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Abstract: In this paper, we study the properties of Ore extensions of nil-semicommutative
rings. Let a be an endomorphism and ¢ an a-derivation of a ring R. By using the itemized analysis
method on polynomials, we prove that if R is (¢, ¢)-skew Armendariz and («, §)-compatible, then
R|[z; «, 4] is nil-semicommutative if and only if R is nil-semicommutative; if R is nil-semicommutative
and (a, §)-compatible, then R[z;a,d] is weak Armendariz, which generalize some related work on
skew polynomial rings.
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1 Introduction

Throughout this paper, R denotes an associative ring with identity, « is an endo-
morphism and § an a-derivation of R, that is, ¢ is an additive map such that 6(ab) =
d(a)b+ a(a)d(b) for a,b € R. We denote by R[z;«,d] the Ore extension whose elements are
the polynomials over R, the addition is defined as usual, and the multiplication subject to
the relation xr = a(r)x + 6(r) for any r € R. When § = Og, we write R[x; ] for R[z;«, 0]
and call it the skew polynomial ring (also called an Ore extension of endomorphism type);
when o = 1, we write R[z;d] for R[x; 1g, 0] and call it the differential polynomial ring (also
called an Ore extension of derivation type). For a ring R, we denote by nil(R) the set of all
nilpotent elements of R, and denote by Nil.(R) its prime radical.

Lambek [1] called a ring R to be symmetric if abec = 0 implies acb = 0 for all a,b, ¢ € R.
Recall that a ring R is called reduced if it has no nonzero nilpotent elements; a ring R is
called 2-primal if its prime radical contains every nilpotent element of R; and a ring R is

called semicommutative if ab = 0 implies aRb = 0 for all a,b € R. In [2], semicommutative
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property is called the insertion-of-factors-property, or IFP. There were many papers to study
semicommutative rings and their generalization (see [3-5]). Liu and Zhao [6] proved that
if R is a semicommutative ring then nil(R) is an ideal of R. Mohammadi et al. [7] called
a ring R to be nil-semicommutative if for any a,b € nil(R), ab = 0 implies aRb =
Obviously, semicommutative rings are nil-semicommutative rings and every subring of a nil-
semicommutative ring is nil-semicommutative. [7] proved that if R is nil-semicommutative
then nil(R) is an ideal of R and nil-semicommutative rings are 2-primal rings. We have the
following implications:

reduced = symmetric = semicommutative = nil-semicommutative = 2-primal.

In general, each of these implications is irreversible (see [7, §]).

According to Krempa [9], an endomorphism « of a ring R is called rigid if aa(a) = 0
implies a = 0 for all @ € R, and a ring R is called a-rigid if there exists a rigid endomorphism
a of R. Notice that every rigid endomorphism of a ring is a monomorphism and a-rigid rings
are reduced by Hong et al. [10]. Following Annin [11], for an endomorphism « and an «-
derivation d, a ring R is called a-compatible if for each a,b € R, ab = 0 < aa(b) = 0.
Moreover, R is called §-compatible if for each a,b € R, ab = 0 = ad(b) = 0. If R is
both a-compatible and d-compatible, R is called («, §)-compatible. In this case, clearly the
endomorphism « is injective. Hashemi and Moussavi [12] proved that R is a-rigid if and
only if R is a-compatible and reduced.

Rege and Chhawchharia [13] called a ring R to be Armendariz if whenever polynomials

Za zt, g(x Z bjzl € R[z] satisfy f(z)g(z) = 0, then a;b; = 0 for each i, j.

