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Abstract: In this paper, we mainly consider the nonsmooth homogeneous optimization prob-

lem (HOP). By using the generalized Euler identity for Clarke’s subdifferential, a sufficient condi-

tion for an optimal solution of (HOP) to be a KKT point is obtained. Moreover, we also give an

equivalent characterization of KKT points (optimal solutions) of (HOP) and (̂HOP), which extend

previous ones in [1]. Examples are also given to illustrate our results.
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1 Introduction

Due to the wide applications in many aspects of applied mathematics, properties of
homogeneous functions were studied by many authors, see, for instance, [1–5]. However, it
is worth mentioning that there are many homogeneous functions which are not differentiable,
and there exist few studies of nonsmooth homogeneous optimization problems defined by
positively homogeneous and locally Lipschitzian functions in real Banach spaces.

In the work [1], the homogeneous optimization problems were extended to nonsmooth
functions, but there was still much work left to do. Meantime, we note that some results in

Section 4 there require the assumption
m∑

i=1

λ̄i
(p−qi)qibi

p
6= 0, i.e., p 6= qi for some i ∈ {i ∈ M :

λ̄i 6= 0}. In order to avoid the weakness mentioned above, inspired by the technique used in
[2], we will give a modification of the model there.

In this paper, by using the generalized Euler identity for Clarke’s subdifferential, we
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obtain a sufficient condition for an optimal solution of (HOP) to be a KKT point:

(HOP) minimize f(x),

subject to gi(x) 6 bi, i = 1, 2, · · · ,m,

x ∈ Ω.

Moreover, the relationship between (HOP) and its embedding problem (ĤOP) is also
considered:

(̂HOP) minimize Fα(x, u) = (u + α)f(x) +
1
2
(u + α− 1)2,

subject to (u + α)
[
gi(x)− bi(1− qi

p
)
]

6 biqi

p
, i = 1, 2, · · · ,m,

x ∈ Ω,

u > 0,

where the functions involved in (HOP) and (ĤOP) are all positively homogeneous.
The paper is organized as follows. In Section 2, we give some preliminaries and defini-

tions. In Section 3, we give a sufficient condition for an optimal solution of the nonsmooth
homogeneous optimization problem (HOP) to be a KKT point. In Section 4, the one-to-one
correspondence of the KKT points (the optimal solutions) of (HOP) and (ĤOP) is estab-
lished.

2 Preliminaries

Let X be a real Banach space with the topological dual X∗, 〈., .〉 be the duality par-
ing between X and X∗ and Ω be a closed cone of X. We now introduce the nonsmooth
homogeneous optimization problem:

(HOP) minimize f(x),

subject to gi(x) 6 bi, i = 1, 2, · · · ,m,

x ∈ Ω,

where f, gi : X → R (i = 1, 2, · · · ,m) are positively homogeneous functions with degree
p, qi (i = 1, 2, · · · ,m), respectively, and each bi ∈ R (i = 1, 2, · · · ,m).

We denote by K the set of feasible solutions of (HOP), i.e.,

K := {x ∈ Ω : gi(x) 6 bi, i = 1, 2, · · · ,m}.

The following definitions and lemmas will be useful in the next two sections.
Definition 2.1 (see [6]) A function f : X → R is said to be Lipschitzian of rank L near

a given point x ∈ X, if there exists some δ > 0 such that

|f(y)− f(z)| 6 L‖y − z‖, ∀ y, z ∈ B(x; δ).
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We say that f : X → R is locally Lipschitzian on X if it is Lipschitzian near any point
of X.

Definition 2.2 (see [6]) Let f : X → R be locally Lipschitzian on X. The generalized
directional derivative of f at x in the direction v, denoted by f◦(x; v), is defined as follows:

f◦(x; v) := lim sup
y→x
t↓0

f(y + tv)− f(y)
t

,

where y is a vector in X and t is a positive scalar.
We call the set

∂f(x) :=
{
ξ ∈ X∗ : 〈ξ, v〉 6 f◦(x; v), ∀ v ∈ X

}

the Clarke’s subdifferential of f at x.
It is easy to verify that

f◦(x; v) = max
{〈ξ, v〉 : ξ ∈ ∂f(x)

}
, ∀ v ∈ X.

