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Abstract: In this paper, the properties related to paths and cycles embedding in n-

dimensional enhanced hypercube Qn,k with fault vertices are investigated. To fully realize its

potential in those networks, we use the construction way to prove our results and demonstrate

that Qn,k with 2n − 4 fault vertices can contain a cycle of length 2n − 2f , which generalizes the

conclusion about 1-vertex fault-tolerant cycles embedding on folded hypercube networks, which is

a special case of enhanced hypercube networks.
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1 Introduction

One of the central issues in evaluating a network is to study the graph embedding
problem. In computer network topology design, an important benefit of graph embedding
is that we can apply existing algorithms for guest graphs to host graphs. For instance,
there is an application of longest path to resolve a practical problem that was encountered
in the on-line optimization of a complex flexible manufacturing system (see [5]). This is a
good example to show the power of the embedding of paths and cycles in networks. Since
vertex and edge faults may develop in computer networks, it is important to consider faulty
networks. The main concerns in this regard are fault tolerant routing, fault tolerant path
embedding and fault tolerant cycle embedding. Recently, there were many attentions payed
on vertex-fault-tolerant n-dimensional hypercube Qn. In [6], it is showed that a fault-free
cycle of length at least 2n − 2f can be embedded in an n-dimensional hypercube when the
number f of fault vertices no more than 2n− 4.

The enhanced hypercube Qn,k(1 ≤ k ≤ n − 1) is proposed to improve the efficiency of
the hypercube structure in [2], since it possesses many properties superior to hypercube [2–
4]. The enhanced hypercube is an extension of the hypercube that is constructed by adding
some complementary edges. The folded hypercube FQn is the special case of the enhanced
hypercube Qn,k when k = 1; see [12, 19, 20].
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When investigating a network, the failures often occur, so it is practically meaningful to
consider faulty networks. Previous results regarding fault-tolerant cycles or paths embedding
on hypercube Qn or its variant structure as a host graph with only faulty vertices or only
faulty edges or both faulty vertices and edges have been proposed. Let Fv and Fe be the set
of faulty vertices and faulty edges of Qn. Li et al. [13] proved that every fault-free edge of
Qn, for n ≥ 3, lies on a fault-free cycle of every even length from 4 to 2n if |Fe| ≤ n−2. Xu et
al. [15] showed that every fault-free edge of Qn, for n ≥ 4, lies on a fault-free cycle of every
even length from 6 to 2n if |Fe| ≤ n−1. Tseng [17] showed that a fault-free cycle of length at
least 2n− 2|Fv| can be embedded on Qn with |Fe| ≤ n− 4 and |Fv|+ |Fe| ≤ n− 1. Sengupta
[18] extended the result of Tseng, showing that a fault-free cycle of length 2n− 2|Fv| can be
embedded on Qn with |Fv| > 0 or |Fe| ≤ n−2, and |Fv|+ |Fe| ≤ n−1. Fu [16] showed that a
fault-free cycle of length 2n− 2|Fv| can be embedded into Qn with |Fv| ≤ 2n− 4. Hsieh [21]
generalized the result of Fu, proving that Qn − Fv − Fe contains a fault-free cycle of length
2n−2|Fv| if |Fe| ≤ n−2 and |Fe|+ |Fv| ≤ 2n−4. Tsai [14] showed that every fault-free edge
and fault-free vertex of Qn, for n ≥ 3, lies on a fault-free cycle of very even length from 4 to
2n − 2|Fv| if |Fv| ≤ n − 2. This paper aims to further explore the vertex-fault-tolerance of
Qn,k, and discuss its path and cycle embedding. We prove that a fault-free cycle of length
at least 2n − 2f can be embedded in an n-dimensional enhanced hypercube with |Fv| = f

vertices, where n ≥ 4 and 1 ≤ f ≤ 2n− 4.

The remainder of this paper is organized as follows. Section 2 gives some basic definitions
and lemmas used in our discussion. The proofs of our main results are in Section 3. Finally,
some concluding remarks are given in Section 4.

2 Preliminaries

For the graph theoretical definitions and notations we follow[1]. A network is usually
modeled by a connected graph G = (V, E), where V denotes the set of processors and E

denotes the set of communication links between processors. Two graphs G1 and G2 are
isomorphic, denoted as G1

∼= G2, if there is a one to one mapping f from V (G1) onto V (G2)
such that (u, v) ∈ E(G1) iff (f(u), f(v)) ∈ E(G2). Two vertices (nodes) are connected by
an edge in a hypercube if their binary labels differ in exactly one bit position. Two distinct
edges are adjacent if they are incident with a common vertex. A path is a sequence of
adjacent vertices, with the original vertex v0 and end vertex vm, represented as

P [v0, vm] = [v0, v1, v2, · · · , vm],

where all the vertices v0, v1, v2, · · · , vm are distinct except that possibly the path is a cycle
when v0 = vm.

The n-dimensional hypercube, denoted by Qn, is a graph with 2n nodes (vertices)
{x = x1x2 · · ·xn : xi = 0 or 1, 1 ≤ i ≤ n}, and two nodes being adjacent if and only if
one coordinate is different. Let dQn

(x, y) denote the length of the shortest path between
vertices x and y in hypercube Qn. Let x = x1x2 · · ·xn and y = y1y2 · · · yn represent two
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n-bit binary strings respectively. The Hamming distance between x and y is defined as

H(x, y) =
n∑

i=1

|xi − yi| which is the number of the different bits between the corresponding

strings of two nodes x and y. Obviously, by the definition of Hamming distance, we know
that h(x, y) = dQn

(x, y), where dQn
(x, y) is the shortest path between the node x and node

y in Qn. The Hamming weight of a node x is defined as hw(x) =
n∑

i=1

xi, so whether a node is

even or odd, based on the hamming weight of the node is even or node. In this paper, if we
denote the node u = x1x2 · · ·xi−1xixi+1 · · ·xn then ui = x1x2 · · ·xi−1x̄ixi+1 · · ·xn, for some
i ∈ {1, 2, · · · , n}, in other words, the binary strings of the two nodes u and ui is different
exactly on the ith position. And the edge (u, ui) represents the i-dimensional hypercube edge
in Qn, FQn or Qn,k. The set of i-dimensional edges is denoted by Ei = {(u, ui)|h(u, ui) =
1, i ∈ {1, 2, · · ·n}}.