Hong et al. [14] called a ring R with an endomorphism a to be a-skew Armendariz if

whenever polynomials f(z Z a;xt, g(x Z bjz! € R[z;a] satisfy f(z)g(z) = 0, then

a;a'(b;) = 0 for each i, j. Followmg [15] a iru(ig R with a derivation ¢ is called J-skew

Armendariz, for each f(z) = ioaz ,g(x Z bjz? € Rz;d], if f(z)g(x) = 0 implies
i= Jj=

a;6'(b;) =0 (or a;b; =0 ) for each 0 < i < n,0 § j < m. By Moussavi and Hashemi [16],

a ring R with an endomorphism o and an a- derivation J is called («, ¢)-skew Armendariz if

whenever polynomials f(x Z a;x’, g(z E bjzd € R[z;a,d] satisfy f(z)g(z) =0, then

a;z'b;zd = 0 for each i, . Note that each a- skew Armendariz is (a, 0)-skew Armendariz,
where ¢ is the zero mapping. Obviously, every a-rigid ring is («, d)-skew Armendariz, but
the converse does not hold (see [14], Example 1).

Due to the fact that many of the quantized algebras and their representations can be
expressed in terms of iterated skew polynomial rings, it is interesting to know if the general
Ore extension S = R[z;a] of a ring R share the same property with the ring R. In this
paper we will show that:

(1) Let R be (o, 0)-skew Armendariz and (a, §)-compatible. Then R is nil-semicommut
ative if and only if R[z;«, d] is nil-semicommutative;

(2) Let R be weak (o, d)-compatible and nil(R) is an ideal of R. Then R is a weak
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(a, §)-skew Armendariz ring;

(3) Let R be weak («,d)-compatible and nil-semicommutative. Then R[z] is a weak

(@&, 0)-skew Armendariz ring.

In the following, for integers 4,5 with 0 < i < j, f/ € End(R, +) will denote the map
which is the sum of all possible words in «, ¢ built with ¢ letters o and ¢ — j letters §. For
instance, fy = o?6% + §2a® + §a?d + ad’a + adad + dada. In particular, f =1, fi = o,
fa=4", fj;l =/ 5+ i 25a + -+ dai~!. For every f/ € End(R,+) with 0 <i < j, it

has C'j’f monomials in «,d built with ¢ letters o and ¢ — j letters §. As is known to all that

for any integer n and r € R, we have a™r = Y fI(r)z’ in the ring R[z; a, d].
i=0

2 Ore Extensions of Nil-Semicommutative Rings

Lemma 2.1 (see [12], Lemma 2.1) Let R be an (o, d)-compatible ring. Then we have
the following:

(1) If ab = 0, then aa™(b) = a™(a)b = 0, for all positive integers n;

(2) If a*(a)b = 0 for some positive integer k, then ab = 0;

(3) If ab = 0, then a™(a)é™(b) = §™(a)a™(b) = 0 for all positive integers m, n.
Proposition 2.2 Let R be an («, §)-compatible ring. Then we have the following:
(1) If ab =0, then af/(b) = 0 for all 0 < i < j and a,b € R;

(2) For a,b € R and any positive integer m, ab € nil(R) if and only if aa™(b) € nil(R).

Proof (1) If ab = 0, then aa®(b) = ad’(b) = 0 for all i > 0 and j > 0 by Lemma 2.1.
Hence afij(b) =0forall 0<i<y.

(2) It is an immediate consequence of Lemma 3.1 in [5] and Lemma 2.8 [17].

Proposition 2.3 Let R be an («, d)-compatible ring. Then we have the following:

(1) If abc = 0, then ad(b)c = 0 for any a,b,c € R;

(2) If abc = 0, then af! (b)c = 0 for all 0 < i < j and a,b,c € R;

(3) If ab € nil(R), then ad(b) € nil(R) for any a,b € R.

Proof (1) If abc = 0, we have a(ab)d(c) =0, a(a)a(b)d(c) = 0 and ac(b)é(c) = 0. On
the other hand, we also have ad(bc) = 0, a(d(b)c+ a(b)d(c)) = 0 and ad(b)c + aa(b)d(c) = 0.
So ad(b)e = 0.

