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Abstract: In this paper, we study the bifurcation of K (2, 3) equation us+(u?)z — (u*)zee = 0
with osmosis dispersion. Using the qualitative analysis methods of dynamical system and numerical
simulation by Maple programs, illustrative phase portraits corresponding to traveling wave system
are presented, and expressions of a periodic cusp wave, kink-like and antikink-like wave solutions,
and implicit expression of soliton are explicitly given after integrals.
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1 Introduction

In 1993, Rosenau and Hyman [1] introduced a genuinely nonlinear dispersive equation,

namely, a particular generalization of the KdV equation
up + (™) + (W) gze = 0,m > 0,1 <n < 3,

which is called the K (m, n) equation. They studied four cases m,n = 2,3 with the compacton
solutions. Few years later, Ismail and Taha [2] implemented a finite difference method and a
finite element method to study equations K (2,2) and K(3,3). Ismail [3] made an extension
based on [2] and obtained numerical solutions of the K(2,3) equation. Frutos and Lopez-
Marcos [4] presented a finite difference method for the numerical integration of the K(2,2)
equation. Zhou and Tian [5] considered soliton solution of the K(2,2) equation. Xu and Tian
[6] studied the peaked wave solutions of the K (2,2) equation. Zhou et al. [7] investigated
kink-like and antikink-like wave solutions of the K (2,2) equation. He and Meng [8] obtained
new exact explicit peakon and smooth periodic wave solutions of the K(3,2) equation. In

this paper, we will discuss the osmosis K (2, 3) equation

w + () — (U?)gze = 0, (1.1)
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where the positive convection term denotes the convection moves and the negative dispersive
term means the contracting dispersion.

The paper is organized as follows. In Section 2, we discuss the bifurcation of traveling
wave system related with equation (1.1) and draw its phase portraits by maple programs in
Figure 1. Section 3 is devoted to obtaining exact solutions including soliton, periodic cusp
wave and kink-like and antikind-like waves which belong to bounded traveling waves. A

short conclusion is given in Section 4.

2 The Bifurcation and Phase Portraits

Consider the osmosis K (2,3) equation (1.1), and change it into the following form
g + 2utty — 6(uy)® — 18Ut Uy — 3U Uy = 0. (2.1)

Let u = (&) = p(z — ct) be the solution for equation (1.1) or (2.1), where ¢ (# 0) is the
wave speed. Substituting u = ¢(x — ct) into (2.1) gives an ODE

—cp’ + 209" — 6(¢')* — 18pp’y" — 39" = 0. (2.2)
Integrating (2.2) once with respect to &, we have
—cp +¢® = 6p(¢)? = 3" =g, (2.3)
which can be rewritten as

_ gtce—@’+6py’
dE ,3902 Y

de __
€ =Y
{dy (2.4)

where ¢ is an integral constant. Since (2.4) is a singular traveling wave system with a singular

line ¢ = 0, we introduce a rescaling of the time df = —3¢?dr to transform it into a regular
system. Namely,
do _ 3,2
{ oo (2.5)
ar = 9t cp— 7 +6py

with a first integral

a1 c 1 3
H =g+ —p— =%+ Zo?). 2.
(o y)=¢ (3g+4<p 14 +290y) (2.6)

Obviously, the singular traveling wave system (2.4) has the same first integral H(p,y) as
(2.5), and accordingly both (2.4) and (2.5) have the same topological phase portraits except
for the straight line ¢ = 0. Thus, in order to understand the bifurcation sets of system (2.4),
we need to study phase portraits of system (2.5). Next, we discuss the isolated and singular

. . . ctq/c2+4g
points of system (2.5) for their phase portraits. Let Ay = (—Y5——,0), then
H(AL) = g5(c+ /2 +49)*(16g + 3¢ + 3¢/ + 4g),
H(A_) = gi5(—c++/c2 4+ 49)* (=169 — 3¢® + 3cy/c? + 4g).

o
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Using the qualitative analysis methods of planar dynamical system, the distribution and
property of singular points are given

(1) When g > 0, system (2.5) has a saddle point A, and a center A_.