Definition 1 Enhanced hypercube Qn,k = (V, E)(1 ≤ k ≤ n− 1) is an undirected
simple graph. It has the same vertices of Qn, i.e, V = {x1x2 · · ·xn : xi = 0 or 1, 1 ≤ i ≤ n}.
Two vertices x = x1x2 · · ·xn and y are connected by an edge of E if and only if y satisfies
one of the following two conditions:

(1) y = x1x2 · · ·xi−1x̄ixi+1 · · ·xn, 1 ≤ i ≤ n or
(2) y = x1x2 · · ·xk−1x̄kx̄k+1 · · · x̄n.
From the definition of Qn,k, the enhanced hypercube Qn,k is the extension of the hyper-

cube by adding the edges (x1x2 · · ·xn, x1x2 · · ·xk−1x̄kx̄k+1 · · · x̄n), which called complemen-
tary edges of enhanced hypercube, denoted by

Ec = {(u, ū) ∈ E(Qn,k)|H(u, ū) = n− k + 1},
where u = x1x2 · · ·xn, and ū = x1x2 · · ·xk−1x̄kx̄k+1 · · · x̄n. As mentioned above, the en-
hanced hypercube Qn,k contains hypercube Qn as its subgraph. In addition, the folded
hypercube FQn, which is the extension of the hypercube, is regarded as the special case of
the enhanced hypercube when k = 1.

It has showed that Qn,k is (n+1)-regular,vertex-transitive and edge-transitive, and have
2n vertices and (n+1)2n−1 edges. Due to its good properties, the enhanced hypercube Qn,k

have received substantial researches.
Lemma 1 [3] The enhanced hypercube Qn,k can be partitioned into two subgraphs

along some component i(1 ≤ i ≤ n). We use Qi0
n−1,k (Qi0

n−1) and Qi1
n−1,k (Qi1

n−1) to denote
the two subgraphs respectively. From the definition of the partition, we can conclude that
when 1 ≤ i ≤ k − 1, Qi0

n−1,k and Qi1
n−1,k are two (n − 1)-dimensional enhanced hypercube,

that is, Qn,k = Qi0
n−1,k∪Qi1

n−1,k; when k ≤ i ≤ n, Qi0
n−1 and Qi1

n−1 are two (n−1)-dimensional
hypercube, that is , Qn,k = Qi0

n−1 ∪Qi1
n−1. A vertex x = x1x2 · · ·xn belong to Qi0

n−1,k(Q
i0
n−1)

if and only if the ith position xi = 0; Similarly, x belongs to Qi1
n−1,k(Q

i1
n−1) if and only if the

ith position xi = 1.
Lemma 2 [24] There is an automorphism σ of Qn,k(1 ≤ k ≤ n−1), such that σ(Ei) = Ej

for any i, j ∈ {1, 2, · · · , n, c}. Furthermore, we have Qn,k−Ei is isomorphic to Qn(represented
as Qn,k − Ei

∼= Qn), where i ∈ {k, k + 1, k + 2, · · · , n, c}.
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Figure 1: An illustration of Case 1 and Case 2 in the proof of Lemma 5 (each straight line
represents an edge, and each curved line represents a path between two vertices. The bold lines

represent the selected fault-free paths. The solid points and hollow points are used to
distinguish the different parity of the nodes).

Lemma 3 [11] For any x, y ∈ V (Qn) with H(x, y), there exist paths from x to y with
length l, H(x, y) ≤ l ≤ 2n − 1 and 2|l −H(x, y).

Lemma 4 [6] There exists a fault-free cycle of length of at least 2n − 2f in Qn with f

fault nodes, where 1 ≤ f ≤ 2n− 4 and n ≥ 3.

3 Paths and Cycles in Faulty Qn and Qn,k

Now let’s begin our work. Let F denote the set of fault vertices in Qn,k, f = |F ∩
V (Qn,k)|. By Lemma 1, we can partite Qn,k as Qn,k = Qi0

n−1,k∪Qi1
n−1,k or Qn,k = Qi0

n−1∪Qi1
n−1

along different i. Therefore we definite

f0 = |F ∩ V (Qi0
n−1,k)|, f1 = |F ∩ V (Qi1

n−1,k)|

for some 1 ≤ i ≤ k − 1. And

f0 = |F ∩ V (Qi0
n−1)|, f1 = |F ∩ V (Qi1

n−1)|

for some k ≤ i ≤ n. Similarly, in Qn,

f = |F ∩ V (Qn)|, f0 = |F ∩ V (Qi0
n−1)|, f1 = |F ∩ V (Qi1

n−1)|,

where i = 1, 2, · · · , n.
If x is a vertex of graph G, denote NG(x) = {u|ux ∈ E(G)} the neighborhood of x.
Since Q11, Q21 are trivial, we just discuss n ≥ 3.

Before considering the cycle embedding in the vertex-fault-tolerant enhanced hypercube,
it is worth to point out the similar result for hypercube as follows:

Lemma 5 Let u, v be two fault-free vertices of Qn with f ≤ n − 1 fault vertices and
H(u, v) = 1. There exists a fault-free path P [u, v] of length at least 2n − 2f − 1.

Proof We proof the theorem by introduction on n. When n = 3, it is clearly true.
Assume that it holds for n − 1(n ≥ 4), next we consider n. We can partite Qn along some
component i into two (n− 1)-dimensional subcubes Qi0

n−1 and Qi1
n−1.
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Case 1 f0 < f, f1 < f, f = f0 + f1.