(2) If abc = 0, we have aa(bc) = 0, aa(b)a(c) = 0 and aa(b)e = 0. It follows that
aa™(b)e = 0 and ad"a™(b)c = 0 for any positive integer m,n. On the other hand, we
can obtain that ad(b)c = 0 by (1). This implies that ad’(b)c = 0 and ac'’d’(b)c = 0. So
afij(b)c =0forall 0<i<y.

(3) Since ab € nil(R), there exists some positive integer k such that (ab)* = 0. In the
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following computations, we use freely (1):

(ab)® = ab(ab- - -ab) =

= ad(b)(ab---ab) = (ad(b)a)b(ab---ab) =0
= (ad(b)a)o(b)(ab---ab) =

=

= (ad(b))*tabl =0

= (ad(b))* =0.

This implies that ad(b) € nil(R).

Proposition 2.4 If R is an («,d)-compatible and nil-semicommutative ring, then
ab € nil(R) implies af? (b) € nil(R) for all 0 <4 < j and a,b € R.

Proof If ab € nil(R), we have aa’(b) € nil(R) and ad’(b) € nil(R) for all i > 0
and j > 0 by Proposition 2.2 and Proposition 2.3. This implies that ad’«‘(b) € nil(R) and
aa'7(b) € nil(R). Since nil(R) is a ideal of R, we have af/(b) € nil(R) for all 0 < i < j.

Theorem 2.5 Let R be an («, §)-compatible and nil-semicommutative ring, and f(x) =

S a;zt € R[z;a,d]. Then f(x) € nil(R[z;, d)) if and only if a; € nil(R) for each i. That
i=0
is, we have

nil(R[z; o, §]) = nil(R)[z; o, d].

Proof (=) Suppose that f(z) = > a;z" € R[z;a,0]. Then there exists a positive
i=0
integer k such that f(z)* = (ap + a1z + -+ - + a,z™)* = 0. It follows that

f(2)* = “lower terms” + a,a™(a,)a? (a,) - - - a* =Y (a,)z"™* = 0.
Hence

ana™(an)o? (ay) - - -V (a,) = 0
" (ana”(ay) - - =" (ay,)) =
Unana™(ay) - a* " (a,) =0
aia"(ana"(an) o= (a,)) =

--=>a’fL:0=>an€ml(R).

¢l

Therefore, by Proposition 2.4, a, = 1 - a,, € nil(R) implies 1- fi(a,) = fi(a,) € nil(R) for
all 0 < s<t. Let Q=ag+aix+ - +a,_12""'. Then we have

0=(Q+ a,a")"
= (Q + anxn)(Q + anxn) T (Q + anxn)
= (Q*+ Q- apx™ + apx" - Q + apx™ - 4, 2")(Q + apz™) - (Q + anx™)
=...=QF+ A,
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where A € R[z; a, d]. Notice that the coefficients of A can be written as sums of monomials
in a; and f!(a;) where a;,a; € {ag,a1, -+ ,a,} and 0 < u < v are positive integers, and each
monomial has a, or f!(a,). Since nil(R) is an ideal of R, we obtain that each monomial
is in nil(R), and then A € nil(R)[x; «,d]. Thus we obtain (ag + a1 + -+ - + a,_2" ¥ =
“lower terms” + a, 12" Y(a,_1)---a™VED (g, =Dk ¢ pil(R)[z;a,d]. Hence by

Proposition 2.3 we have

10" Hap_1)---a" " VED (g, ) € nil(R)

= ap 10" N (an_10" ap_y) - aTVED (g 1)) € nil(R)
= a2 0" Yan_1) - a"VED (g 1) € nil(R)
= 0" N an_1) - VED (g 1) € nil(R)
= - =a""! enil(R) = a,_1 € nil(R).
Using induction on n we have a; € nil(R) for all 0 < i < n.
(<) Let f(x Z a;x € nil(R)[x; «, 8], where a; € nil(R) for all 0 < i < n. Suppose

that ;" =0 for i = O, 1, 2,-+-,n. Putting k =mg +my +--- +m, + 1, we claim that

f(x)* = (ag + arx + -+ + a,z™)" = 0.

