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Abstract: In this paper, we study the bifurcation of K(2, 3) equation ut+(u2)x−(u3)xxx = 0

with osmosis dispersion. Using the qualitative analysis methods of dynamical system and numerical

simulation by Maple programs, illustrative phase portraits corresponding to traveling wave system

are presented, and expressions of a periodic cusp wave, kink-like and antikink-like wave solutions,

and implicit expression of soliton are explicitly given after integrals.
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1 Introduction

In 1993, Rosenau and Hyman [1] introduced a genuinely nonlinear dispersive equation,
namely, a particular generalization of the KdV equation

ut + (um)x + (un)xxx = 0,m > 0, 1 < n ≤ 3,

which is called the K(m,n) equation. They studied four cases m,n = 2, 3 with the compacton
solutions. Few years later, Ismail and Taha [2] implemented a finite difference method and a
finite element method to study equations K(2, 2) and K(3, 3). Ismail [3] made an extension
based on [2] and obtained numerical solutions of the K(2, 3) equation. Frutos and Lopez-
Marcos [4] presented a finite difference method for the numerical integration of the K(2, 2)
equation. Zhou and Tian [5] considered soliton solution of the K(2, 2) equation. Xu and Tian
[6] studied the peaked wave solutions of the K(2, 2) equation. Zhou et al. [7] investigated
kink-like and antikink-like wave solutions of the K(2, 2) equation. He and Meng [8] obtained
new exact explicit peakon and smooth periodic wave solutions of the K(3, 2) equation. In
this paper, we will discuss the osmosis K(2, 3) equation

ut + (u2)x − (u3)xxx = 0, (1.1)
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where the positive convection term denotes the convection moves and the negative dispersive
term means the contracting dispersion.

The paper is organized as follows. In Section 2, we discuss the bifurcation of traveling
wave system related with equation (1.1) and draw its phase portraits by maple programs in
Figure 1. Section 3 is devoted to obtaining exact solutions including soliton, periodic cusp
wave and kink-like and antikind-like waves which belong to bounded traveling waves. A
short conclusion is given in Section 4.

2 The Bifurcation and Phase Portraits

Consider the osmosis K(2, 3) equation (1.1), and change it into the following form

ut + 2uux − 6(ux)3 − 18uuxuxx − 3u2uxxx = 0. (2.1)

Let u = ϕ(ξ) = ϕ(x − ct) be the solution for equation (1.1) or (2.1), where c (6= 0) is the
wave speed. Substituting u = ϕ(x− ct) into (2.1) gives an ODE

−cϕ′ + 2ϕϕ′ − 6(ϕ′)3 − 18ϕϕ′ϕ′′ − 3ϕ2ϕ′′′ = 0. (2.2)

Integrating (2.2) once with respect to ξ, we have

−cϕ + ϕ2 − 6ϕ(ϕ′)2 − 3ϕ2ϕ′′ = g, (2.3)

which can be rewritten as {
dϕ
dξ

= y,

dy
dξ

= g+cϕ−ϕ2+6ϕy2

−3ϕ2 ,
(2.4)

where g is an integral constant. Since (2.4) is a singular traveling wave system with a singular
line ϕ = 0, we introduce a rescaling of the time dξ = −3ϕ2dτ to transform it into a regular
system. Namely, {

dϕ
dτ

= −3ϕ2y,

dy
dτ

= g + cϕ− ϕ2 + 6ϕy2
(2.5)

with a first integral

H(ϕ, y) = ϕ3(
1
3
g +

c

4
ϕ− 1

5
ϕ2 +

3
2
ϕy2). (2.6)

Obviously, the singular traveling wave system (2.4) has the same first integral H(ϕ, y) as
(2.5), and accordingly both (2.4) and (2.5) have the same topological phase portraits except
for the straight line ϕ = 0. Thus, in order to understand the bifurcation sets of system (2.4),
we need to study phase portraits of system (2.5). Next, we discuss the isolated and singular

points of system (2.5) for their phase portraits. Let A± = ( c±
√

c2+4g

2
, 0), then

H(A+) = 1
960

(c +
√

c2 + 4g)3(16g + 3c2 + 3c
√

c2 + 4g),
H(A−) = 1

960
(−c +

√
c2 + 4g)3(−16g − 3c2 + 3c

√
c2 + 4g).
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Using the qualitative analysis methods of planar dynamical system, the distribution and
property of singular points are given

(1) When g > 0, system (2.5) has a saddle point A+ and a center A−.
(2) When g = 0, system (2.5) has a center (c, 0).
(3) When − c2

4
< g < 0, system (2.5) has a saddle point A+ and a center A−.

(4) When g = − c2

4
, system (2.5) has a cusp ( c

2
, 0).

(5) When g < − c2

4
, system (2.5) has no singular point.