Since f0 < f , by introduction, there exists a fault-free path P0[u, v] ∈ Qi0
n−1 of length

at least 2n−1 − 2f0 − 1. Select an edge xy ∈ P [u, v] such that xi, yi ∈ Qi1
n−1 are fault-free

vertices. Since H(x, y) = 1, we have H(xi, yi) = 1. By introduction, there is a faut-free path
P1[xi, yi] ∈ Qi1

n−1 of length of at least 2n−1 − 2f1 − 1. Then the desired path P [u, v] can be
constructed as (P0[u, v]− xy) ∪ xxi ∪ P1[xi, yi] ∪ yiy, which is of length at least

(2n − 2f0 − 1)− 1 + 2 + (2n − 2f1 − 1) = 2n − 2f − 1,

see Figure 1 (a).
Case 2 f0 = f (or, f1 = f).
Let Fv be a fault vertex in Qi0

n−1. Now we can suppose Fv as a fault-free vertex tem-
porarily, by hypothesis, there exists a fault-free path P0[u, v] ∈ Qi0

n−1 of length at least
2n−1 − 2(f − 1) − 1, which contains no any other f − 1 faulty vertices. Now we consider
whether the vertex Fv is in the path P0[u, v] or not. Suppose Fv ∈ P0[u, v] (otherwise, using
the method similarly as Case 1 above, it is easy to discuss), let edges xFv, Fvy ∈ P0[u, v],
then H(x, y) = 2, and H(xi, yi) = 2 obviously. In Qi1

n−1, using Lemma 3, there exists a
fault-free path P1[xi, yi] ∈ Qi1

n−1 of length 2n−1 − 2. Therefore, the desired path P [u, v] can
be constructed as (P0[u, v]− xy)∪ xxi ∪P1[xi, yi]∪ yiy connecting u, v which is of length at
least

(2n−1 − 2(f − 1)− 1)− 2 + 2 + (2n−1 − 2) = 2n − 2f − 1,

see Figure 1 (b).
The proof of the lemma is completed.
Theorem 1 Let u, v be two fault-free vertices of Qn,k with f ≤ n−1 fault vertices and

H(u, v) = 1. There exists a fault-free path P [u, v] of length at least 2n − 2f − 1.
Proof We proof the theorem by introduction on n. When n = 3, it is clearly true.

Assume that it holds for n−1(n ≥ 4), next we consider n. Without loss of generality, suppose
u, v ∈ Qi0

n−1,k(or u, v ∈ Qi0
n−1), that is u, v ∈ E0.

Case 1 f0 < f, f1 < f, f = f0 + f1.

We can either execute an i(1 ≤ i ≤ k − 1)-partition on Qn,k to obtain two (n − 1)-
dimensional enhanced hypercubes Qi0

n−1,k and Qi1
n−1,k or execute an i(k ≤ i ≤ n)-partition

on Qn,k to obtain two (n − 1)-dimensional hypercubes Qi0
n−1 and Qi1

n−1 by Lemma 1. We
consider the following subcases:

Case 1.1 Qn,k = Qi0
n−1,k ∪Qi1

n−1,k.

Since f0 < f , by introduction, there exists a fault-free path P0[u, v] ∈ Qi0
n−1,k with

length of at least 2n−1 − 2f0 − 1. Select an edge xy ∈ P [u, v] such that xi, yi ∈ Qi1
n−1,k are

fault-free vertices. Since H(x, y) = 1, we have H(xi, yi) = 1. By introduction, there is a
faut-free path P1[xi, yi] ∈ Qi1

n−1,k of length of at least 2n−1 − 2f1 − 1. Then the desired path
P [u, v] can be constructed as (P0[u, v]−xy)∪xxi∪P1[xi, yi]∪yiy, which is of length at least

(2n−1 − 2f0 − 1)− 1 + 2 + (2n−1 − 2f1 − 1) = 2n − 2f − 1.
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Case 1.2 Qn,k = Qi0
n−1 ∪Qi1

n−1.

Since f0 < f ≤ n − 1 ≤ 2n − 4 for n ≥ 3, by Lemma 4, there exists a fault-free path
P0[u, v] ∈ Qi0

n−1 with length of at least 2n−1 − 2f0 − 1. Select an edge xy ∈ P [u, v] such that
xi, yi ∈ Qi1

n−1 are fault-free vertices. Since H(x, y) = 1, we have H(xi, yi) = 1. By Lemma
5, there is a faut-free path P1[xi, yi]) ∈ Qi1

n−1,k of length of at least 2n−1− 2f1− 1. Then the
desired path P [u, v] can be constructed as (P0[u, v]− xy)∪ xxi ∪ P1[xi, yi]∪ yiy, which is of
length at least

(2n−1 − 2f0 − 1)− 1 + 2 + (2n−1 − 2f1 − 1) = 2n − 2f − 1.

Case 2 f0 = f (or, f1 = f).
Similarly as Case 1, we also consider the partition of enhanced hypercube Qn,k, and

have the following subcases:
Case 2.1 Qn,k = Qi0

n−1,k ∪Qi1
n−1,k.

Let Fv be a faulty vertex in Qi0
n−1,k. Now we can suppose Fv as a fault-free vertex

temporarily, by hypothesis, there is a path P0[u, v] ∈ Qi0
n−1 of length at least 2n−1 − 2(f0 −

1)− 1, which contains no any other f − 1 faulty vertices. Suppose Fv ∈ P0[u, v] (otherwise,
it is easy to discuss), let edges xFv, Fvy ∈ P0[u, v], then H(x, y) = 2. In Qi1

n−1, f1 = 0, by
Lemma 2, we have Qi0

n−1 − Ec
∼= Qn−1. Then using Lemma 3, there exists a fault-free path

P1[xi, yi] ∈ Qi1
n−1 of length 2n−1 − 2. Therefore, the desired path P [u, v] can be constructed

as (P0[u, v]− xy) ∪ xxi ∪ P1[xi, yi] ∪ yiy connecting u, v which is of length at least

(2n−1 − 2(f0 − 1)− 1)− 2 + 2 + (2n−1 − 2) = 2n − 2f − 1.

Case 2.2 Qn,k = Qi0
n−1 ∪Qi1

n−1.

Since f0 = f ≤ n − 1 ≤ 2n − 4 for n ≥ 3, by Lemma 4, there exists a fault-free path
P0[u, v] ∈ Qi0

n−1 with length of at least 2n−1 − 2f0 − 1. Select an edge xy ∈ P [u, v] such that
xi, yi ∈ Qi1

n−1 are fault-free vertices. Since H(x, y) = 1, we have H(xi, yi) = 1. By Lemma
3, there is a faut-free path P1[xi, yi] ∈ Qi1

n−1 of length of at least 2n−1 − 1. Then the desired
path P [u, v] can be constructed as (P0[u, v]− xy) ∪ xxi ∪ P1[xi, yi] ∪ yiy, which is of length
at least

(2n−1 − 2f0 − 1)− 1 + 2 + (2n−1 − 1) = 2n − 2f − 1.

The proof of the theorem is completed.
Lemma 6 Let u, v be two fault-free vertices of Qn with f ≤ 2 fault vertices and

H(u, v) = 2. There exists a fault-free path P [u, v] of length at least 2n − 2f − 2 connecting
u and v.

