial.
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1 Introduction

As a natural generalization of Lie algebras, Lie superalgebras become efficient tools
for analyzing the properties of physical systems. In the last ten years, many important
results of Lie superalgebras were obtained. Central extensions are often used in the struc-
ture theory and the representation theory of Lie superalgebras. If L is a Lie algebra or
a Lie superalgebra, the structures of the extensions of L-modules are described by the 1-
cohomology of L and the structures of the Lie (super)algebra exensions are related to the
2-cohomology (see [1-4]). Let L be a modular Lie superalgebra, i.e., a Lie superalgebra
over an algebraically closed field F of prime characteristic p > 2. Central extensions of L,
or equivalently, its second cohomology group H?(L,F), can be conveniently described by
means of derivations ¢ : L — L*. If L is simple and does not possess any non-degenerate
associative form, then H?(L,F) and H*(L, L*) are isomorphic (see [4]). In 1997, Professor
Zhang constructed four finite-dimensional simple modular Lie superalgebras of Cartan type,
i.e., the finite dimensional Witt superalgebra W(m,n;t), Special superalgebra S(m,n;t),
Hamiltonian superalgebra H(m,n;t) and the contact superalgebra K(m,n;t) (see [5]). The
central extensions of W (m,n;t), H(m,n;t) and K(m,n;t) were determined (see [4, 6, 7]).
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In this paper, we shall determine the central extension of the finite-dimensional special
Lie superalgebra S(m,n;t). Throughout this paper we always assume that F is an alge-
braically closed field and charF = p > 2. Write N and Ny for the set of positive integers and

the set of nonnegative integers, respectively.

2 Preliminary

Adopting the notation of [6, Section 1], we suppose that L = Lg @ Ly is a finite-
q
dimensional Lie superalgebra over F and L possesses a Z-gradation: L = € L;. Then

1=—T
s

L* := Homy(L,F) = € (L*); is a Z-graded L-module by means of

(@ N)y) = (=)D f([,y]) for 2,y € L, f € L",

where p(z) denotes the parity of a Zs-homogeneous elements 2. We assume throughout that
the symbol p(z) implies that z is Zs-homogeneous.

Let H C Lo N Lg be a nilpotent subalgebra of Ly and let p : H — gl(V') be a finite-
dimensional representation, where V' is a H-module. Then we define Vi, := {v € V | Vh €
H 3n(h,v) € N: (p(h) — a(h)idy )" (v) = 0}. The mapping « is called a weight and V{,)
the weight space if V() # 0. Let

L= @ L(a) and L* = @(L*)(g)
ac€A per

be the weight space decompositions of L and L* with respect to H, respectively. As H C
Ly N Lg, there exist subsets A; C A and I'; C I" such that

Li=@ LinLw and (L7); = @ (L), 0 (L)),

a€A; Ber;

Proposition 2.1 [6, Proposition 1.1] Let L* = @ (L*)(s) be the weight space decom-
Ber
position relative to H. Then the following statements hold:

(1) I' = —A and there is an isomorphism (L*)g) = (L(_g))* of H-modules for all 5 € I';
(2) I't=—-A_; for —¢<i<r.
Definition 2.2 A linear mapping ¢ : L — L* is called a derivation if

o([z,y]) = (=1)PEPE g o(y) — (—1)PEERy () for all z,y € L.

Let Derg(L, L*) denote the space of derivations from L into L* and Inng(L, L*) be the
subspace of inner derivations. Recall that a derivation ¢ from L into L* is called inner if
there is some f € L* such that p(z) = (—1)P)P@ gy . f for all z € L.

Definition 2.3 A derivation ¢ : L — L* is said to be skew if

o(z)(y) = —(—1)P@PWep(y)(z) for all z,y € L.
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-1
Let U(L) denote the universal enveloping algebra of L and L™ = >  L,.