From
(Z a;z") :(Z aixi)(Za x')

:(i a;z")ag + (i aiz )z + -+ (Z a;ix)agx® + -+ (i a;ix")a, "

—Z a; fifa +<Z aifi(a))e + -+ (O aifian))a® + - + a,a" (ag)a”

(S asfilan) + (Calilan)e +-+ ana”(@r)a)e
=0 =1
oot (Cafiad) + (Y aifilea)s+ -+ ana™(a,)e)a?
=0 =1
+- (Z a;fala,) + (Z aifi(an))x + -+ a,a™(a,)x™)z"
1=0 =1

_Za fo(ao +(Za fl(a0)+zalf0 ar))

1=0
n

+o (YO aifila)zt + -+ ana™ (@),

st+t=k i=s

n
it is easy to check that the coefficients of (3 a;z%)* can be written as sums of mono-
i=0

mials of length %k in a; and fJ(a;), where a;,a; € {ap,a1,---,a,} and 0 < u < v are
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positive integers. Consider each monomial a;, f2(a;,) - ~-f§;’(aip) where a;,,ai,, - ,a;, €
{ap,a1, - ,a,}, and t;,s,(t; > s;,2 < j < p) are nonnegative integers. We will show that
ai, f22(aiy) - t”(ai ) = 0. If the number of ag in a;, 12 (a;,) - fﬁ;’ (a;,) is greater than my,

then we write a;, f22 (as,) - - - fsp(aip) as

b1(f5: (a0))*ba(fgz(a0))” -+ by (fog: (@0))*busa,

where ji1+jo+- -+, > mo, 1 < j1,72,- -+, Ju, and by(¢ = 1,2, - -+ ,v+1) is a product of some
elements chosen from {a;,, f!z(a;,),- - fs (a;))} or is equal to 1. Since aj 72+ =0, by

Proposition 2.4 we have

_ Jitdettge
0 = a Y= apag - g

1- f§°1(a0)a0 corap =0
(flor(ag))*ag -+ ap =0
flor(ao))t 122 (ag)ag - -~ ap = 0

(
( ;g;(a()))h( 02 (q0))2aq - -ag = 0

A

( ﬁ(?i(ao))jl( (@)’ -+ (f5yr (o))" = 0.

By Proposition 2.4, ag = 1-ag € nil(R) implies 1 - fi(ag) = fL(ag) € nil(R) for 0 < s < ¢.
Since R is nil-semicommutative, we have

(feor (@0)) (f202(a0))” -+ (fag: (a0))”” = 0

bi(f2: (a0)) (23 (a0))” -+ (£25:(a0))”* =0

bl(fffji( 0))7 b2 (f22(a0)) - (f28:(ag))” = 0

I

(fi;’i(ao))”bz(fﬁﬁj( 0))’2 -+ by (fi02 (a0))?" bys1 = 0.

Thus a;, f22(ai,) - - fsp (a;,) = 0. If the number of a; in a;, fI2(a;,) - - - f;;’ (a;,) is greater than
ml, then sunllar discussion ylelds that a;, f22(ai,) - - fsp (a;,) = 0. So each term appeared in
Z a;x")* equal 0. Therefore, Z a;x" € R[z;a, ] is a nilpotent element.

i=0 1=0
Corollary 2.6 (see [7], Theorem 3.3) If R is a nil-semicommutative ring, then nil(R[z])

= nil(R)[z].

Corollary 2.7 If R is a semicommutative ring, then nil(R[z]) = nil(R)[z].

Theorem 2.8 Let R be an (a, §)-skew Armendariz and (¢, d)-compatible ring. Then
R is nil-semicommutative if and only if R[z;«, d] is nil-semicommutative.