Proof We can partite Qn along some dimension i = 1, 2, · · · , n into two (n − 1)-
dimensional subcubes, that is Qn = Qi0

n−1 ∪ Qi1
n−1. We proof the lemma by introduction

on n. By induction. The lemma holds for n ≥ 3. Suppose it is true for integer n − 1,
the situation of n can be discussed as follows. Without loss of generality, let u, v ∈ Qi0

n−1.

Considering the distribution of faulty vertices, we have the following cases:
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Case 1 f = 0. By Lemma 3, the lemma is true obviously.
Case 2 f = 1.

The faulty vertex is in Qi0
n−1. By introduction hypothesis,there is a fault-free path

P0[u, v] ∈ Qi0
n−1 of length 2n−1 − 2f − 1 connecting u, v. Select an edge xy ∈ P0[u, v] such

that xi, yi ∈ Qi1
n−1 are both fault-free vertices. Lemma 3 indicates there exists a fault-free

path P1[xi, yi] ∈ Qi1
n−1 between xi and yi of length at least 2n−1 − 1. Therefore, the desired

fault-free path from u to v can be constructed as (P0[u, v]/xy)∪xxi∪P1[xi, yi]∪yiy of length

(2n−1 − 2f − 2)− 1 + 2 + (2n−1 − 1) = 2n − 2f − 2.

The faulty vertex is in Qi1
n−1. By Lemma 3, there is a fault-free path P0[u, v] ∈ Qi0

n−1

of length at least 2n−1 − 2. Choose an edge xy ∈ P0[u, v], using Lemma 5, there exists a
fault-free path P1[xi, yi] ∈ Qi1

n−1 between xi and yi of length at least 2n−1 − 2f − 1. Then
the desired path P [u, v] can be constructed as (P0[u, v]/xy) ∪ xxi ∪ P1[xi, yi] ∪ yiy, which is
a path of joining x, y of length at least

(2n−1 − 2)− 1 + 2 + (2n−1 − 2f − 1) = 2n − 2f − 2.

Caes 3 f = 2.

Case 3.1.1 f0 = 2. By hypothesis and Lemma 3, we can easily construct the desired
path. We omit it here.

Case 3.1.2 f1 = 2. The desired path P [u, v] can be obtained using Lemma 3 and
Lemma 5. We omit it here.

Case 3.1.3 f0 = 1, f1 = 1. The induction assumption and Lemma 5 guarantee the
required path P [u, v]. We omit it here.

By considering the above cases, the proof is competed.
Theorem 2 Let u, v be two fault-free vertices of Qn,k with f ≤ 2 fault vertices and

H(u, v) = 2. There exists a fault-free path P [u, v] of length at least 2n − 2f − 2 connecting
u and v.

Proof By induction. The theorem holds for n ≤ 3. It is easy to clarify the theorem
holds under the given conditions. Now we just give a simple example in Q3,1 with two
faulty vertices. Without loss of generality, we assume the two faulty vertices are 000 and
001, and u = 100, v = 111, H(100, 111) = 2, we can easily find a fault-free path P [u, v] =
(100, 110, 111), which is of length 2. Suppose it is true for integer n − 1, the situation of n

can be discussed as follows. Without loss of generality, let u, v ∈ Qi0
n−1,k or u, v ∈ Qi0

n−1.

According to the distribution of faulty vertices, we have the following cases:
Case 1 f = 0. Lemma 2 indicates Qn,k − Ec

∼= Qn. Then the theorem holds because
of Lemma 3.

Caes 2 f = 1.

Case 2.1 Qn,k = Qi0
n−1,k ∪Qi1

n−1,k.

Case 2.1.1 The faulty vertex is in Qi0
n−1,k. By the assumption, there is a fault-free

path P0[u, v] ∈ Qi0
n−1,k of length at least 2n−1 − 2f − 2. Choose an edge xy ∈ P0[u, v],
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Figure 2: An illustration of Case 3.1.1, Case 3.1.2 and Case 3.1.3 in the proof of Theorem 2.

using Lemma 2 and Lemma 3, there exists a fault-free path P1[xi, yi] ∈ Qi1
n−1,k between

xi and yi of length at least 2n−1 − 1. Then the desired path P [u, v] can be constructed as
(P0[u, v]/xy) ∪ xxi ∪ P1[xi, yi] ∪ yiy, which is a path of joining x, y of length at least

(2n−1 − 2f − 2)− 1 + 2 + (2n−1 − 1) = 2n − 2f − 2.

Case 2.1.2 The faulty vertex is in Qi1
n−1,k. Lemma 2 and Lemma 3 guarantee a fault-free

path P0[u, v] ∈ Qi0
n−1,k of length 2n−1 − 2 connecting u, v. Select an edge xy ∈ P0[u, v] such

that xi, yi ∈ Qi1
n−1,k are both fault-free vertices. Theorem 1 indicates there exists a fault-free

path P1[xi, yi] ∈ Qi1
n−1,k between xi and yi of length at least 2n−1 − 2f − 1. Therefore, the

desired fault-free path from u to v can be constructed as (P0[u, v]/xy)∪xxi ∪P1[xi, yi]∪ yiy

of length
(2n−1 − 2)− 1 + 2 + (2n−1 − 2f − 1) = 2n − 2f − 2.

Case 2.2 Qn,k = Qi0
n−1 ∪Qi1

n−1.

Case 2.2.1 The faulty vertex is in Qi0
n−1. Lemma 6 indicates that there is a fault-free

path P0[u, v] ∈ Qi0
n−1 of length at least 2n−1 − 2f − 2. Select an edge xy ∈ P0[u, v], using

Lemma 3, there exists a fault-free path P1[xi, yi] ∈ Qi1
n−1 between xi and yi of length at

least 2n−1− 1. Therefore the desired path P [u, v] can be constructed as (P0[u, v]/xy)∪xxi ∪
P1[xi, yi] ∪ yiy, which is a path of joining x, y of length at least

(2n−1 − 2f − 2)− 1 + 2 + (2n−1 − 1) = 2n − 2f − 2.