Let & : U(L) — U(L) denote the antipode map of U(L), i.e., the antihomomorphism
of U(L) satistying &(z) = —x for = € L, &(uv) = (—1)PWPOS(v)&(u) for u,v € U(L)
and &(1) = 1. Observe that the U(L)-module structure of L* induced by the representation
L — gl(L*) fulfills

(u- f)(z) = (=1)PWPD £(S(u) - z) for u € U(L) and = € L.

Let ®, : H*(L,L*) — H'(L~, L*) be the canonical map, which is induced by the restriction
map Derg(L, L*) — Derg(L~, L*).

Lemma 2.4 [6, Lemma 1.5] Let ¢: L — L* be a derivation and suppose that e € L
such that (ade)?” = 0. Then e? ~' - p(e) € (L*)¥, where

(L) ={feL"|L-f=0}={f€L"|f(L L]) = 0}.

Proposition 2.5 [6, Proposition 1.6] Let V' C L be a Zjy-graded subspace such that
L=U(L")"- V&V, where U(L)* denotes the two-sided ideal generated by L. Suppose
T C Ny and {ej,es, -+ ,e,} is a basis of L™ such that

(1) anngz-y+ (L) = spang{e’ | b & T}, where b = (by,ba, -+ ,b,), € == elteb? - ebn
and anng -+ (L) :=={u € U(L™)" | u-L = 0};

(2) there is a basis {vy,va, -+ ,v,} of V such that {e*-v; |a €T, 1 <j<m}isa
basis of L over F.

Then the following statements hold:

(1) if ¢ : L — L* is a derivation satisfying ker(ade;) C ker ¢(e;) for 1 <1i <mn, then it
defines an element of ker ®1;

(2) if there is p € N such that T'= {b € N{ | b < p}, then ker(ade;) C ker ¢(e;) if and
only if el - p(e;) = 0;

(3) if uy; = p* —1for 1 < i < nand L = [L, L], then the canonical mapping ®; :
HY(L,L*) — H'(L~, L") is trivial.

We consider the subalgebra Lt = Zq: L; as well as M = M(L) := [L*, L"]. Note that

i=1
M is a graded subalgebra of L on which H operates. Hence, for i > 1, there is ¢; C A; such
that Lz = Mz + @ L(a) ﬂLz

a€d;
The proof of the following propositions is similar to [6, Propositions 2.3, 3.1 and 3.2].

q
Proposition 2.6 Suppose that L = € L; is a finite-dimensional simple Lie superalge-

bras. Let ¢ : L — L* be a homogeneous skew derivation of degree [, where —2¢q <1 < —¢g—1.
If ~Ay & ¢_(g+1), then ¢ = 0.
q
Proposition 2.7 Suppose that L = @ L; is a finite-dimensional simple Lie superal-

i=—T
gebras. Let ¢ : L — L* be a homogeneous derivation of degree [.

(1) if I > r — ¢ and ¢ defines an element of ker ®;, then ¢ is an inner derivation;
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(2) if I =r—gq, ¢ is skew and defines an element of ker ®;, then ¢ is an inner derivation.
q
Proposition 2.8 Suppose that L = @ L; is a finite-dimensional simple Lie superal-

1=—7

gebras. Let ¢ : L — L* be a skew derivation of degree (/,0) which defines an element of
ker ®@;. Then the following statements hold:

(1) if —g<1<r—gq—1,then ¢ is an inner derivation;

(2) if | =—qand A;N—Ag =0, then ¢ is an inner derivation.

3 The Properties of S(m,n;t)

Fix m,n € N\{1}. If a = (a1, -+ ,an) € NJ', then let |a| = > a;. Let O(m) be the
i=1
divided power algebra with the F-basis {z(® | « € N'}. Fix t = (t1,--- ,t,) € N™ and
m=(m, + ,7m), where m; = pli —1fori=1,--- ,m. Let
A(mvt) - { a = (ala"' 7am) GNZ)n | a; Sﬂ—iﬂ;: 17 7m}7
O(m,t) = spang{z'® € O(m) | a € A(m,t)}.
Then O(m,t) is a subalgebra of O(m). We write x; = z(*) for i = 1,--- ,m, where &; =
(0i1,++ ,0im) € N{'. Let A(n) be the exterior superalgebra over F in n variables 11, - - , Zs,

where s = m +n. Let O(m,n;t) = O(m,t) ® A(n). For z € O(m,t) and £ € A(n), we
abbreviate  ® £ to x€. Write