Lemma 2.1 (see [6]) Let fi (i = 1, 2, · · · , n) be Lipschitzian near x, and let λi (i =

1, 2, · · · , n) be scalars. Then f :=
n∑

i=1

λifi is Lipschitzian near x, and we have

∂
( n∑

i=1

λifi

)
(x) ⊂

n∑
i=1

λi∂fi(x).

Definition 2.3 (see [7]) Let X be a real Banach space, and C be a nonempty subset
of X. The Clarke tangent cone to C at x ∈ C is defined by

TC(x) =
{
v ∈ X : d◦C(x; v) = 0

}
,

where dC(x) = inf
z∈C

‖z − x‖, and the Clarke normal cone to C at x ∈ C is defined by

NC(x) :=
{
ζ ∈ X∗ : 〈ζ, v〉 6 0, ∀ v ∈ TC(x)

}
.

Now we give the definition of invexity which was taken from [8].
Definition 2.4 A function f : Ω → R is said to be nonsmooth invex at x̄ ∈ Ω, if for

any x ∈ Ω and ξ ∈ ∂f(x̄), there exists η(x, x̄) ∈ TΩ(x̄) such that

f(x)− f(x̄) >
〈
ξ, η(x, x̄)

〉
.

Let g = (g1, g2, · · · , gm) be a vector-valued function from Ω to Rm, then g is said to be
nonsmooth invex at x ∈ Ω, if each gi (i = 1, 2, · · · ,m) is nonsmooth invex at x ∈ Ω.

Recall that a function f : X → R is said to be positively homogeneous with degree
p (p > 0) provided that the equality f(λx) = λpf(x) holds for any x ∈ X and λ > 0.
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As is well known, when a p-homogeneous function ϕ : Rn → R is differentiable, there is
an identity, the so-called Euler formula,

〈∇ϕ(x), x
〉

= p · ϕ(x), ∀x ∈ Rn.

The above formula was extended to nonsmooth homogeneous and locally Lipschitzian
function defined on a real Banach space as follows.

Lemma 2.2 (see [9]) Let X be a real Banach space and f : X → R be a p-positively
homogeneous (p > 0) and locally Lipschitzian function. Then, for each x ∈ X and ξ ∈ ∂f(x),
the following identity holds:

〈ξ, x〉 = p · f(x). (2.1)

We denote it simply as the following formula:
〈
∂f(x), x

〉
= p · f(x), ∀x ∈ X.

Definition 2.5 x̄ ∈ K is said to be an optimal solution or a global minimum of (HOP)
if f(x̄) 6 f(x) for all x ∈ K, or equivalently, there exists no x ∈ K such that f(x) < f(x̄).

Definition 2.6 x̄ ∈ K is said to be a KKT (Karash-Kuhn-Tucker) point of (HOP), if
there exists a L-KKT (Lagrange-KKT) multiplier λ̄ = (λ̄1, λ̄2, · · · , λ̄m) ∈ Rm

+ such that

0 ∈ ∂f(x̄) +
m∑

i=1

λ̄i∂gi(x̄), (2.2)

λ̄i

(
gi(x̄)− bi

)
= 0, i = 1, 2, · · · ,m. (2.3)

Definition 2.7 The problem (HOP) is said to satisfy the Slater constraint qualification,
if there exists x̃ ∈ Ω such that gi(x̃)− bi < 0, i = 1, 2, · · · ,m.

For notational convenience, we denote M = {i : i = 1, 2, · · · ,m} in the next two
sections.

3 Optimality Conditions

In this section, we first give a fine result about the KKT points under appropriate
assumptions.

Theorem 3.1 Let f , gi (i ∈ M) be locally Lipschitzian and positively homogeneous
functions with degree p, qi (i ∈ M), respectively. If x̄ ∈ K is a KKT point of (HOP), then

f(x̄) = −
m∑

i=1

λ̄i
qi

p
bi,

where λ̄ = (λ̄1, λ̄2, · · · , λ̄m) ∈ Rm
+ is a L-KKT multiplier associated with x̄.