Case 2.2.2 The faulty vertex is in Qi1
n−1. Lemma 3 guarantees a fault-free path P0[u, v] ∈

Qi0
n−1 of length 2n−1−2 connecting u, v. Choose an edge xy ∈ P0[u, v] such that xi, yi ∈ Qi1

n−1

are both fault-free vertices. Lemma 5 indicates there exists a fault-free path P1[xi, yi] ∈ Qi1
n−1

between xi and yi of length at least 2n−1 − 2f − 1. So the desired fault-free path from u to
v can be constructed as (P0[u, v]/xy) ∪ xxi ∪ P1[xi, yi] ∪ yiy of length

(2n−1 − 2)− 1 + 2 + (2n−1 − 2f − 1) = 2n − 2f − 2.

Caes 3 f = 2.

Case 3.1 Qn,k = Qi0
n−1,k ∪Qi1

n−1,k.
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Case 3.1.1 f0 = 2. By introduction hypothesis, there exists a fault-free path P0[u, v] ∈
Qi0

n−1,k of length 2n−1− 2f − 2. Select an edge xy ∈ P0[u, v], then there is a path P1[xi, yi] ∈
Qi1

n−1,k of length of 2n−1 − 1, by Lemma 2 and Lemma 3. Hence, (P0[u, v] − xy) ∪ xxi ∪
P1[xi, yi] ∪ yyi, of length at least

(2n−1 − 2f − 2)− 1 + 2 + (2n−1 − 1) = 2n − 2f − 2

is the desired fault-free path joining u, v (see Figure 2 (a)).
Case 3.1.2 f1 = 2. Lemma 2 and Lemma 3 indicate there is a path P0[u, v] ∈ Qi0

n−1,k

with length of 2n−1 − 2. Select xy ∈ P0[u, v] such that xi, yi ∈ Qi1
n−1,k are fault-free ver-

tices. By Theorem 1, there exists path P1[xi, yi] ∈ Qi1
n−1,k of length 2n−1 − 2f − 1. Then

(P0[u, v]/xy) ∪ xxi ∪ P1[xi, yi] ∪ yiy of length at least

(2n−1 − 2)− 1 + 2 + (2n−1 − 2f − 1) = 2n − 2f − 2

is the required path(see Figure 2 (b)).
Case 3.1.3 f0 = 1, f1 = 1. With assumption, there is a fault-free path P0[u, v] ∈ Qi0

n−1,k

of length 2n−1 − 2f0 − 2. Let x, y ∈ P0[u, v] and xi, yi ∈ Qi1
n−1,k are both fault-free vertices.

Theorem 1 guarantees a fault-free path P1[xi, yi] ∈ Qi1
n−1,k of length 2n−1 − 2f1 − 1. So the

desired path can be constructed as (P0[u, v]/xy)∪ xxi ∪P1[xi, yi]∪ yiy which is of length at
least

(2n−1 − 2f0 − 2)− 1 + 2 + (2n−1 − 2f1 − 1) = 2n − 2f − 2

joins u, v (see Figure 2 (c)).
Case 3.2 Qn,k = Qi0

n−1 ∪Qi1
n−1.

Case 3.2.1 f0 = 2. According to Lemma 6 and Lemma 3, we can easily construct the
desired path P [u, v] of length at least 2n − 2f − 2 similarly as Case 3.1.1 above. We omit it
here.

Case 3.2.2 f1 = 2. Using the similar methods as Case 3.1.2 above, by Lemma 3 and
Lemma 5, the desired path connecting u, v can be constructed. We omit it here.

Case 3.2.3 f0 = 1, f1 = 1. By Lemma 6 and Lemma 5, similarly as Case 3.1.3 above,
there exists a fault-free path P [u, v] of length at least 2n − 2f − 2. We omit it here.

By considering the above cases, the proof is competed.
Lemma 7 Let u, v ∈ Qn with f ≤ 2 fault vertices and H(u, v) = 3. There exists a

fault-free path P [u, v] of length at least 2n − 2f − 1 between u and v.

Proof We use introduction on n to proof this lemma similarly as the proof of Lemma
6, and the desired path P [u, v] can be obtained, we omit it here.

Theorem 3 Let u, v ∈ Qn,k with f ≤ 2 fault vertices and H(u, v) = 3. There exists a
fault-free path P [u, v] of length at least 2n − 2f − 1 between u and v.

Proof We proof the theorem by introduction on n.
Case 1 f = 0. Lemma 2 and Lemma 3 guarantee the theorem true.
Case 2 f = 1.
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By induction, it is true for n = 3. Assumption it holds for n− 1 for n ≥ 4, we consider
n as follows. Without loss of generality, let u, v ∈ Qi0

n−1,k or u, v ∈ Qi0
n−1.

Case 2.1 Qn,k = Qi0
n−1,k ∪Qi1

n−1,k.

Case 2.1.1 Qi0
n−1,k contains the faulty vertex. By the introduction hypothesis, there is

a fault-free path P0[u, v] ∈ Qi0
n−1,k of length 2n−1 − 2f − 1. Let xy ∈ P0[u, v], with Lemma

2 and Lemma 3, there is a path P1[xi, yi] ∈ Qi1
n−1,k of length 2n−1 − 1. Furthermore a path

between u and v can be constructed as (P0[u, v]/xy)∪xxi∪P1[xi, yi]∪yiy, which is of length
at least

(2n−1 − 2f − 1)− 1 + 2 + (2n−1 − 1) = 2n − 2f − 1.

Case 2.1.2 Qi1
n−1,k contains the faulty vertex. By Lemma 2 and Lemma 3, there

exists a fault-free path P0[u, v] in Qi0
n−1,k of length 2n−1 − 1. Select an edge xy ∈ P0[u, v]

such that xi, yi ∈ Qi1
n−1,k are both fault-free vertices. With Theorem 1, there is a path

P1[xi, yi] ∈ Qi1
n−1,k which is of length 2n−1 − 2f − 1 joining xi, yi. Then the desired path

P [u, v] can be constructed as (P0[u, v]−xy)∪xxi ∪P1[xi, yi]∪ yiy which is of length at least

(2n−1 − 1)− 1 + 2 + (2n−1 − 2f − 1) = 2n − 2f − 1.

Case 2.2 Qn,k = Qi0
n−1 ∪Qi1

n−1.

Case 2.2.1 Qi0
n−1 contains the faulty vertex. Lemma 7 indicates there exists a fault-

free path P0[u, v] of length at least 2n−1 − 2f − 1. Choose an edge xy ∈ P0[u, v] such
that xi, yi ∈ Qi1

n−1 are both fault-free vertices. Using Lemma 3, there is a fault-free path
P1[xi, yi] of length 2n−1 − 1. Therefore, the desired path P [u, v] can be constructed as
(P0[u, v]− xy) ∪ xxi ∪ P1[xi, yi] ∪ yiy which is of length at least

(2n−1 − 2f − 1)− 1 + 2 + (2n−1 − 1) = 2n − 2f − 1.