2@ =21, r=a,01, z =10

for a € A(m,t), i =1,--- ,mand j =m+1,---,s. Then we have the following formulas
hold in O(m,n;t):

b
g@z®) = <a+ >x(“+b), d W =22, pixy = —aju

a
for a,b € A(m,t) and i,j =m+1,--- s, where (a:b) = [[l(a’:b’) Set
Bk:{ (ih'" ,Zk)|m+1gll<<lk;§5},

where 1 < k < n. We put Boy=0 and B(n) = |JB. If u = (i1, -+ ,ix) € By, then let |u|=k
k=0

and 2% = 4,2, -5, € A(n). We write 27 := ., 1Zmy2- -7, and set 2 = 1. Then
{z@z¥ | @ € A(m,t),u € B(n)} is a basis of O(m,n;t). If u € By, then let p(z(@a*) =k €

Zs. Then O(m,n;t) is an associative superalgebra. Put
Yo :{1727 am}v Y1 :{m+]—a ,S}, Y=Y,UY:.

Let Dy, Do, -+, Dy be the linear transformations of O(m,n;t) such that

Dy (22" zle=edgu for i € Yy,
(' Vat) =
' z(99;(z") for i € Y7,
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where 0; is the derivation of A(n) such that 0;(z;) = d;; for 4,5 € Y;. Then Dy, Ds,-- -, D;
are derivations of the superalgebra O(m,n;t). Let W(m,n,t) = {>_ fiD; | fi € O(m,n;t)}.
i=1

1=

Then W(m,n;t) is a finite-dimensional simple Lie superalgebra (see [5]). The following
formula holds in W (m, n;t):

[fDi.gD;) = fDi(9)D; — (~1)PUPIPELI gD (f)D; for f,g € O(m,nst), i,j €Y.

For i,7 € Y, define

D;; : O(m,n;t) — W(m,n;t), D;;(f)= fiD;+ f;D;,
where
fi = —(—1)POEO D (£), f; = (1) OO Dy(f),
CE
Let

S(m,n,t) = spang{D;;(f) |1, €Y, f € O(m,n;t)}.
Then S(m,n;t) is a finite-dimensional simple Lie superalgebra and does not possess any
non-degenerate associative form (see [5, 8]). It is Z-graded by means of S(m,n;t) =
q
P S(m,n;t)k, where
k=—1

S(m,n;t), = span]F{Dij(x(“)x“) |3, €Y, |al + |u| =k + 2}.

The subalgebra S(m,n;t) of W(m,n;t) is called the special superalgebra.
For convenience, we first give the following formulas.
Lemma 3.1 [9, Lemma 3.10, p. 41] The following formulas hold in S(m,n;t):
(1) Dyi(f) =0 for i € Yo; Dyi(f) = —2D;(f)D; for i € Y3;

Dyi(f) = —(~1)PDE@+ NGOG D, (f)

Je

for i,j €Y.
(2) [Dr, Dij ()] = —(=1)"® DDy (Dy(f)) for k,i,j €Y.
(3) Let i,j,k,l €Y, then

[Di;(f), Drlg)] = (=1)7@O7R+7DE@+pUN+ER+rWe0) D (D, (£)Dy(g))
—(—1)TU)T(kHT(j)p(fH(T(k)”(l))p(g)Djk(Di(f)Dl(g))
<_(__1)T@)TU)+T(N(T@)+p(ﬂ)+TUOTU)l)ﬂ(l)j(f)l)k(g))
+(_1)T(j)f(l)+f(j)p(f)+r(k)r(l)Djl(Di(f)Dk (9)).
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Put T = Y Fh;, where h; = z;D;. Clearly, S(m,n;t)o = spang{A;;,z;D; | i,j € Y,i #
i=1
j}, where

Ay =h; — (1) OF0)

Put H =T () S(m,n;t)o = spang{A;; | i,j € Y,i # j}. Then H is a nilpotent subalgebra of
S(m,n;t)o () S(m,n;t)g. Let E be aset. If i € E, we put n(i,E) =1;ifi ¢ E, n(i,E) = 0.
Suppose a € Ni', u € B(n). Define a linear map

atu:H —T (at+u)(h;)=n(,Yo)a; £n(i,{u}).

