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Abstract: In this paper, we study the induced Chern connection on Finsler submanifolds.

By using moving frame method, we built the fundamental equations with respect to the induced

Chern connection D on Finsler submanifolds. Moreover, we also obtain the relation between D and

the Chern connection ∇ of the induced Finsler metric, which enrich some known results in relevant

literatures.
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1 Introduction

As the study on Riemann submanifolds, the study on Finsler submanifolds is also im-
portant and valuable. It is well known that the Finsler submanifolds have the induced Chern
connection D and the Chern connection ∇ of the induced Finsler metric. In the Riemann
case D = ∇, called Levi-Civita connection. With the help of the Levi-Civita connection,
Gauss, Codazzi and Ricci equations are established, which play an important role in study-
ing Riemann submanifolds. Therefore, to study the same problems on Finsler submanifolds
is also important and necessary. However, to our knowledge, there were not many researches
on this topic (see [1, 2, 6, 7]).

In [1], the author built Gauss and Codazzi equations by the Chern connection ∇ of the
induced Finsler metric. The main purpose of this paper is to study Finsler submanifolds via
the induced Chern connection D. In general D 6= ∇, so the relevant fundamental equations
have a bit difference from each other. Naturally, we care for: what are the relations D and
∇? To answer this question, we give the following theorems.

Theorem 1.1 Let f : (Mn, F ) −→ (M̃n+p, F̃ ) be an isometric immersion from a
Finsler manifold to a Finsler manifold, ∇̃ is the Chern connection of M̃ . Then ∇ = D if
and only if

Ã(X, Y, ∇̃Zen) = A(X, Y,∇Zen),
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where Ã and A are the Cartan tensors of F̃ and F , respectively, X, Y, Z ∈ π∗TM and en is
the distinguished field.

Theorem 1.2 Let f : (Mn, F ) −→ (M̃n+p, F̃ ) be an isometric immersion from a
Finsler manifold to a Finsler manifold. If M is a weakly totally geodesic submanifold of M̃ ,
then D = ∇ .

The paper is organized into 4 sections. After introducing some basic concepts of Finsler
geometry in Section 2, we build Gauss, Codazzi and Ricci equations with respect to the
induced Chern connection D on Finsler submanifold in Section 3. In Section 4, we discuss
some relations between D and ∇.

2 Preliminaries

Let M be an n-dimensional smooth manifold. A Finsler metric on M is a function
F : TM −→ [0,∞) satisfying the following properties:

(i) F is smooth on TM\0;
(ii) F (x, λy) = λF (x, y) for all λ > 0;
(iii) the induced quadratic form g is positive-definite, where

g := gijdxi ⊗ dxj , gij =
1
2
[F 2]yiyj ,

here and from now on, we will use the following convention of index ranges unless otherwise
stated:

1 ≤ i, j · · · ≤ n; 1 ≤ λ, µ · · · ≤ n− 1; 1 ≤ a, b · · · ≤ n + p; n + 1 ≤ α, β · · · ≤ n + p.

The projection π : TM −→ M gives rise to the pull-back bundle π∗TM and its dual
π∗T ∗M over TM\0. In π∗T ∗M there is a global section ω = [F ]yidxi, called the Hilbert
form, whose dual is ` = `i ∂

∂xi , `
i = yi

F
, called the distinguished field.

Let (Mn, F ) and (M̃n+p, F̃ ) be the two Finsler manifolds. For an immersion f :
(Mn, F ) −→ (M̃n+p, F̃ ), if F (x, y) = F̃ (x, df(y)) for all (x, y) ∈ TM \ 0, then f is called an
isomertric immersion. It is clear that

gij(x, y) = g̃ab(x̃, ỹ)fa
i f b

j , Aijk = Ãabcf
a
i f b

j f c
k ,

where

x̃a = fa, ỹa = fa
i yi, fa

i =
∂fa

∂xi
,

g (resp. g̃), A (resp. Ã) are the fundamental tensor and the Cartan tensor of M (resp. M̃),
respectively.