Proof (=) Suppose that R[x;,d] is nil-semicommutative. Since any subring of nil-
semicommutative rings is also nil-semicommutative, thus it is easy to see that R is a nil-

semicommutative ring.
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(<) Let f(z) = Y aix’,g(z) = > bja? € nil(R[z;,d]). Since R is nil-semicomm
i=0 j=0

utative and (a, §)-compatible, by Theorem 2.5, we have nil(R[z; a, ¢]) = nil(R)[x; o, 0]. So
a;,b; € nil(R) for 0 < i < m, 0 < j < n. Suppose f(z)g(x) = 0. Since R is («,d)-skew

Armendariz, we have a;2’b;z7 = 0 for 0 < ¢ < m and 0 < j < n. Thus we can obtain
S aifi(b))z* ¥ = 0 and a;f}(b;) = 0 for k = 0,1,---,4, 0 < i < mand 0 < j < n.
k=0

Particularly, we have a;f;(b;) = 0, and hence a;b; = 0 and a;Rb; = 0 for 0 < i < m and

0 < j < n since R is (a,0)-compatible and nil-semicommutative. Thus, for any h(z) =

zp:ckxk € Rlz;a,d], we have a;cpb; = 0forall0 < i <m,0< j<nand0 <k < p.
fﬁ_cocording to the proof of Theorem 2.5, it is easy to check that the coefficients of f(z)h(x)g(x)
can be written as sums of monomials a;f%2(cy.) f3(b;), where a; € {ag,a1, - ,am}, b; €
{bo,b1,--- ,b,} and ¢ € {co,c1,--- ,¢p}, and to > So, t3 > s3 are nonnegative integers.
Then from a;c;b; = 0 we obtain that a;ci, f13(b;) = 0, and hence a; f2(ci.) f53(b;) = 0 by
Proposition 2.2 and Proposition 2.3. Thus, each term appears in f(z)h(z)g(x) is equal 0.
So we have f(z)h(z)g(x) = 0. Therefore, R[x; c, d] is nil-semicommutative.

Corollary 2.9 Let a be an endomorphism of R and § an a-derivation of R. If R is
a-rigid, then R is nil-semicommutative if and only if R[x;,d] is nil-semicommutative.

Corollary 2.10 Let « be an endomorphism of R. If R is a-skew Armendariz and
a-compatible, then R is nil-semicommutative if and only if R[x;«] is nil-semicommutative.

Corollary 2.11 Let § be a derivation of R. If R is §-skew Armendariz and d-compatible,
then R is nil-semicommutative if and only if R[z;d] is nil-semicommutative.

Corollary 2.12 (see [7], Theorem 3.5) If R is skew Armendariz, then R is nil-semicomm

utative if and only if R[x] is nil-semicommutative.

3 Nil-Semicommutative Rings and Weak («, §)-Skew Armendariz Rings

Ouyang and Liu [18] introduced the notion of weak («,d)-compatible rings, that is a
generalization of a-rigid rings and (o, d)-compatible rings. For an endomorphism « and
a-derivation §, we say that R is weak a-compatible if for each a,b € R, ab € nil(R) <
aca(b) € nil(R). Moreover, R is weak d-compatible if for each a,b € nil(R), ab € nil(R)
= ad(b) € nil(R). If R is both weak a-compatible and weak d-compatible, we say that
R is weak (a,d)-compatible. Ouyang [18] proved that all («,§)-compatible rings are weak
(o, 6)-compatible, but the converse does not hold (see [18], Example 2.5). Ouyang [19] called
a ring R with an endomorphism « to be weak a-rigid if ac(a) € nil(R) < a € nil(R) for
a € R. Obviously, all weak a-compatible rings are weak a-rigid.

Lemma 3.1 (see [18], Lemma 2.2) Let R be a weak (o, d)-compatible ring. Then we
have the following;:

(1) If ab € nil(R), then aa™(b) € nil(R), a™(a)b € nil(R) for all positive integers m, n;

(2) If a*(a)b € nil(R) for some positive integer k, then ab € nil(R);

(3) If aa®(b) € nil(R) for some positive integer s, then ab € nil(R);
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(4) If ab € nil(R), then a™(a)d™(b) € nil(R), and §*(a)a’(b) € nil(R) for all positive
integers m,n, s, t.