Suppose b + u is a weight of S(m,n;t) relative to H. Choose a € N{', such that 0 < a; < p
and b; = a; (mod p),i =1,2,--- ,m. It is clear that b+ u =a + v in H*.
Proposition 3.2 Suppose the weight space decomposition of S(m,n;t) relative to H
is S(m,n;t) = @ S(m,n;t)(a). Let Dyj(xDa") € S(m,n;t), then
a€A

Dy (' 2*) € S(m, 15 1) (atu—n(i,Yo)e—n(.Yo)es —n(i¥1) () —n(ia¥1) (7)) -

Proof For convenience, write
a+u—n(i,Yo)e; = n(j, Yo)e; — n(i, Y1) (i) — n(4, Y1)(4) = Bla, u,1, j).
Clearly, H is generated by {hy | k € Y}. It remains to show
[P, Dy ()] = Bla, usd, ) (hy) Diy (V) (3.1)

for any k € Y. Without loss of generality, suppose D;;(z(®z%) # 0.

The proof now can be completed by considering the following cases:

Case 1 k e€Y,.

Case 1.1 i,j €Yj.

Case 1.2 i,j € Y;.

Case 1.3 i€Y,, jeYiorieYy, j€Y.

Case 2 keY;.

Case 2.1 i,j €Y.

Case 2.2 i,j €Y.

Case 2.3 i€Y,, jeYiorieYy, j€Y.

We only deal with Cases 1.3 and 2.2. The other cases can be treated similarly.

Case 1.3 Suppose i € Yy, j € Y;. By a direct computation, we have [hy, D;;(zPz%)] =
(ar — ki) Dij (D). Since B(a, u,i,j)(hy) = (a+u—e; — (j))(hr) = ar — Six, we obtain(3.1)
holds. From (1) of Lemma 3.1, it is easily seen the case of i € Y and j € Y} also implies
(3.1) holds.

Case 2.2 Suppose k,1,j € Y. First, consider the case k € {i,j}. If k € {u}, then

[, Dij (2 Wa*)] = Dy (2 2"),  Bla,u,i,5)(ha) = (a+u— () — (4))(hs) = 1.
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If k & {u}, then
[hlm D”(x(a)xu)} = ﬂ(av Uu, lv])(hk) = O

Second, we consider the case k =4 and k # j. A direct computation shows that
[hk7 Dij (‘T(a)xu)} = ﬂ(av u, iv j)(hk) =0.

The case k = j and k # i can be treated similarly. Finally, we consider the case k = i = j.
Since Dy;(z@x*) # 0, we known i = j € {u}. Thus we obtain

[, Dij (2 2")] = [hie, Diie(2'2")] = =Dy (2 V2*),  B(a, w4, ) (i) = 1.
Now we conclude that (3.1) holds.

4 The Second Cohomology Group H?(S(m,n;t),F)

Lemma 4.1 Let ¢ : S(m,n;t) — S(m,n;t)* be a derivation. Then there exists
f € S(m,n;t)* such that p(z) = (—=1)P@PN g . f for all 2 € S(m,n;t)_;.