According to the property above, we show phase portraits of system (2.5) in Figure 1.
It is easy to see a periodic cusp wave from Figure 1(1-4), a kink-like wave and a antikink-like
wave from Figure 1(1-6) and soliton from Figure 1(1-7) and (1-8). Their expressions are
presented in next section.
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Figure 1: The phase portraits of system (2.5): (1-1) g > 0, c > 0; (1-2) g > 0, c < 0; (1-3)
g = 0, c > 0; (1-4) g = 0, c < 0; (1-5) − 15c2

64 < g < 0, c > 0; (1-6) g = − 15c2

64 , c > 0; (1-7)
− c2

4 < g < − 15c2

64 , c > 0; (1-8) − c2

4 < g < 0, c < 0; (1-9) g = − c2

4 , c > 0; (1-10) g = − c2

4 , c < 0;
(1-11) g < − c2

4 .

3 Main Results and Their Proofs

3.1 Periodic Cusp Wave Solution

Theorem 3.1 When g = 0 and c < 0, equation (1.1) has a periodic cusp wave solution
of peak type u = ϕ1(ξ + 2nT ), n = 0,±1,±2 · · · and ξ ∈ [(2n − 1)T, (2n + 1)T ], where
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ϕ1(ξ) = 1
30

ξ2 + 5c
4
, ξ ∈ [−T, T ] with T = 5

2

√−6c.

Proof In Figure 1 (1-4), the periodic orbit of system (2.4) intersects y-axis, which
can be expressed as H(ϕ, y) = ϕ4( c

4
− 1

5
ϕ + 3

2
y2) = 0. Namely,

y = ±
√

2ϕ

15
− c

6
,

5
4
c ≤ ϕ ≤ 0, c < 0, (3.1)

which intersects y-axis at (0,
√− c

6
) and (0,−√− c

6
), and x-axis at ( 5

4
c, 0). Substituting (3.1)

into system (2.4), we get {
dϕ
dξ

= y,

dy
dξ

= 1
15

,

which gives u = ϕ1(ξ + 2nT ), n = 0,±1,±2 · · · and ϕ1(ξ) = 1
30

ξ2 + 5c
4
, ξ ∈ [−T, T ]. In

addition, ϕ1(T ) = 0 reveals T = 5
2

√−6c. The proof is completed.

The graph of relevant periodic cusp wave of peak type for equation (1.1) is shown in
Figure 2.

Figure 2: The periodic cusp wave of peak
type for equation (1.1) : g = 0, c = −1.

( - )3 1 ( - )3 2

Figure 3: g = 0, c = −1, a = 16
9 . (3-1) The

kink-like wave for equation (1.1); (3-2) The
antikink-like wave for equation (1.1).

3.2 Kink-Like and Antikink-Like Wave Solutions

Theorem 3.2 When g = − 15
64

c2 and c > 0, equation (1.1) has a kink-like wave solution
u = ϕ2(ξ) and a antikink-like wave solution u = ϕ3(ξ),

β(ϕ2) = β(a) + ξ, ξ ∈ (−ξ0,+∞), (3.2)

β(ϕ3) = β(a)− ξ, ξ ∈ (−∞, ξ0), (3.3)

where c
2

< ϕ < 5
8
c and β(ϕ) =

√
30
2

[−2
√

ϕ +
√

10c
2

arctanh2
√

10ϕ
5
√

c
], ξ0 = β(a) − β( c

2
) with a is

a constant satisfying ϕ2(0) = ϕ3(0) = a.

Proof In Figure 1 (1-6), system (2.4) has four orbits connecting with a saddle point
A+, L2 denotes a orbit lying on the upper-left side of A+, and L3 on the lower-left. Note
that H(A+) = 0, then L2 and L3 can be respectively described as the following forms for
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0 ≤ ϕ ≤ 5
8
c:

L2 : y =
√

2(5c− 8ϕ)
8
√

15ϕ
, (3.4)

L3 : y = −
√

2(5c− 8ϕ)
8
√

15ϕ
. (3.5)

Let ϕ2(ξ) and ϕ3(ξ) be respective solutions of system (2.4) on L2 and L3. Substituting
(3.4) and (3.5) into the first equation of system (2.4) separately and integrating along orbits
L2, L3, respectively, we get

∫ a

ϕ2

8
√

15s√
2(5c− 8s)

ds =
∫ 0

ξ

ds, (3.6)

∫ ϕ3

a

−8
√

15s√
2(5c− 8s)

ds =
∫ ξ

0

ds, (3.7)

which imply implicit functions in (3.2) and (3.3) by maple programs.
Besides, assume that ϕ2(ξ) → c

2
as ξ → −ξ0, and ϕ3(ξ) → c

2
as ξ → ξ1, then we have

from (3.6)–(3.7) that

ξ0 = ξ1 =
∫ c

2

a

−8
√

15s√
2(5c− 8s)

ds = β(a)− β(
c

2
).