Proof Let x̄ ∈ K be a KKT point of (HOP) with associated L-KKT multiplier λ̄ =
(λ̄1, λ̄2, · · · , λ̄m) ∈ Rm

+ . It follows from (2.2) that there exist ξ ∈ ∂f(x̄) and ζi ∈ ∂gi(x̄) (i ∈
M) such that

ξ +
m∑

i=1

λ̄iζi = 0. (3.1)
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By the homogeneity of f and the generalized Euler identity (2.1), we have

p · f(x̄) = 〈ξ, x̄〉 = −
m∑

i=1

λ̄i〈ζi, x̄〉

= −
m∑

i=1

λ̄iqigi(x̄) = −
m∑

i=1

λ̄iqibi.

Hence, f(x̄) = −
m∑

i=1

λ̄i
qi

p
bi. This completes the proof.

Now, we are ready to prove that an optimal solution of (HOP) is necessarily a KKT
point under appropriate conditions.

For notational convenience, we denote I = {i ∈ M : λi 6= 0}, where λi (i ∈ M) is a
L-KKT multiplier associated with some fixed KKT point x̄.

Theorem 3.2 Suppose that
(1) f and gi (i ∈ M) are all Lipschitzian near x̄ ∈ Ω;
(2) f and gi (i ∈ I) are nonsmooth invex at x̄ ∈ Ω with respect to same η ∈ TΩ(x̄);
(3) f and gi (i ∈ I) are positively homogeneous with degree p, qi (i ∈ I), respectively;
(4) the Slater constraint qualification is satisfied.
If x̄ is an optimal solution of (HOP), then x̄ is a KKT point of (HOP) and there exists

λ̄ = (λ̄1, λ̄2, · · · , λ̄m) ∈ Rm
+ such that

f(x̄) = min
x∈Ω

f(x) = −
m∑

i=1

λ̄i
qi

p
bi.

Proof Since x̄ is an optimal solution of (HOP), we have by [7, Theorem6.1.1], there
exist τ ∈ R+, λ = (λ1, · · · , λm) ∈ Rm

+ , (τ, λ) 6= 0, such that

0 ∈ τ∂f(x̄) +
m∑

i=1

λi∂gi(x̄) + NΩ(x̄), (3.2)

λi

(
gi(x̄)− bi

)
= 0, i ∈ M. (3.3)

By (3.2), there exist ξ ∈ ∂f(x̄), ζi ∈ ∂gi(x̄) (i ∈ M) such that

−(
τξ +

m∑
i=1

λiζi

) ∈ NΩ(x̄),

or equivalently
−(

τξ +
∑
i∈I

λiζi

) ∈ NΩ(x̄).

Using the nonsmooth invexity property of f and gi (i ∈ I) at x̄ ∈ Ω, we have, for any
x ∈ Ω and a suitable vector η ∈ TΩ(x̄),

0 6 τ〈ξ, η〉+
∑
i∈I

λi〈ζi, η〉

6 τ
(
f(x)− f(x̄)

)
+

∑
i∈I

λi

(
gi(x)− gi(x̄)

)
. (3.4)
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Now we claim τ 6= 0. In fact, if possible τ = 0, then λ = (λ1, λ2, · · · , λm) 6= 0, by (3.3)
and (3.4), ∑

i∈I

(
gi(x)− bi

)
> 0, ∀x ∈ Ω. (3.5)

By Slater constraint qualification, there exists x̃ ∈ Ω such that
∑
i∈I

(
gi(x̃)− bi

)
< 0,

which is a contradiction to (3.5).
According to (3.4) and τ 6= 0, we obtain

(
f(x)− f(x̄)

)
+

m∑
i=1

λ̄i

(
gi(x)− gi(x̄)

)
> 0, ∀x ∈ Ω,

where λ̄i = λi

τ
> 0, i ∈ M .