Proof We shall apply Proposition 2.5 to complete the proof. Put L := S(m,n;t). Then
{D1,Ds,---, D} is a basis of the subalgebra L~. Consider V' = S(m,n;t), with a basis

{Dy;(z™x®) |i,j €Y}

The simplicity of L entails that L = U(L™)" - V@ V. For a € N§, we put D* :=

D{*D3? --- D¢, where a; = 0 or 1 for ¢ € Y;. Suppose that a;, = a;, = --- = a;, =0, where
m+1<i4 <ig<- - < <s. Let 2% =uz,2, -2, and b = a161 + asc2 + -+ + GmEm.
Then

D*. Dij(iv(ﬂ)fEE) = )\Dij(x(“fb)xu), A S {1, —1}

Thus
{D*-D;;j(2zF) |a €T, i,jeY}

is a basis of L over [F, where
T:={aeNj|0<a; <mforiecYy, 0<a; <1 forieY}.

Clearly D* € anny(r-)+(L) for a ¢ T. Suppose that y = > a(a)D® € anny-)+(L).
a>0

Choose i, j € Y such that D;;(z(™z¥) # 0. Then we obtain

0=y Dy(zMa") = Z a(a)ADy; (V)
acT
where A € {1,—1} and b = a1e1 + -+ + amepm. Thus a(a) = 0 for all @ € T and y €
spang{D* | a ¢ T}. In analogy with the proof of (3) of [6, Proposition 1.6], we have
D! - p(D;) € (L*)L' = 0. By (1) and (2) of Proposition 2.5, we obtain the desired result.
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Lemma 4.2 Suppose that h > 3 and M := M(S(m,n;t)). Then

S(m,n;t), = My + > > FDyj(z'W2") + > FDy(x®),  (4.1)
i,J€Y ap=0(modp),VkEYy 4L,JEY
where |a| + |u| = h+2,[b] = h + 2.
Proof It suffices to show that S(m,n;t), is contained in the right-hand side of (4.1).
Let D;;(z(@x%) # 0 be an element of S(m,n;t),, then h = |a| + |u| — 2 > 3. Without loss of
generality, we may suppose |u| > 0.
(1) i,j € Yp. If there is k € Y5\ j such that ar, # 0 (mod p), then

[Dij(:v(““jfgk)x“l) ,Dj;g(x(zg’“)xuz)] = akDij(m(a)mula:“?). (4.2)

It follows that D;;(z@z%) € M, unless a; = ;.
If a; = 7, put 2% = 2" 2"* such that |us| = 1. Choose [,r € Y; such that | € {u;} and
r & {us}. By the identity

[Da(a' )@z ), Dy (2= ,2)] = Dy (2 Wz 22), (4.3)

we obtain D;;(z(@a) € M.
If for any k € Y5\ j, we have ay, =0 (mod p) and a; # 0 (mod p), then by

[Dji(z+e =g | Dy (2% 2")] = —a; Dy (2 @z 2"), (4.4)

we obtain Dij(.’v(“)x“) € Mj, unless a; = m;. If a; = m;, then a; = —1 (mod p), a contradiction
with the assumption.

(2) i€eYy,jeYrorieYy, jeYy By (1) of Lemma 3.1 , we only consider the case
i €Yyand j €Y. If there is k € Yo\¢ such that ar # 0 (mod p), then put z* = 2" "2 with
lug] =1 and j & {u;}. Choose | € Yi\{uz}. By the identity

[ij(:c(“):c“l) ,Dil(m(s’“)x’”)] = /\akDij(x(“)x"Ixuz), Ae{-1,1}, (4.5)

we have D;;(z(Wz%) € M,,.

Suppose a;, = 0 (mod p) for any k& € Yy\i and a; Z 0 (mod p). If j & {u}, put
" = "z, Since |u| > 0, one may choose r € {u} such that r € {us}. Take I € Y7\ {us}.
By the identity

[Dir(x(“_ai)xrxul) ,Dﬂ(:v(a")xlxw)] = /\az—Dij(:U(“)zvulxuz), Are{-1,1}, (4.6)

we obtain D;;(x@z%) € Mj,. If j € {u} and |u| > 2, choose r € {u}\j. Put 2% = x*1x%2 such
that r € {us} and j € {u,}. Takel € Y;\{uz}, then by (4.6), we also have D;;(x(®z") € M,,.
Now only the case j € {u} and |u| = 1 needs to be considered. Note that z* = z; and |a| > 4.
If a; # 1 and a # a;e;, take r € Y1\j, then by

[Dir(x(a_“isi)xjxr) ,Djr(:v(“ie’?):vr)] = )\Dij(x(”)xj), Ae{-1,1}, (4.7)
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we have D;;(xVx;) € M,,.
If a; = 1, then
[Dij(:c(“*“)xj) ,Dij(ﬂ'}@gi)ﬂ?j)] = /\(Z,‘Dij(.’l,’(a).’llj), AE {—1, ].} (48)
It follows that D;;(zz;) € M.