(2) When g = 0, system (2.5) has a center (¢, 0).

(3) When —%f < g <0, system (2.5) has a saddle point A, and a center A_.

(4) When g = —%, system (2.5) has a cusp (5,0).

(5) When g < —%, system (2.5) has no singular point.

According to the property above, we show phase portraits of system (2.5) in Figure 1.
It is easy to see a periodic cusp wave from Figure 1(1-4), a kink-like wave and a antikink-like

wave from Figure 1(1-6) and soliton from Figure 1(1-7) and (1-8). Their expressions are
S
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Figure 1: The phase portraits of system (2.5): (1-1) g > 0,¢ > 0; (1-2) g > 0,¢ < 0; (1-3)
g=0,¢>0; (1-4) g =0,¢ < 0; (1-5) =222 < g < 0,¢>0; (1-6) g = — 15 ¢ > 0; (1-7)
—€ cg< =18 50, (1-8) —Z < g<0,c<0; (1-9) g=—%,¢>0; (1-10) g = —Z, ¢ < 0;
4 g 64 ° ’ 4 g , € ’ ) g = 4 ) C ’ g = A ) C ’

(1-11) g < <.

presented in next section.
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3 Main Results and Their Proofs
3.1 Periodic Cusp Wave Solution

Theorem 3.1 When g = 0 and ¢ < 0, equation (1.1) has a periodic cusp wave solution
of peak type u = ¢1(§ + 2nT),n = 0,£1,£2--- and & € [(2n — 1)T, (2n + 1)T], where
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p1(§) = HE2+ %, ¢ € [-T,T) with T = $/—6c.
Proof In Figure 1 (1-4), the periodic orbit of system (2.4) intersects y-axis, which

c

can be expressed as H(p,y) = ¢*($ — +¢ + 3y*) = 0. Namely,

5
y==+ & Zc§¢§0,c<0, (3.1)

which intersects y-axis at (0, \/—%) and (0, —,/—£), and z-axis at (¢, 0). Substituting (3.1)

into system (2.4), we get

which gives u = (£ +2nT),n = 0,+1,42--- and ¢1(§) = 5+ %, £ € [-T,T]. In
addition, ¢1(T") = 0 reveals T = %\/—60. The proof is completed.

The graph of relevant periodic cusp wave of peak type for equation (1.1) is shown in

Figure 2.
A 31 <3jz>
Figure 2: The periodic cusp wave of peak Figure 3: ¢ =0,c = —1,a = 1—96. (3-1) The
type for equation (1.1) : g = 0,¢ = —1. kink-like wave for equation (1.1); (3-2) The

antikink-like wave for equation (1.1).

3.2 Kink-Like and Antikink-Like Wave Solutions

Theorem 3.2 When g = —22¢? and ¢ > 0, equation (1.1) has a kink-like wave solution

u = p9(&) and a antikink-like wave solution u = ¢3(§),

ﬁ(@Z) = /B(a) +§7 §€ (_607"_00)7 (32)
ﬁ((pi’)) = /B(a) - 57 g € (_Oové())? (33>

where £ < ¢ < 2c and f(p) = @[—2@—# @arctanh%}, & = B(a) — B(5) with a is
a constant satisfying 2(0) = ¢3(0) = a.

Proof In Figure 1 (1-6), system (2.4) has four orbits connecting with a saddle point
A., Ly denotes a orbit lying on the upper-left side of A, and L3 on the lower-left. Note
that H(A,) = 0, then Ly and L3 can be respectively described as the following forms for
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0<p<ic
Ly:y= M (3 4)
2 8vI6p '
Ly:iy= _M (3.5)
3 . 8 %15@ . .