So x̄ is a minimum point of the following problem

min
x∈Ω

(
f +

m∑
i=1

λ̄igi

)
(x),

which gives that

0 ∈ ∂
(
f +

m∑
i=1

λ̄igi

)
(x̄) ⊂ ∂f(x̄) +

m∑
i=1

λ̄i∂gi(x̄). (3.6)

In view of (3.3) and (3.6), x̄ is necessarily a KKT point of (HOP). And by Theorem
3.1, we have

f(x̄) = min
x∈Ω

f(x) = −
m∑

i=1

λ̄i
qi

p
bi.

Let X = Rn, then we have the following result.
Corollary 3.1 Suppose that
(1) f and gi (i ∈ M) are all continuously differentiable near x̄ ∈ Ω;
(2) f and gi (i ∈ I) are all convex on Ω;
(3) f and gi (i ∈ I) are positively homogeneous with degree p, qi (i ∈ I), respectively;
(4) the Slater constraint qualification is satisfied.
If x̄ is an optimal solution of (HOP), then x̄ is a KKT point of (HOP) and there exists

λ̄ = (λ̄1, λ̄2, · · · , λ̄m) ∈ Rm
+ such that

f(x̄) = min
x∈Ω

f(x) = −
m∑

i=1

λ̄i
qi

p
bi.

Remark 3.1 It is worth mentioning that our results above can be applied in mathe-
matical Finance theory. Assume that there are only n kinds of risk assets in the market,
denoted by X1, X2, · · · , Xn, and there are only two moments, today (denoted by 0) and future
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(denoted by 1). The one-period returns of the risk assets, R1, R2, · · · , Rn, are all random vari-

able. R = (R1, R2, · · · , Rn) is a vector, ω = (ω1, ω2, · · · , ωn)T ,
n∑

i=1

ωi = 1, is a portfolio, where

ωi is the investment ratio on Xi (i = 1, 2, · · · , n). E(R) =
(
E(R1), E(R2), · · · , E(Rn)

)T
is

a vector, where E(Ri) is the expected return on Xi (i = 1, 2, · · · , n). As is well known,
Markowitz’s Mean-Variance model can be written as follows (for more details, see [10] or
[11]):

min
1
2
σ2

ω =
1
2
ωT Σω, (3.7)

s. t. lT ω = 1, (3.8)

E(Rω) = ωT E(R) = µ̄, (3.9)

where l = (1, 1, · · · , 1)T is a n-dimensional vector, each component of which is 1, Σ is a
reversible variance-covariance matrix. The constraint qualification (3.8), (3.9) shows that ω

is a portfolio and the expected return of the portfolio is a constant µ̄.
It is obvious that model (3.7) is a special homogeneous optimization problem. For this

problem, we take the functions f and gi (i = 1, 2) in the Theorem 3.2 as follows:

f(ω) =
1
2
ωT Σω, g1(ω) = lT ω, g2(ω) = E(Rω)

and
p = 2, qi = 1 (i = 1, 2), b1 = 1, b2 = µ̄.

Since the feasible set of the problem is a bounded closed set in Rn for each fixed µ̄, then
problem (3.7) has an optimal solution ω̄, and it is not difficult to verify that the conditions
of Corollary 3.1 are satisfied. Therefore

f(ω̄) = −
2∑

i=1

λi
qi

p
bi = −1

2
λ1 − 1

2
λ2µ̄.

Let
L =

1
2
ωT Σω + λ1(lT ω − 1) + λ2

(
ωT E(R)− µ̄

)
,

then it is not difficult to obtain that

λ1 = − 1
D

(B − µ̄A), λ2 = − 1
D

(µ̄C −A),

where
C = lT Σ−1l, A = lT Σ−1E(R), B = E(R)T Σ−1E(R), D = BC −A2.

Therefore

f(ω̄) = −
2∑

i=1

λi
qi

p
bi = −1

2
λ1 − 1

2
λ2µ̄ =

C

2D
(µ− A

C
)2 +

1
2C

.

4 Some Duality Results
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In [1], the homogeneous optimization problem was extended to nonsmooth homogeneous
functions, but there exist weak points in the model there. In fact, some results in section 4

there require the assumption
m∑

i=1

λ̄i
(p−qi)qibi

p
6= 0, i.e., p 6= qi for some i ∈ {i ∈ M : λ̄i 6= 0}.