If a = a;e;, pick k € Yy\i. Consequently,

[Din (2 a;) |, Dji(a'Va))] = aiDyj(a'a;) — Dy (a5 ay). (4.9)
By the above proof, we have Dy;(z(@5=)z,) € M;,. Thus D;;(z¥z;) € M.

(3) i,j € Yy. It can be treated similarly.

Theorem 4.3 The central extension of S(m,n;t) is trivial.

Proof It was shown in [4] that there is an isomorphism between H?(L,F) (the central
extension of L) and the vector space of skew outer derivations from L into L* if the modular
Lie superalgebra L is simple and does not possess any non-degenerate associative form. Note
that S(m,n;t) satisfies these requirements. Without loss of generality, we may suppose that
v S(m,n;t) — S(m,n;t)* is a homogeneous skew derivation of degree (1,0) (see [10,
Theorem 1.1]).

(i) I > 1 —q. We apply Proposition 2.7 and Lemma 4.1 in order to see that ¢ is an
inner derivation.

(ii) I = —q. Let 2(“z“D; € W. From Proposition 3.2, we have

Dyj(2“2") € S(m, 15 £) atumn(i¥o)es =003 Yo)e —n(i¥0) () =0 (6))-
Clearly,

A0 - _AO - {ekr +e —¢ _gj | kal7i7j S %}U{i(ak + (l) —&; _Ej) | k,i,j S }/E)al S le}

Ut + @) =i —&)) 14,5 € Yo, k, 1 € Vi [ J{(R) + () — () — (4) | k. 1,3, 5 € Vi)

Ut + 1) = () = () | k€ Yo, Linj € Vit J{ew+ () — i — () | ki € Yo, 1,5 € Y}
and
A, = {r+E-ci—¢; i, j € Yo} | Hm+E—(i)-(j) 1,5 € i} | J{m+E—ei—(j) |i € Yo,5 € Y1}

Since m,n € N\{1}, we obtain —Aq (A, = (. Then ¢ is inner by virtue of Lemma 4.1 and
Proposition 2.8.
(i) —2¢ <1< —q—1. If Il < —q— 3, then —(¢+1) > 3. Write —(¢ +1) := h. By

Lemma 4.2, we have
S_(gry ={a+u—e;—¢j|la| +|ul=h+2, VYa, =0 (modp), ke, i,j €Y}
JHa+u—=0G) = G)llal + |ul =h+2, Yay =0 (mod p), k € Yy, i,j € Y1}
Jla+u—e— @)l lal+ul =h+2, Vo =0 (mod p), k€ Yy, i €Yy, j €V}
Jlb—ei—cilbl=h+2ijevo}{ J{b—ci— ()| bl =h+2, i€, je Y}
U - @ - )bl =h+2ijen}.
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It is easily seen that —A, ¢ ¢_(441), then ¢ = 0 by virtue of Proposition 2.6.
Now we assume that | € {—q — 2, —q — 1}. Note that

Ny = {atu—g—¢lijeYe, lal+ul =4} Hat+u—()—@G)]ij e, lal+ [ul =4}
Jfa+u—ei— () |i€Yo,j eV, lal + |ul =4},

Clearly —A, ¢ Ay, therefore, —A, ¢ ¢. Similarly, —A, ¢ A; = ¢1. Then Proposition 2.6
applies and ¢ = 0. Hence we conclude that the central extension of S(m,n;t) is trivial.
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