The proof is completed.
The graph of relevant kink-like and antikink-like waves for equation (1.1) is shown in

Figure 3.

3.3 Soliton Solutions

Theorem 3.3 When − c2

4
< g < − 15

64
c2 and c > 0, equation (1.1) has a soliton solution





u(x, t) = ϕ(x− ct),

φ = arccos(A+l1−ϕ
A−l1+ϕ

),

2hAE(φ, k)− h(l + l1 −A− l2

l−l1+A
)F (φ, k)− 2Al2h

(α2−1)(l−l1−A)2
Π(φ, α2

α2−1
, k)− 2hA

√
1−k2φ2φ

1+
√

1−φ2

+ Al2hα
√

α2−1
(l−l1−A)2(α2−1)

√
k2+α2−k2α2 ln

√
k2+α2−k2α2φ+

√
(α2−1)(1−k2φ2)

√
k2+α2−k2α2φ−

√
(α2−1)(1−k2φ2)

=
√

2
15
|ξ|,

(3.8)

where l = 1
2
(c+

√
c2 + 4g), b1 = − 1

2
l2, a2

1 = l3− 1
4
l22, A =

√
(b1 − l1)2 + a2

1, k =
√

A+b1−l1
2A

, h =
1√
A

, α = l−l1+A
l−l1−A

with l1, l2, l3 given in (3.12), here F (·, ·) is the normal elliptic integral of
the first kind, E(·, ·) is the normal elliptic integral of the second kind and Π(·, ·, ·) is the
Legendre’s incomplete elliptic integral of the third kind (see [9]).

Proof In Figure 1 (1-7), system (2.4) has a homoclinic loop consisting of a saddle point
A+, which can be expressed as H(ϕ, y) = ϕ3( 1

3
g + c

4
ϕ− 1

5
ϕ2 + 3

2
ϕy2) = H(A+). Namely,

3
2
ϕ4y2 =

1
5
(ϕ− c +

√
c2 + 4g

2
)2(ϕ3 + m1ϕ

2 + m2ϕ + m3), (3.9)
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where m1 = − c
4

+
√

c2 + 4g, m2 = c2

4
+ c

√
c2+4g

4
+ 4g

3
, m3 = c3

8
+ c2

√
c2+4g

8
+ 7cg

12
+ g

√
c2+4g

3
.

Let

f(ϕ) = ϕ3 + m1ϕ
2 + m2ϕ + m3. (3.10)

By introducing a new variable, x = ϕ + m1
3

, (3.10) becomes

f(ϕ) = x3 + px + q,

where p = − 5c2

48
+ 5c

√
c2+4g

12
, q = 5c3

864
+ 65c2

√
c2+4g

432
+ 5cg

36
+ 5g

√
c2+4g

27
. Besides, ( q

2
)2 + (p

3
)3 > 0

under − c2

4
< g < − 15

64
c2 and c > 0, then (3.10) has a sole real root. Thus, (3.9) becomes

y =

√
2
15

(l − ϕ)
√

(ϕ− l1)(ϕ2 + l2ϕ + l3)
ϕ2

, l1 < ϕ < l, (3.11)

where

l1 = − 1

12

{
−

[
− 5c3 − 130c2

√
c2 + 4g − 120cg − 160

√
c2 + 4gg

+20

√
(3c2 + 2g)(9c4 + 9c3

√
c2 + 4g + 66c2g + 48c

√
c2 + 4gg + 128g2)

] 2
3 − 5c2

+20c
√

c2 + 4g − c
[
− 5c3 − 130c2

√
c2 + 4g − 120cg − 160

√
c2 + 4gg

+20

√
(3c2 + 2g)(9c4 + 9c3

√
c2 + 4g + 66c2g + 48c

√
c2 + 4gg + 128g2)

] 1
3

+4
√

c2 + 4g
[
− 5c3 − 130c2

√
c2 + 4g − 120cg − 160

√
c2 + 4gg

+20

√
(3c2 + 2g)(9c4 + 9c3

√
c2 + 4g + 66c2g + 48c

√
c2 + 4gg + 128g2)

] 1
3
}

/
[
− 5c3

−130c2
√

c2 + 4g − 120cg − 160
√

c2 + 4gg

+20

√
(3c2 + 2g)(9c4 + 9c3

√
c2 + 4g + 66c2g + 48c

√
c2 + 4gg + 128g2)