Let 0 < α 6 1 be a fixed positive scalar. In order to avoid the weakness mentioned
above, following the idea of Ref. [2], we consider here a modification of (ĤOP) as follows
(we still denote it as (̂HOP) for convenience):

(̂HOP) minimize Fα(x, u) = (u + α)f(x) +
1
2
(u + α− 1)2,

subject to (u + α)
[
gi(x)− bi(1− qi

p
)
]

6 biqi

p
, i ∈ M,

x ∈ Ω,

u > 0,

where f, gi : X → R (i ∈ M) are positively homogeneous functions with degree p, qi (i ∈ M),
respectively, and bi ∈ R (i ∈ M).

We denote by H the set of feasible solutions of (ĤOP), i.e.,

H :=
{

(x, u) ∈ Ω×R : (u + α)
[
gi(x)− bi(1− qi

p
)
]

6 biqi

p
, u > 0, bi ∈ R, i ∈ M

}
.

Definition 4.1 A point (x̄, ū) ∈ H is said to be a KKT point of (̂HOP) if there exists
a L-KKT multiplier (λ̄, µ̄) ∈ Rm

+ ×R+ such that

0 ∈ (ū + α)
[
∂f(x̄) +

m∑
i=1

λ̄i∂gi(x̄)
]
, (4.1)

f(x̄) + (ū + α− 1) +
m∑

i=1

λ̄i

[
gi(x̄)− bi(1− qi

p
)
]

= µ̄, (4.2)

λ̄i

{
(ū + α)

[
gi(x̄)− bi(1− qi

p
)
]− qibi

p

}
= 0, i ∈ M, (4.3)

µ̄ū = 0. (4.4)

Next, we are ready to prove that the KKT points of (HOP) have a one to one corre-
spondence to the KKT points of (̂HOP).

Theorem 4.1 Let X be a real Banach space and Ω be a closed cone of X. Assume
that f : Ω → R is a locally Lipschitzian and positively homogeneous function with degree p,
and gi : Ω → R (i ∈ M) are locally Lipschitzian and positively homogeneous functions with
degree qi (i ∈ M). Then

(i) If x̄ ∈ Ω is a KKT point of (HOP) with associated L-KKT multiplier λ̄ ∈ Rm
+ , then

(x̄, 1− α) is a KKT point of (̂HOP) with associated L-KKT multiplier (λ̄, 0) ∈ Rm
+ ×R+.

(ii) If (x̄, ū) ∈ H is a KKT point of (̂HOP) with associated L-KKT multiplier (λ̄, µ̄) ∈
Rm

+ ×R+, and suppose further that
m∑

i=1

λ̄i(1− qi

p
)
qi

p
bi < ū + α, (4.5)
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then ū = 1−α, µ̄ = 0; hence, x̄ is a KKT point of (HOP) and λ̄ ∈ Rm
+ is a L-KKT multiplier

associated with x̄.
Proof (i) Let x̄ ∈ Ω be a KKT point with associated L-KKT multiplier

λ̄ = (λ̄1, λ̄2, · · · , λ̄m) ∈ Rm
+ .

It follows from (2.2) that there exist ξ ∈ ∂f(x̄) and ζi ∈ ∂gi(x̄) such that

ξ +
m∑

i=1

λ̄iζi = 0.

Therefore

〈ξ, x̄〉+
m∑

i=1

λ̄i〈ζi, x̄〉 = 0.

By the generalized Euler identity (2.1), the above equality can be written as

pf(x̄) +
m∑

i=1

λ̄iqigi(x̄) = 0.

Dividing both sides of the above equality by p (> 0), we have

f(x̄) +
m∑

i=1

λ̄i
qi

p
gi(x̄) = 0. (4.6)

Considering λ̄i[gi(x̄)− bi] = 0(i ∈ M), we obtain

f(x̄) +
m∑

i=1

λ̄i

[
gi(x̄)− bi(1− qi

p
)
]

= 0. (4.7)

Take ū = 1−α, µ̄ = 0, then (4.1)–(4.3) follow from (2.2), (2.3), (4.7), directly. Moreover,
ūµ̄ = 0 holds trivially, since µ̄ = 0.