Let p2(§) and ¢3(&) be respective solutions of system (2.4) on Ly and Lz. Substituting
(3.4) and (3.5) into the first equation of system (2.4) separately and integrating along orbits

Lo, L3, respectively, we get

a / 0
&ds = / ds, (3.6)
P2 \/5(50 - 88) 3
w3 _Q./ 1S
ﬂds = / ds, (3.7)
a \/5(50 — 88) 0

which imply implicit functions in (3.2) and (3.3) by maple programs.

Besides, assume that ¢,(§) — § as § — =&, and p3(§) — § as § — &1, then we have

2
from (3.6)—(3.7) that

M

5 _8/15s

§o=8 = 7\&(50_ 88)

ds = Ba) ~ A(3).

The proof is completed.
The graph of relevant kink-like and antikink-like waves for equation (1.1) is shown in

Figure 3.
3.3 Soliton Solutions

Theorem 3.3 When —< < g < —%2¢? and ¢ > 0, equation (1.1) has a soliton solution

u(z,t) = p(x — ct),

¢ = arccos(%l;“:),

Alzh ‘2 17k2¢2¢
2hAE(¢,k) — h(l+ 1, — A— ) F (9, k) = i (6, 555, k) — 2hAm
+ Al?hay/a?—1 In \/Ww\/m

(I=11—A)2(a2-1)VEZ2+a?—k2a? VEEFaZ—kZaZé— \/m |€|
(3:8)
wherel = 1(chy/2 +49), by = — 11y, af = 13— 113, A= \/(bi —1)> + a3, k = |/ Ath=ls h =
ﬁ, o= 1= §1+A with [y, 15,13 given in (3.12), here F(-,-) is the normal elliptic 1ntegral of

the first kind, E(-,-) is the normal elliptic integral of the second kind and II(-,-,-) is the
Legendre’s incomplete elliptic integral of the third kind (see [9]).

Proof In Figure 1 (1-7), system (2.4) has a homoclinic loop consisting of a saddle point
A, which can be expressed as H(p,y) = ¢*(39 + So — +¢* + 3¢py?) = H(A,). Namely,

3 1 c++/c?+4g

580492 = 5(90 - fﬁ@g + M1 + map + ms), (3.9)
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4 3

2 cy/c2+4g 4 3 c?y/c2+4g 7 gy/c2+4g
Wheremlz—i—l—\/m,mQ:%—f—i-kg =S+ g+ + =5

, M3 g 3 3
Let
F() = @+ m1o® + map + ms. (3.10)
By introducing a new variable, z = ¢ + “%*, (3.10) becomes
fle) =2’ +pr+yq,

_ 5¢? 5cy/c2+4g 53 65c¢2/c2+4g 5cg 594/ c2+4g . q\2 p\3
where p= —¢ + 15—, q=g5; + 35— + 35 + 5 Besides, (£)*+(£)° >0

under —% < g<—gc and ¢ > 0, then (3.10) has a sole real root. Thus, (3.9) becomes

y:\/E(l_sp)\/(@_ll)(@z+12¢+l3),ll<g0<l, (3.11)

902

where

1
L = —ﬁ{—[—503—13002\/024—49—12009—160 2 1 4gg

2

+20\/(302 +29)(9¢t 4 934/ c? 4 4g + 66¢2g + 48c+/ c? + 4gg + 128g2?) } * _5c?
+20cy/ 2 +4g — c[ —5¢® = 130c%/c + 4g — 120cg — 160~/ + 4gg

+20\/(302 +29)(9¢* + 9¢3+/c2 + 4g + 66¢2g + 48¢y/2 + 4gg + 128¢2) ]
+4M[ —5¢® —130*\/c + 4g — 120cg — 1601/ + 4gg
+20\/(302 +29)(9¢t + 9¢31/c? + 4g + 66¢2g + 48¢1/c? + 4gg + 12892)} }/ [ — 568
—130c2\/c2 + 4g — 120cg — 160+/c? + 4gg
+20\/(302 +29)(9¢* 4 9¢3+/c? 4 4g + 66¢2g + 48¢c/ ¢ + 4gg + 128g2?) } %,