Case 2.2.2 Qi1
n−1 contains the faulty vertex. Lemma 3 guarantees a path P0[u, v] in

Qi0
n−1 of length 2n−1 − 1. Let xy ∈ P0[u, v], with Lemma 5, there is a path P1[xi, yi] ∈

Qi1
n−1 of length 2n−1 − 2f − 1. Furthermore a path between u and v can be constructed as

(P0[u, v]/xy) ∪ xxi ∪ P1[xi, yi] ∪ yiy, which is of length at least

(2n−1 − 1)− 1 + 2 + (2n−1 − 2f − 1) = 2n − 2f − 1.

Case 3 f = 2.

Case 3.1 Qn,k = Qi0
n−1,k ∪Qi1

n−1,k.

Case 3.1.1 f0 = 2. By induction hypothesis, there exists a fault-free path P0[u, v] in
Qi0

n−1,k of length at least 2n−1−2f −1. Set edge xy ∈ P0[u, v], Lemma 2 and Lemma 3 imply
a fault-free path P1[xi, yi] ∈ Qi1

n−1,k of length 2n−1 − 1. So the path (P0[u, v]/xy) ∪ xxi ∪
P1[xi, yi] ∪ yiy of length at least

(2n−1 − 2f − 1)− 1 + 2 + (2n−1 − 1) = 2n − 2f − 1

is the desired path.
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Case 3.1.2 f0 = 1 and f1 = 1. We can find a fault-free path P0[u, v] ∈ Qi0
n−1,k with

length of 2n−1 − 2f0 − 1 by introduction hypothesis. Choose an edge xy ∈ P0[u, v] such
that xi, yi ∈ Qi1

n−1,k are both fault-free vertices. Then Theorem 1 means a fault-free path
P1[xi, yi] ∈ Qi1

n−1,k of length at least 2n−1−2f1−1. Hence (P0[u, v]−xy)∪xxi∪P1[y, yi]∪yiy

is a fault-free path of length at least

(2n−1 − 2f0 − 1)− 1 + 2 + (2n−1 − 2f1 − 1) = 2n − 2f − 1

connecting the vertices u, v.

Case 3.1.3 f1 = 2. Lemma 2 and Lemma 3 proposed a fault-free path P0[u, v] ∈ Qi0
n−1,k

of length 2n−1− 1. Choose an edge xy ∈ P0[u, v] such that xi, yi ∈ Qi1
n−1,k are both fault-free

vertices. Using Theorem 1, a fault-free path P1[xi, yi] ∈ Qi1
n−1,k of length 2n−1 − 2f − 1 can

be found. Then (P0[u, v]/xy) ∪ xxi ∪ P1[xi, yi] ∪ yiy is required, which is of length at least

(2n−1 − 1)− 1 + 2 + (2n−1 − 2f − 1) = 2n − 2f − 1.

Case 3.2 Qn,k = Qi0
n−1 ∪Qi1

n−1.

Case 3.2.1 f0 = 2. Using the similar methods as Case 3.1.1 above, by Lemma 7 and
Lemma 3, the desired path connecting u, v can be constructed. We omit it here.

Case 3.2.2 f0 = 1 and f1 = 1. By Lemma 7 and Lemma 5, similarly as Case 3.1.2
aobve, there exists a fault-free path P [u, v] of length at least 2n − 2f − 1. We omit it here.

Case 3.2.3 f1 = 2. According to Lemma 3 and Lemma 5, we can easily construct the
desired path P [u, v] of length at least 2n − 2f − 1 similarly as Case 3.1.3 above. We omit it
here.

By considering the above cases, the proof is competed.
Corollary There exists a fault-free cycle of length at least 2n−2f in Qn,k (n ≥ 4) with

f fault vertices for 1 ≤ f ≤ 2n− 4.

Proof We proof the theorem by induction on n. When n = 4, the theorem is true.
Suppose theorem holds for integer n− 1, Now we consider the situation of n.

When 1 ≤ f ≤ n− 2.

Case 1 f0 = n− 2, f1 = 0.

Case 1.1 Qn,k = Qi0
n−1,k ∪Qi1

n−1,k.

All faulty vertices are in Qi0
n−1,k, select an edge uv ∈ Qi0

n−1,k, using Theorem 1, there
exists a fault-free path P0[u, v] ∈ Qi0

n−1,k of length 2n−1−2f0−1. Since f1 = 0, by Lemma 2,
Qi1

n−1,k−Ec
∼= Qn−1, then by Lemma 3, there is a path P1[ui, vi] ∈ Qi1

n−1,k of length 2n−1−1.

Therefore, the desired cycle can be constructed as P0[u, v] ∪ vvi ∪ P1[vi, ui] ∪ uiu, which is
of length

(2n−1 − 2f0 − 1) + 2 + (2n−1 − 1) = 2n − 2f.

Case 1.2 Qn,k = Qi0
n−1 ∪Qi1

n−1.

Since f0 = n − 2 ≤ 2n − 4 for n ≥ 3, by Lemma 4, there exists a fault-free cycle C0 of
length at least 2n−1 − 2f0 in Qi0

n−1,k. We can select an edge uv on cycle C0 such that the
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Figure 3: An illustration of Case 3.1.1 and Case 3.1.2 in the proof of Corollary.

vertices ui, vi are all fault-free vertices. Then in Qi1
n−1 by Lemma 3, there exists a fault-free

path P1[ui, vi] of length at least 2n−1− 1. Therefore, the desired cycle can be constructed as
(C0[u, v]− uv) ∪ vvi ∪ P1[vi, ui] ∪ uiu, which is of length

(2n−1 − 2f0 − 1) + 2 + (2n−1 − 1) = 2n − 2f.

Case 2 1 ≤ f0 ≤ n− 3, f1 ≥ 1.

Case 2.1 Qn,k = Qi0
n−1,k ∪Qi1

n−1,k.