The map f admits a lift f̃ : TM −→ TM̃ defined by

f̃(x, y) = (x̃, ỹ), x̃ = f(x), ỹ = f∗y.
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Let (π∗TM)⊥ be the orthogonal complement of π∗TM in π∗(f−1TM̃) with respect to g̃.
Then

π∗(f−1TM̃) = π∗TM ⊕ (π∗TM)⊥,

where (π∗TM)⊥ is called the normal bundle of f .

3 Fundamental Equations on Finsler Submanifolds

Let f : (Mn, F ) −→ (M̃n+p, F̃ ) be an isometric immersion from a Finsler manifold to a
Finsler manifold. Take a g̃−orthonormal frame field {ea} of π∗(TM̃) and let {θa} be a local
dual coframe such that {ei} is a frame field of π∗(TM) and en is the distinguish field (See
[1]). Denote by {θa

b } the 1-form of the Chern connection ∇̃. Set ωi = f∗θi and ωi
j = f∗θi

j .
Then ωi is the local dual coframe of {ei} and ωi

j is the 1-form of the induced connection D.
It is not difficult to conclude that

A(ei, ej , en) = 0, Ã(ea, eb, en) = 0, ∀i, j, a, b.

The Gauss and Weingarten formulas are written by

∇̃XY = DXY + B(X, Y ), ∇̃Xξ = −WξX +∇⊥Xξ, ∀X, Y ∈ π∗TM, ξ ∈ (π∗TM)⊥,

where B is the second fundamental form of M , Wξ is called Weingarten transformation, ∇⊥
is called normal connection on (π∗TM)⊥. By simple arguments, we get

Proposition 3.1 D, B, W and ∇⊥ have the following properties:
(1) D determines a linear torsion-free connection on π∗(TM).
(2) B : π∗TM ⊗ π∗TM −→ (π∗TM)⊥ is a symmetric bilinear map.
(3) Wξ : π∗TM −→ π∗TM is a linear map and W : π∗TM ⊗ (π∗TM)⊥ −→ π∗TM is a

bilinear map.
(4) ∇⊥ determines a linear connection on (π∗TM)⊥.

Let B(ei, ej) = Bα
ijeα,Weα

ei = W α
ijej . Then we have

W α
ij = Bα

ij + 2Ãajαωa
n(ei).

The structure equations of M̃ are given by




dθa = −θa
b ∧ θb,

θa
b + θb

a = −2Ãabcθ
c
n,

dθa
b = −θa

c ∧ θc
b + 1

2
R̃a

bcdθ
c ∧ θd + P̃ a

bcdθ
c ∧ θd

n,

(3.1)

where R̃a
bcd and P̃ a

bcd are called the first Chern curvature tensors and the second Chern
curvature tensors, respectively. Restricting them to M yields





dωi = −ωi
j ∧ ωj , ωα = 0,

ωi
j + ωj

i = −2Ãijcω
c
n,

dωi
j = −ωi

a ∧ ωa
j + 1

2
R̃i

jklω
k ∧ ωl + P̃ i

jkcω
k ∧ ωc

n.

(3.2)
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Exterior differentiating ωα = 0 gives

0 = dωα = −ωα
i ∧ ωi.

By Cartan lemma, we have

ωα
i = hα

ijω
j , hα

ij = hα
ji. (3.3)

On the other hand, from Gauss formula one gets

Bα
ij = g̃(B(ei, ej), eα) = g̃(∇̃ei

ej , eα) = ωα
j (ei).