1

b =~ {225007 —9000c® /¢ + 4g + 19200c°g — 76800 g+/c® + 4g + 40960c° g2

—163840¢% g% /2 + 4g — (1125¢° + 9600c* g + 20480¢% ¢°)
[ — 56 — 1302/ + 4g — 120¢g — 1601/ + 4gg + 20
\/16263\/ ¢ +4gg + 216¢*g + 516¢2g? + 96¢g?+/c? + 4g + 27cP+/c? + 4g + 27c¢ + 25693]
n [ — 56 — 1302/ + 4g — 120¢g — 1601/ + 4gg + 20

2
\/16263\/ ¢ +4gg + 216¢*g + 516¢2g? + 96¢g?+/c? + 4g + 27cP+/c? + 4g + 27c + 25693} ?
[ +225¢° 4 450¢* /2 + 4g + 1560c% g + 2400¢% /¢ + 4gg + 2560cg® + 2048/ c2 + 4gg>
+(68¢% 4 32¢\/c? + 4g + 2569)
\/16203\/ c® 4+ 4gg + 216¢*g + 516¢2g2 + 96¢g?+/c? + 4g + 27¢5\/c? + 4g + 27c + 256g3] }

/(15¢% + 649)2,

W=

ol

wl=
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1 .
s = a9 {450c6 +450¢° /¢ + 4g + 4320c¢* g + 1920¢®1/? + 4gg + 10240% g2 +

[ —5¢% — 1302 \/ + 49 — 120cg — 1601/ + 4gg + 20

\/16203 c? +4gg + 216¢*g + 516¢2g? + 96¢g?+/c? + 4g + 27cP+/c? + 4g + 276 + 256g3}
. [225(;5 +225¢* + 1260cg + 960c2 g~/ + 4g + 1280cg”

+(10¢ + 40cy/¢? + 4g)

\/16203 2 4+ 4gg + 216c¢tg + 516¢2g2 + 96¢g?+/ 2 + 4g + 275/ 2 + 4g + 27c5 + 25693}
+[ —5¢® — 130/ + 4g — 120cg — 1601/ + 4gg + 20

\/16203 c? +4gg + 216¢*g + 516¢2g? 4 96¢cg?y/ 2 + 4g + 27c5+/ % + 4g + 27c5 + 25693}

[ —15¢* +225¢* — 156/ + 4g — 124¢°g — 64cgn/c? + 4g

ol

win

—(2¢c+ 8+y/c? +4g)
\/16203\/ c® 4+ 4gg + 216¢tg + 516¢2g? + 96¢g?+/c? + 4g + 275/ 2 + 4g + 276 + 25643
7256g2] }/(15c2 + 64g) (3.12)

with 12 — 413 > 0. Substituting (3.11) into the first equation of system (2.4) and integrating

along the homoclinic orbit, we get

—IhF(¢,k) — h(ly — A)F(¢,k) — 2hA [[" 5% + 1k [ 1+cn udu

14+cnu (I=li+A)en u+l—11—A]

_ \/Z\ﬂ, (3.13)

where cnu; = cos ¢, cnu = cn(u, k) is Jacobian elliptic function (see [9]). Therefore, (3.8)

holds by computation.

The graph of relevant soliton for equation (1.1) is shown in Figure 4 (4-1).

Remark When 7% < g < 0and ¢ < 0 (Figure 1 (1-8)), equation (1.1) also has a
soliton solution and (3.8) holds. Its graph is shown in Figure 4 (4-2).

(4-1)

Figure 4: The soliton for equation (1.1). (4-1) g =

4 Conclusion

In this paper, using the qualitative analysis methods of planar dynamical system, we
studied the bifurcation of the osmosis K(2,3) equation and obtained exact periodic cusp

wave solution, kink-like and antikink-like wave solutions, and soliton solution.
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