Select an edge uv ∈ Qi0
n−1,k such that u, v, ui, vi are all fault-free vertices. With Theorem

1, there exist fault-free paths P0[u, v] ∈ Qi0
n−1,k and P1(u1, v1) ∈ Qi1

n−1,k of length at least
2n−1 − 2f0 − 1 and 2n−1 − 2f1 − 1 respectively. Then the desired cycle can be constructed
as P0[u, v] ∪ vvi ∪ P1[vi, ui] ∪ uiu, which is of length

(2n−1 − 2f0 − 1) + 2 + (2n−1 − 2f1 − 1) = 2n − 2f.

Case 2.2 Qn,k = Qi0
n−1 ∪Qi1

n−1.

Since f0 ≤ n − 3 ≤ 2n − 4 for n ≥ 4, by Lemma 4, there exists a fault-free cycle C0 of
length at least 2n−1 − 2f0 in Qi0

n−1. We can select an edge uv ∈ C0 such that the vertices
ui, vi ∈ Qi1

n−1 are both fault-free vertices. In Qi1
n−1, by Lemma 5, there exists a fault-free path

P1[ui, vi] of length at least 2n−1 − 2f1 − 1. Therefore, the desired cycle can be constructed
as (C0[u, v]− uv) ∪ vvi ∪ P1[vi, ui] ∪ uiu, which is of length

(2n−1 − 2f0 − 1) + 2 + (2n−1 − 2f1 − 1) = 2n − 2f.

When n − 1 ≤ f ≤ 2n − 4. Without loss of generality, let Qn,k = Qi0
n−1 ∪ Qi1

n−1 or
Qn,k = Qi0

n−1,k ∪Qi1
n−1,k such that f0 ≥ 1, f1 ≥ 1.

Case 3 f0 = 2n−5, f1 = 1. As the partition of Qn,k, we consider the following subcases:
Case 3.1 Qn,k = Qi0

n−1,k ∪Qi1
n−1,k.

Let Fv ∈ Qi0
n−1,k be a faulty vertex. We can suppose Fv as a fault-free vertex temporarily,

the f0 = (2n−5)−1 = 2n−6. By introduction hypothesis, there exists a cycle C0 ∈ Qi0
n−1,k of

length at least 2n−1−2(f0−1) that contains no any other f0−1 faulty vertices. Considering
whether the cycle C0 contains the faulty vertex Fv or not, we have the following subcases:

Case 3.1.1 Fv /∈ C0. Select a section of C0, say L(u, v) = uwv ∈ C0, such that ui, vi

are fault-free and H(ui, vi) = 2. Then Theorem 2 guarantees a fault-free path P1[ui, vi] ∈
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Qi1
n−1,k of length at least 2n−1 − 2f1 − 2. Therefore, the desired cycle can be constructed as

(C0 − L(u, v)) ∪ vvi ∪ P1[vi, ui] ∪ uiu, which is of length

(2n−1 − 2(f0 − 1))− 2 + 2 + (2n−1 − 2f1 − 2) = 2n − 2f,

see Figure 3 (a).
Case 3.1.2 Fv ∈ C0. Suppose that L(s, v) = suFvv is a section of C0. When ui, vi

are fault-free vertices, the discussion is similar to above. However, if ui ∈ Qi1
n−1,k is fault

vertex, select another neighbor s of u on cycle C0, this implies si is a fault-free vertex
in Qi1

n−1,k, then H(si, vi) = 1 or 3. Theorem 1 and Theorem 3 indicate a fault-free path
P1[si, vi] ∈ Qi1

n−1,k of length 2n−1 − 2f1 − 1. Then the desired cycle can be constructed as
(C0 − L(s, v)) ∪ vvi ∪ P1[vi, si] ∪ sis which is of length

(2n−1 − 2(f0 − 1))− 3 + 2 + (2n−1 − 2f1 − 1) = 2n − 2f,

see Figure 3 (b).
Case 3.2 Qn,k = Qi0

n−1 ∪Qi1
n−1

Let Fv ∈ Qi0
n−1 be a faulty vertex. We can suppose Fv as a fault-free vertex simultane-

ously, the f0 = (2n−5)−1 = 2n−6. By Lemma 4, there exists a fault-free cycle C0 ∈ Qi0
n−1 of

length at least 2n−1−2(f0−1) that contains no any other f0−1 faulty vertices. Considering
whether the cycle C0 contains the faulty vertex Fv or not, we have the following subcases:

Case 3.2.1 Fv /∈ C0.

Using Lemma 6, with the similar methods of Case 3.1.1 above, we can construct the
desired fault-free cycle of length 2n − 2f . We omit it here.

Case 3.2.2 Fv ∈ C0.

Using Lemma 5 and Lemma 7, with the similar methods of Case 3.1.2 above, we can
construct the desired fault-free cycle of length 2n − 2f . We omit it here.

Case 4 n ≤ f0 ≤ 2n− 6, 1 ≤ f1 ≤ n− 2
Case 4.1 Qn,k = Qi0

n−1,k ∪Qi1
n−1,k

By assumption, there exists a fault-free cycle C0 ∈ Qi0
n−1,k of length at least 2n−1− 2f0.

Select an edge uv ∈ C0 such that ui, vi are both fault-free vertices in Qi1
n−1,k. With Theorem

1, there exists a fault-free path P1[ui, vi] ∈ Qi1
n−1,k of length 2n−1 − 2f1 − 1. So the desired

cycle can be constructed as (C0 − uv) ∪ uui ∪ P1[ui, vi] ∪ viv which is of length

(2n−1 − 2f0)− 1 + 2 + (2n−1 − 2f1 − 1) = 2n − 2f,

see Figure 4 (a).
Case 4.2 Qn,k = Qi0

n−1 ∪Qi1
n−1.

Using Lemma 4, there is a fault-free cycle C0 of length at least 2n−1 − 2f0 in Qi0
n−1.

Select an edge uv such that ui, vi are both fault-free vertices in Qi1
n−1. Lemma 5 indicates a

fault-free path P1[ui, vi] of length at least 2n−1 − 2f1 − 1 in Qi1
n−1. So the desired cycle can

be constructed as (C0 − uv) ∪ uui ∪ P1[ui, vi] ∪ viv which is of length

(2n−1 − 2f0)− 1 + 2 + (2n−1 − 2f1 − 1) = 2n − 2f.
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Figure 4: An illustration of Case 4.1, Case 5.1.1 and Case 5.1.2 in the proof of Corollary.

Case 5 1 ≤ f0 ≤ n− 2, 1 ≤ f1 ≤ n− 1.