So

hα
ij = Bα

ij . (3.4)

The curvature 2-forms of the induced Chern connection D are

dωi
j + ωi

k ∧ ωk
j := Ωi

j =
1
2
Ri

jklω
k ∧ ωl + P i

jkλωk ∧ ωλ
n,

where Ri
jkl and P i

jkλ are the curvature tensors with respect to the induced Chern connection
D. By using the above formula and (3.2)–(3.4), we have

1
2
Ri

jklω
k ∧ ωl + P i

jklω
k ∧ ωl

n =− ωi
α ∧ ωα

j +
1
2
R̃i

jklω
k ∧ ωl + P̃ i

jkcω
k ∧ ωc

n

=(ωα
i + 2Ãiαcω

c
n) ∧Bα

jlω
l +

1
2
R̃i

jklω
k ∧ ωl

+ P̃ i
jkλωk ∧ ωλ

n + P̃ i
jkαBα

nlω
k ∧ ωl

={1
2
R̃i

jkl + P̃ i
jkαBα

nl + (Bα
ik + 2ÃiαβBβ

nk)B
α
jl}ωk ∧ ωl + P̃ i

jkλωk ∧ ωλ
n.

Therefore, we get the following result.
Theorem 3.2 (the Gauss equations) Let f : (Mn, F ) −→ (M̃n+p, F̃ ) be an isometric

immersion from a Finsler manifold to a Finsler manifold. Then we have




Ri
jkl = R̃i

jkl + P̃ i
jkαBα

nl − P̃ i
jlαBα

nk + Bα
ikB

α
jl

−Bα
ilB

α
jk + 2Ãiαβ(Bβ

nkB
α
jl −Bβ

nlB
α
jk),

P i
jkλ = P̃ i

jkλ − 2Bα
jkÃiαλ.

(3.5)

Exterior differentiating ωα
i = Bα

ijω
j , we have

dωα
i =d(Bα

ijω
j) = dBα

ijω
j + Bα

ijdωj

=(Bα
ij|kω

k + Bα
ij;λωλ

n + Bα
ljω

l
i + Bα

liω
l
j

−Bβ
ijω

α
β ) ∧ ωj −Bα

ijω
j
k ∧ ωk, (3.6)

where“|”denotes the horizontal covariant derivative with respect to D and“;”denotes the
vertical derivative.
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On the other hand, from (3.2)–(3.4) one obtains

dωα
i =− ωα

a ∧ ωa
i +

1
2
R̃α

iklω
k ∧ ωl + P̃ α

ikcω
k ∧ ωc

n

=− ωα
β ∧ ωβ

i −Bα
klω

l ∧ ωk
i +

1
2
R̃α

iklω
k ∧ ωl

+ P̃ α
ikβBβ

nlω
k ∧ ωl + P̃ α

ikλωk ∧ ωλ
n. (3.7)

Substituting (3.6) into (3.7), we get the following result.
Theorem 3.3 (the Codazzi equations) Let f : (Mn, F ) −→ (M̃n+p, F̃ ) be an isometric

immersion from a Finsler manifold to a Finsler manifold. Then we have
{

Bα
ij|k −Bα

ik|j = −R̃α
ijk + P̃ α

ikβBβ
nj − P̃ α

ijβBβ
nk,

Bα
ij;λ = −P̃ α

ikλ.
(3.8)

Set

dωα
β + ωα

γ ∧ ωγ
β := Ω⊥α

β =
1
2
R⊥α

βklω
k ∧ ωl + P⊥α

βkcω
k ∧ ωc

n + Q⊥α
βcdω

c
n ∧ ωd

n,

where R⊥α
βkl, P

⊥α
βkc, Q

⊥α
βcd are the normal curvature tensors. Then

dωα
β + ωα

γ ∧ ωγ
β =

{
1
2
R⊥α

βkl + Q⊥α
βγδB

γ
nkB

δ
nl

}
ωk ∧ ωl + Q⊥α

βλµωλ
n ∧ ωµ

n

+ {P⊥α
βkλ + Q⊥α

βγλBγ
nk −Q⊥α

βλγBγ
nk}ωk ∧ ωλ

n. (3.9)