] 1
3
,

l2 = − 1

60c2

{
2250c7 − 9000c6

√
c2 + 4g + 19200c5g − 76800c4g

√
c2 + 4g + 40960c3g2

−163840c2g2
√

c2 + 4g − (1125c6 + 9600c4g + 20480c2g2)[
− 5c3 − 130c2

√
c2 + 4g − 120cg − 160

√
c2 + 4gg + 20

√
162c3

√
c2 + 4gg + 216c4g + 516c2g2 + 96cg2

√
c2 + 4g + 27c5

√
c2 + 4g + 27c6 + 256g3

] 1
3

+
[
− 5c3 − 130c2

√
c2 + 4g − 120cg − 160

√
c2 + 4gg + 20

√
162c3

√
c2 + 4gg + 216c4g + 516c2g2 + 96cg2

√
c2 + 4g + 27c5

√
c2 + 4g + 27c6 + 256g3

] 2
3

[
+ 225c5 + 450c4

√
c2 + 4g + 1560c3g + 2400c2

√
c2 + 4gg + 2560cg2 + 2048

√
c2 + 4gg2

+(68c2 + 32c
√

c2 + 4g + 256g)√
162c3

√
c2 + 4gg + 216c4g + 516c2g2 + 96cg2

√
c2 + 4g + 27c5

√
c2 + 4g + 27c6 + 256g3

]}

/(15c2 + 64g)2,
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l3 =
1

360c2

{
450c6 + 450c5

√
c2 + 4g + 4320c4g + 1920c3

√
c2 + 4gg + 10240c2g2 +

[
− 5c3 − 130c2

√
c2 + 4g − 120cg − 160

√
c2 + 4gg + 20

√
162c3

√
c2 + 4gg + 216c4g + 516c2g2 + 96cg2

√
c2 + 4g + 27c5

√
c2 + 4g + 27c6 + 256g3

] 1
3

·
[
225c5 + 225c4 + 1260c3g + 960c2g

√
c2 + 4g + 1280cg2

+(10c2 + 40c
√

c2 + 4g)√
162c3

√
c2 + 4gg + 216c4g + 516c2g2 + 96cg2

√
c2 + 4g + 27c5

√
c2 + 4g + 27c6 + 256g3

]

+
[
− 5c3 − 130c2

√
c2 + 4g − 120cg − 160

√
c2 + 4gg + 20

√
162c3

√
c2 + 4gg + 216c4g + 516c2g2 + 96cg2

√
c2 + 4g + 27c5

√
c2 + 4g + 27c6 + 256g3

] 2
3

·
[
− 15c4 + 225c4 − 15c3

√
c2 + 4g − 124c2g − 64cg

√
c2 + 4g

−(2c + 8
√

c2 + 4g)√
162c3

√
c2 + 4gg + 216c4g + 516c2g2 + 96cg2

√
c2 + 4g + 27c5

√
c2 + 4g + 27c6 + 256g3

−256g2
]}

/(15c2 + 64g) (3.12)

with l22 − 4l3 > 0. Substituting (3.11) into the first equation of system (2.4) and integrating
along the homoclinic orbit, we get

−lhF (φ, k)− h(l1 −A)F (φ, k)− 2hA
∫ u1

0
du

1+cn u
+ l2h

∫ u1

0
1+cn udu

(l−l1+A)cn u+l−l1−A]

=
√

2
15
|ξ|, (3.13)

where cn u1 = cos φ, cn u = cn(u, k) is Jacobian elliptic function (see [9]). Therefore, (3.8)
holds by computation.

The graph of relevant soliton for equation (1.1) is shown in Figure 4 (4-1).
Remark When − c2

4
< g < 0 and c < 0 (Figure 1 (1-8)), equation (1.1) also has a

soliton solution and (3.8) holds. Its graph is shown in Figure 4 (4-2).

( - )4 1 ( - )4 2

Figure 4: The soliton for equation (1.1). (4-1) g = − 31
128 , c = 1; (4-2) g = − 31

128 , c = −1.

4 Conclusion

In this paper, using the qualitative analysis methods of planar dynamical system, we
studied the bifurcation of the osmosis K(2, 3) equation and obtained exact periodic cusp
wave solution, kink-like and antikink-like wave solutions, and soliton solution.
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含频散项的 K(2, 3) 方程的精确行波解

卫丽君1,李 洁1,鲁世平1,2

(1.安徽师范大学数学与计算机科学学院,安徽芜湖 241000)

(2.南京信息工程大学数学与统计学院,江苏南京 210044)

摘要: 本文研究了包含频散项的K(2, 3) 方程 ut + (u2)x − (u3)xxx = 0 的分支问题. 利用动力系统的

定性分析, 并且借助Maple 软件进行数值模拟得到行波解系统相应的相图, 然后通过积分计算得到周期尖波

解、类扭波和类反扭波的精确解的函数表达式, 以及孤立波精确解的隐函数表达式.
关键词: 周期尖波解; 类扭波解; 类反扭波解; 孤立波; 相图分支
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