(ii) Suppose that (x̄, ū), (λ̄, µ̄) satisfies conditions (4.1)–(4.4). Now we show that x̄, λ̄

satisfies (2.2) and (2.3). Since ū + α > 0, (4.1) reduces to

0 ∈ ∂f(x̄) +
m∑

i=1

λ̄i∂gi(x̄).

Thus (2.2) is satisfied. And, there exist ξ ∈ ∂f(x̄), ζi ∈ ∂gi(x̄) (i ∈ M) such that

ξ +
m∑

i=1

λ̄iζi = 0.

Therefore,

〈ξ, x̄〉+
m∑

i=1

λ̄i〈ζi, x̄〉 = 0,
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i.e.,

f(x̄) +
m∑

i=1

λ̄i
qi

p
gi(x̄) = 0.

From the above equality and (4.2), we have

m∑
i=1

λ̄i

(
gi(x̄)− bi

)
(1− qi

p
) = µ̄− (ū + α− 1), (4.8)

and it follows from (4.3) that

m∑
i=1

λ̄i(gi(x̄)− bi)(1− qi

p
) =

m∑
i=1

λ̄i
qi

p
(1− qi

p
)
1− ū− α

ū + α
bi. (4.9)

From (4.8) and (4.9), we see that

(ū + α− 1)
[
1− 1

ū + α

m∑
i=1

λ̄i
qi

p
(1− qi

p
)bi

]
= µ̄. (4.10)

Since the condition (4.5) is satisfied, it gives that

1− 1
ū + α

m∑
i=1

λ̄i
qi

p
(1− qi

p
)bi > 0.

If µ̄ > 0, then it follows from (4.10) that ū > 1 − α > 0, which contradicts (4.4). So,
µ̄ = 0, ū = 1− α. Then (2.3) holds directly from (4.3), which completes the proof.

In particular, setting α = 1, we have the following results.
Corollary 4.1 Let X, Ω, f and gi(i ∈ M) be given as in Theorem 4.1, then
(i) If x̄ ∈ Ω is a KKT point of (HOP) with associated L-KKT multiplier λ̄ ∈ Rm

+ , then
(x̄, 0) is a KKT point of (̂HOP) with associated L-KKT multiplier (λ̄, 0) ∈ Rm

+ ×R+.
(ii) If (x̄, ū) ∈ H is KKT point of (̂HOP) with associated L-KKT multiplier (λ̄, µ̄) ∈

Rm
+ ×R+, and suppose further that

m∑
i=1

λ̄i
qi

p
(1− qi

p
)bi < ū + 1, (4.11)

then ū = 0, µ̄ = 0; hence, x̄ is a KKT point of (HOP) and λ̄ ∈ Rm
+ is a L-KKT multiplier

associated with x̄.
Remark 4.1 Problems similar to that of Theorem 4.1 were considered in [2] under the

condition that all homogeneous function are differentiable on Ω ⊂ Rn. When a function
ϕ : Ω → Rn is differentiable, the Clarke’s subdifferential ∂ϕ(x) becomes a singleton at any
point x ∈ Ω, and ∂ϕ(x) = {∇ϕ(x)}. So Theorem 4.1 is a generalization of [2, Theorem 2.3].

Moreover, based on the above results, the next theorem shows the one-to-one corre-
spondence of the optimal solutions of (HOP) and (ĤOP).
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Theorem 4.2 Let X, Ω, f and gi (i ∈ M) be given as in Theorem 4.1. Assume that
the condition

(u + α)
qi
p

[( 1
u + α

− 1
)qi

p
+ 1

]
6 1 (4.12)

is satisfied and bi > 0 (i ∈ M), where (·, u) is any feasible point of H.
Then, x̄ is an optimal solution to (HOP) if and only if (x̄, 1− α) is an optimal solution

to (ĤOP). Both problems have the same optimal values.
Proof If x̄ is an optimal point of (HOP), then (x̄, 1− α) is a feasible point of (ĤOP).