Case 5.1 Qn,k = Qi0
n−1,k ∪Qi1

n−1,k.

Let Fv ∈ Qi1
n−1,k be a faulty vertex. We can suppose Fv as a fault-free vertex temporarily,

the f1 = (n− 1)− 1 = n− 2. Using Theorem 1, there exists a cycle C1 ∈ Qi1
n−1,k of length at

least 2n−1− 2(f1− 1) that contains no any other f1− 1 faulty vertices. Considering whether
the cycle C1 contains the faulty vertex Fv or not, we have the following subcases:

Case 5.1.1 Fv /∈ C1. Select a section of C1, say L(u, v) = uwv ∈ C1, such that ui, vi

are fault-free and H(ui, vi) = 2. Then Theorem 2 guarantees a fault-free path P0[ui, vi] ∈
Qi0

n−1,k of length at least 2n−1 − 2f0 − 2. Therefore, the desired cycle can be constructed as
(C1 − L(u, v)) ∪ vvi ∪ P0[vi, ui] ∪ uiu, which is of length

(2n−1 − 2(f1 − 1))− 2 + 2 + (2n−1 − 2f0 − 2) = 2n − 2f,

see Figure 4 (b).
Case 5.1.2 Fv ∈ C1. Suppose that L(s, v) = suFvv is a section of C1. When ui, vi

are fault-free vertices, the discussion is similar to above. However, if ui ∈ Qi0
n−1,k is fault

vertex, select another neighbor s of u on cycle C1, this implies si is a fault-free vertex
in Qi0

n−1,k, then H(si, vi) = 1 or 3. Theorem 1 and Theorem 3 indicate a fault-free path
P0[si, vi] ∈ Qi0

n−1,k of length 2n−1 − 2f0 − 1. Then the desired cycle can be constructed as
(C1 − L(s, v)) ∪ vvi ∪ P0[vi, si] ∪ sis which is of length

(2n−1 − 2(f1 − 1))− 3 + 2 + (2n−1 − 2f0 − 1) = 2n − 2f,

see Figure 4 (c).
Case 5.2 Qn,k = Qi0

n−1 ∪Qi1
n−1.

Let Fv ∈ Qi1
n−1 be a faulty vertex. We can suppose Fv as a fault-free vertex temporarily,

the f1 = (n−1)−1 = n−2. Lemma 4 indicates that there exists a fault-free cycle C1 ∈ Qi1
n−1

of length at least 2n−1−2(f1−1) that contains no any other f1−1 faulty vertices. Considering
whether the cycle C1 contains the faulty vertex Fv or not, we have the following subcases:

Case 5.2.1 Fv /∈ C1

Using Lemma 6, with the similar methods of Case 5.1.1 above, we can construct the
desired fault-free cycle of length 2n − 2f . We omit it here.

Case 5.2.2 Fv ∈ C1
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According to Lemma 5 and Lemma 7, we can easily construct the desired cycle of length
at least 2n − 2f similarly as Case 5.1.2 above. We omit it here.

By considering the above cases, the proof is competed.

4 Remark

Network topology is an important issue in the design of computer networks since it is
crucial to many key properties such as the efficiency and fault tolerance. When investigat-
ing a network, every component in the network may have the different reliability, so it is
important to consider the properties of networks with vertex-faults and edge-faults. In this
article, we focus on the fault-tolerant paths and cycles embedding on the n-dimensional en-
hanced hypercube Qn,k (1 ≤ k ≤ n−1), which is an important network topology for parallel
processing computer systems. Based on the investigated properties of vertex-fault-tolerant
properties, in the hypercube and the folded hypercube, we further concentrate on the paths
and cycles embedding on the enhanced hypercube Qn,k (1 ≤ k ≤ n−1) with the faulty vertex
set Fv and faulty edges set Fe. We showed that a fault-free cycle of length at least 2n − 2f

can be embedded in n-dimensional enhanced hypercube with |Fv| = f vertices, where n ≥ 3
and 1 ≤ f ≤ 2n− 4.

When investigating the embedding problem, we modeled it as a guest graph G1 into a
host graph G2, which is a one-to-one mapping from the vertex set of G1 into the vertex set
of G2. The embedding structure, such as linear arrays and rings, are suitable for designing
simple algorithms with low communication costs. A large amount of efficient algorithms
designed on the two fundamental networks for parallel and distributed computation to solve
algebraic problems and graph problems can be found in previous works [20, 22]. These appli-
cations motivate us to study the cycle embedding on networks. Based on the construction in
the proof, it’s not difficult to design an efficient recursive algorithm to construct as large as
possible cycles on the vertex-fault-tolerant enhanced hypercube. And we can conclude that
our algorithms design executed on vertex-fault-tolerant enhanced hypercube are extremely
efficient and robust.

Routing (path) is a process of transmitting messages among processors, and it is suitable
for designing simple algorithms with low communication costs. The efficiency and reliability
are based on the path, because they can be used to accelerate the transmission rate, avoid
congestion, and provide alternative communication routs. In addition, the routing (path)
also plays great importance on parallel and distributed computing. Based on these applica-
tions, we can conclude that our algorithms design executed on edge-fault-tolerant enhanced
hypercube are extremely efficient and robust.

Edge and vertex failures may occur simultaneously when investigating the networks,
which motivate us to research on the fault-free cycle embedding on enhanced hypercube Qn,k

with both edge and vertex failures. Consequently, the next step of our investigation can be
concentrated on how many faulty edges and faulty vertices can be tolerant simultaneously
such that Qn,k is fault-free bipancyclic or has as many as possible fault-free odd cycles.
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含故障点的加强超立方体中路和圈的嵌入

刘 敏1,刘红美2

(1.华中师范大学数学与统计学院,湖北武汉 430079)

(2.三峡大学理学院,湖北宜昌 443002)

摘要: 本文研究了含故障点的n -维加强超立方体Qn,k中的路和圈嵌入的问题. 充分分析了加强超立

方体网络的潜在特性, 利用了构造的方法. 得到了含2n− 4个故障点的加强超立方体Qn,k中含长为2n − 2f的

容错圈的结论, 推广了折叠超立方体网络中1 -点容错圈嵌入的结果. 其中折叠超立方体网络为加强超立方体

网络的一种特殊情况.
关键词: 加强超立方体; 路嵌入; 圈嵌入; 容错性
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