On the other hand, from (3.1)–(3.4) we have

dωα
β + ωα

γ ∧ ωγ
β =− ωα

i ∧ ωi
β +

1
2
R̃α

βklω
k ∧ ωl + P̃ α

βkcω
k ∧ ωc

n

=Bα
ikω

k ∧ (Bβ
ilω

l + 2Ãiβλωλ
n + 2ÃiβγBγ

ikω
l)

+
1
2
R̃α

βklω
k ∧ ωl + P̃ α

βkcω
k ∧ ωc

n

={Bα
ikB

β
il + 2Bα

ikÃiβγBγ
nl +

1
2
R̃α

βkl + P̃ α
βkγBγ

nl}ωk ∧ ωl

+ {2Bα
ikÃiβλ + P̃ α

βkλ}ωk ∧ ωλ
n. (3.10)

From (3.9) and (3.10), we can state the following theorem.
Theorem 3.4 (the Ricci equations) Let f : (Mn, F ) −→ (M̃n+p, F̃ ) be an isometric

immersion from a Finsler manifold to a Finsler manifold. Then we have




R⊥α
βkl + Q⊥α

βγδ(B
γ
nkB

δ
nl −Bγ

nlB
δ
nk) = −R̃α

βkl + P̃ α
βkγBγ

nl − P̃ α
βlγBγ

nk

+(Bα
ikB

β
il −Bα

ilB
β
ik) + 2Ãiβγ(Bα

ikB
γ
nl −Bα

ilB
γ
nk),

P⊥α
βkλ + Q⊥α

βγλBγ
nk −Q⊥α

βλγBγ
nk = 2Bα

ikÃiβλ + P̃ α
βkλ,

Q⊥α
βλµ = 0.

Definition 3.1 [2] Let f : (Mn, F ) −→ (M̃n+p, F̃ ) be an isometric immersion. Write
H := 1

n
trB = 1

n

∑
iα

Bα
iieα, H is called the mean curvature vector field, M is called to be
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minimal (or totally geodesic) if H (or B) vanishes identically, M is called to have flat
normal bundle if Ω⊥α

β = 0.
Definition 3.2 [1] A submanifold (Mn, F ) of (M̃n+p) is said to be weakly totally

geodesic if B(en, en) = 0.
From Theorem 3.4, one obtains
Proposition 3.5 The totally geodesic submanifold in Minkowski space has flat normal

bundle.
In the end of this section, we give the Gauss equations on the flag curvature.
Theorem 3.6 Let f : (Mn, F ) −→ (M̃n+p, F̃ ) be an isometric immersion from a

Finsler manifold to a Finsler manifold. Then we have

K(en; ei) = K̃(en; ei) + L̃iiαBα
nn + Bα

iiB
α
nn − (Bα

in)2,

where L̃abc = − ˙̃
Aabc is Landsberg curvature.

Proof Setting j = l = n in (3.5)1, we obtain

Ri
nkn = R̃i

nkn + P̃ i
nkαBα

nn − P̃ i
nnαBα

nk + Bα
ikB

α
nn

−Bα
inBα

nk + 2Ãiαβ(Bβ
nkB

α
nn −Bβ

nnBα
nk)

= R̃i
nkn + L̃ikαBα

nn + Bα
ikB

α
nn −Bα

inBα
nk,

where we have used P̃ i
nkα = L̃ikα. So the Gauss equations on the flag curvature can be

derived. This finishes the proof.