Thus

min
x∈K

f(x) = f(x̄) = Fα(x̄, 1− α) > min
(x,u)∈H

Fα(x, u). (4.13)

Next we show that min
x∈K

f(x) = min
(x,u)∈H

Fα(x, u), on the contrary, if

min
x∈K

f(x) > min
(x,u)∈H

Fα(x, u),

then there is a minimizing sequence
{
(yn, un)

} ∈ H, such that

(un + α)f(yn) +
1
2
(un + α− 1)2 ↓ min

(x,u)∈H
Fα(x, u).

Therefore, for n sufficiently large, say n > n0,

(un + α)f(yn) +
1
2
(un + α− 1)2 < f(x̄).

But let xn = (un + α)
1
p yn ∈ Ω, then, by (4.12) and

{
(yn, un)

} ∈ H, we have

gi(xn) = gi

(
(un + α)

1
p yn

)
= (un + α)

qi
p gi(yn)

6 (un + α)
qi
p

[(1− un − α)qi

(un + α)p
+ 1

]
bi 6 bi, i ∈ M,

that is, xn ∈ K and

f(xn) = (un + α)f(yn) 6 (un + α)f(yn) +
1
2
(un + α− 1)2 < f(x̄),

when n is sufficiently large. This contradicts the fact that x̄ is an optimal solution of (HOP).
Hence, min

x∈K
f(x) = min

(x,u)∈H
Fα(x, u).

Conversely, let (x̄, 1− α) be an optimal solution to (ĤOP). We now show that x̄ must
be an optimal solution of (HOP).

Let ȳ = (ū + α)
1
p x̄. We note that ȳ is a feasible point of (HOP). Indeed, by the

homogeneity of the function gi (i ∈ M) and (4.12), we know

gi(ȳ) = gi

[
(ū + α)

1
p x̄

]
= (ū + α)

qi
p gi(x̄) 6 (ū + α)

qi
p

[(1− ū− α)qi

(ū + α)p
+ 1

]
bi 6 bi, i ∈ M.
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Hence

min
x∈K

f(x) 6 f(ȳ) = (ū + α)f(x̄) 6 (ū + α)f(x̄) +
1
2
(ū + α− 1)2 = min

(x,u)∈H
Fα(x, u). (4.14)

It follows from (4.13), (4.14) that

min
x∈K

f(x) = min
(x,u)∈H

Fα(x, u).

Therefore

min
x∈K

f(x) = f(ȳ) = (ū + α)f(x̄) = (ū + α)f(x̄) +
1
2
(ū + α− 1)2 = min

(x,u)∈H
Fα(x, u),

then ū = 1− α, and ȳ = (ū + α)
1
p x̄ = x̄ is an optimal point of (HOP).

Remark 4.2 It is not difficult to verify that inequality (4.12) holds trivially if one of
the following holds:

(i) p 6 qi, i ∈ M ;
(ii) u + α = 1.
That is, our results is an extension of that in [1, Theorem 4.4].
Now we present two examples of nonsmooth homogeneous optimization problem to

illustrate the effectiveness of the results in Theorems 4.1 and 4.2.
Example 4.1

(HOP) minimize f(x),

subject to g(x) 6 0,

x ∈ Ω,

where f(x) = |x| is absolutely 1-homogeneous, g(x) = max{0, x} is positively 1-homogeneous,
b = b1 = 0, Ω = (−∞,+∞) is a closed cone of R.

Let α = 1
2
, and the embedding problem of (HOP) is presented as follows:

(̂HOP) minimize (u +
1
2
)f(x) +

1
2
(u− 1

2
)2,

subject to (u +
1
2
)g(x) 6 0,

u > 0,

x ∈ Ω.

(i) 0 ∈ ∂f(0) = [−1, 1], 0 ∈ ∂g(0) = [0, 1], take λ1 = 1, then

0 ∈ ∂f(0) + 1 · ∂g(0),

and 1 · g(0) = 0, i.e., 0 is a KKT point of (HOP).
Now we show that (0, 1

2
) is a KKT point of (ĤOP) with associated L-KKT multiplier

(1, 0). In fact, 0 ∈ ∂f(0) + ∂g(0) = ( 1
2

+ 1
2
)
[
∂f(0) + 1 · ∂g(0)

]
is obvious and equations

(4.2)–(4.4) hold trivially.
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(ii) Conversely, it is easy to check (0, 1
2
) is a KKT point of (ĤOP) with associated

L−KKT multiplier (1, 0), and ū = 1− 1
2

= 1
2
, µ̄ = 0, x̄ = 0 is a KKT point of (HOP) with

associated L−KKT multiplier λ̄ = 1.
Furthermore, graphically, we can see that 0 is an optimal solution of (HOP) if and only

if (0, 1
2
) is an optimal solution of (̂HOP).

Example 4.2

(HOP) minimize f(x),

subject to g(x) 6 0,

x ∈ Ω,

where f : R2 → R, f(x) = ‖x‖ is absolutely 1-homogeneous, g(x) = x2
1 + x2

2 is positively
2-homogeneous, Ω =

{
(x1, x2) : x2 > |x1|

}
is a closed cone of R2.

Let α = 1
2
, then the embedding problem of (HOP) is presented as follows:

(̂HOP) minimize (u +
1
2
)f(x) +

1
2
(u− 1

2
)2,

subject to (u +
1
2
)g(x) 6 0,

u > 0,

x ∈ Ω.

(i) ∂f(0, 0) = {ζ ∈ R2 : ζi ∈ [−1, 1], i = 1, 2}, ∂g(0, 0) = {(0, 0)}. Take λ̄ = 1, it
follows that (0, 0) ∈ ∂f(0, 0) + 1 · ∂g(0, 0) and 1 · (g(0, 0)− 0

)
= 0, i.e., (0, 0) is a KKT point

of (HOP). Now we show that
(
(0, 0), 1

2

)
is a KKT point of (̂HOP) with associated L-KKT

multiplier (1, 0). In fact, (0, 0) ∈ ∂f(0, 0) + 1 · ∂g(0, 0) = ( 1
2

+ 1
2
)
[
∂f(0, 0) + 1 · ∂g(0, 0)

]
is

obvious and (4.2)–(4.4) hold trivially.
(ii) Conversely, it is easy to verify that

(
(0, 0), 1

2

)
is a KKT of (ĤOP) with associated

L-KKT multiplier (1, 0). And ū = 1 − 1
2

= 1
2
, µ̄ = 0, then x̄ = (0, 0) is a KKT of (HOP)

with associated L-KKT multiplier λ̄ = 1.
Furthermore, graphically, we can see that (0, 0) is an optimal solution of (HOP) if and

only if
(
(0, 0), 1

2

)
is an optimal solution of (̂HOP).

Remark 4.3 So and first, the above two examples verify that even when p 6= qi (i ∈ M),
f and gi (i ∈ M) involved are nonsmooth, the one-to-one correspondence of KKT points
(optimal solutions) of (HOP) and (ĤOP) is still true, that is, our results is a true extension
of those in [1, 2]. For more details of the duality problems, see [12, 13] and references therein.
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Banach空间中的一类非光滑齐次优化问题

张 娟1,李庶民2

(1. 昆明理工大学津桥学院工学系, 云南昆明 650106)

(2. 昆明理工大学数学系, 云南昆明 650404)

摘要: 本文主要研究了一类非光滑齐次优化问题(HOP). 通过运用Clarke 次微分的广义欧拉恒等式

获得了使得(HOP)问题的最优解成为KKT 点的充分条件并给出了(HOP)问题与(̂HOP)问题的KKT 点及最

优解之间的等价刻画. 本文的结果是文[1]中已有结果的推广. 文中还举例说明了结果的正确性.
关键词: Clarke 次微分; KKT 点; 欧拉恒等式; 非光滑齐次优化问题

MR(2010)主题分类号: 49J52; 90C46; 49K27 中图分类号: O177.92