4 The Relationship between D and ∇
Lemma 4.1 [1] Let f : (Mn, F ) −→ (M̃n+p, F̃ ) be an isometric immersion from a

Finsler manifold to a Finsler manifold and ∇̃ be the Chern connection of M̃ . If

∇̃XY =∇XY + B(X, Y ) +
∑

i

{Ã(X, Y, ∇̃ei
en −∇ei

en)

− Ã(X, ei, ∇̃Y en −∇Y en)− Ã(ei, Y, ∇̃Xen −∇Xen)}ei, (4.1)

where X, Y ∈ Γ(π∗TM), B(X, Y ) ∈ Γ(π∗TM)⊥, then ∇ is the Chern connection of M .
In order to illustrate the relationship between ∇ and D, we give the following:
Theorem 4.2 Let f : (Mn, F ) −→ (M̃n+p, F̃ ) be an isometric immersion from a

Finsler manifold to a Finsler manifold. ∇̃ is the Chern connection of M̃ . Then ∇ = D if
and only if

Ã(X, Y, ∇̃Zen) = A(X, Y,∇Zen),

where Ã and A are the Cartan tensors of F̃ and F , respectively, X, Y, Z ∈ π∗TM .
Proof Recall that the Gauss formula is

∇̃XY = DXY + B(X, Y ). (4.2)
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If ∇ = D, then from (4.1) and (4.2) one gets

Ã(X, Y, ∇̃Zen −∇Zen)− Ã(X, Z, ∇̃Y en −∇Y en)− Ã(Z, Y, ∇̃Xen −∇Xen) = 0.

Setting X = Z, we have

Ã(X, X, ∇̃Y en) = A(X, X,∇Y en). (4.3)

Substituting X = U + V into (4.3) yields

Ã(U, V, ∇̃Y en) = A(U, V,∇Y en).

The sufficient condition is evident from (4.1) and (4.2). This proves Theorem 4.2.
Theorem 4.3 Let f : (Mn, F ) −→ (M̃n+p, F̃ ) be an isometric immersion from a

Finsler manifold to a Finsler manifold. If M is a weakly totally geodesic submanifold of M̃ ,
then ∇ = D.

Proof If M is a weakly totally geodesic submanifold, then[1]

Bα
nn = 0,∀α.

So we have
Bα

nn|iω
i + Bα

nn;λωλ
n = dBα

nn − 2Bα
nλωλ

n + Bβ
nnθα

β = −2Bα
nλωλ

n.

From which one gets
Bα

nn;λ = −2Bα
nλ.

By using P̃ α
nnγ = 0 and (3.8)2, we obtain

Bα
ni = 0,∀α, i. (4.4)

Therefore, from (4.1) and (4.4), we get

Ã(X, Y, ∇̃Zen) =Ã(X, Y,∇Zen) + Ã(X, Y,B(Z, en)) + Ã(X, Y, ∇̃Zen −∇Zen)

− Ã(Z, Y, ∇̃Xen −∇Xen)− Ã(X, Z, ∇̃Y en −∇Y en)

=A(X, Y,∇Zen) + Ã(X, Y,Bα
niω

i(Z)) + Ã(X, Y,B(Z, en))

− Ã(X, Y, eλ)Ã(Z, eλ, B(en, en)) + Ã(X, Z, eλ)Ã(Y, eλ, B(en, en))

− Ã(X, Z, B(Y, en))− Ã(Y, Z,B(X, en)) + Ã(Y, Z, eλ)Ã(X, eλ, B(en, en))

=A(X, Y,∇Zen),

which implies ∇ = D by Theorem 4.2.
From Theorem 3.6, Theorem 4.3 and (4.4), we also obtain the following result which is

the main theorem in [1].
Corollary 4.4 If Mn is a weakly totally geodesic submanifold of M̃n+p, then flag

curvature of Mn equals flag curvature of M̃n+p.
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Finsler 子流形中的陈联络与基本方程

尹松庭

(铜陵学院数学与计算机系，安徽铜陵 244000)

摘要: 该文研究了Finsler 子流形中诱导的两种陈联络. 通过利用活动标架法, 利用诱导的陈联络D

建立了Finsler 子流形的基本方程, 并给出了D 与诱导度量的陈联络∇ 之间的关系. 这些研究完善和充实了

已有文献的相关结果.
关键词: Finsler 度量; 陈联络; 基本方程
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