Lemma 3.2 (see [19], Proposition 2.3) Let R be a weak a-rigid ring and nil(R) be an
ideal of R. Then we have the following:

(1) If ab € nil(R), then aa™(b) € nil(R), a™(a)b € nil(R) for all positive integers m, n;

(2) If a*(a)b € nil(R) for some positive integer k, then ab, ba € nil(R);

(3) If aa?(b) € nil(R) for some positive integer ¢, then ab, ba € nil(R).

Proposition 3.3 If nil(R) is an ideal of a ring R, then R is a weak a-compatible ring
if and only if R is a weak a-rigid ring.

Proof Obviously, weak a-compatible rings are weak a-rigid. Conversely, if R is a weak
a-rigid ring, then from ab € nil(R) we have aa(b) € nil(R) and acx(b) € nil(R), and hence
ab € nil(R) by Lemma 3.2 for all a,b € R. Therefore, R is a weak a-compatible ring.

Proposition 3.4 Let ¢ be an a-derivation of R. If R is a weak (a, 6)—compatible ring
and nil(R) is an ideal of R, then ab € nil(R) implies af? (b) € nil(R) for all 0 < i < j and
a,b € nil(R).

Proof If ab € nil(R), then aa’(b) € nil(R) and ad’ (b) € nil(R) for all i > 0 and j >0
since R is weak (a,d)-compatible. It follows that af/(b) € nil(R) for all 0 < i < j since
nil(R) is an ideal of R.

Alhevaz et al. [20] generalized (o, ¢)-skew Armendariz rings by introducing the notion
of weak («, §)-skew Armendariz rings. Let o be an endomorphism and § an a-derivation of

a rlng R. A rlng R is called weak (a,d)-skew Armendariz ring, if for polynomials f(x) =

Zax g(x Zb @) € R[z;a,d], f(x)g(z) = 0 implies a;z'b;z7 € nil(R)[z; a, 6] for all
=0

i _j Obviously, all (o, 0)-skew Armendariz rings are weak («, d)-skew Armendariz.
Theorem 3.5 Let R be a weak («,d)-compatible ring and nil(R) is an ideal of R,

then R is a weak (a, (5)—Skew Armendariz ring

Proof Suppose that f(x Za z', g(x Z bjz! € R[z;a, 8] such that f(z)g(z) =
0. From
f@)g(x) = zmgaﬂr Zb 27)
= (i a;z )by + (Z a;z oy + - + (f: a;z )b, z"
Py o i=0
=S (b + (O i) 4 (3@ o))t o+ ama™ (B
i=0 P P
(zm: ai fi(by) +Za1f1 (b)z '+zm:aif§(b1)a:s + o apa™ (b))
i=0 iz

+o 4 (Z aifo(bn) + -+ (Z aifi(b))z® + - + apa™(b,)z™)z"

=0 i=s
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= Y aifo(bo) + Q_aifi(bo) + Y aifgbr)z -+ (D (Y aifi(b))at
i=0 i=1 i=0 s+t=k i=s
+- o+ apa™ (b))t = 0.
We have the following system of equations
Apin = apa™(b,) =0, (1)
Apgn—1 = ana™ (by-1) + amflo‘m_l(bn) + am frn_1(by) =0, (2)
Amin-2=am0™(bp2)+ > friba1)+ D> fisbn) =0, (3)
i=m—1 i=m-—2

Ay = Z (Z a; fi(be)) = 0. (4)

s+i=k i=s

By eq. (1), we have a,a™(b,) = 0 € nil(R), it implies a,,b, € nil(R) since R is weak

a-compatible. By Proposition 3.4, we obtain a,, fX(b,) = 0 for all 0 < s < t. For eq. (2), we
have

A1 = ana™(by1) + Upm—10™ 1 (b,) € nil(R). (5)

If we multiply eq. (5) on the left side by b, then we obtain
bpm—1™ (by) = by AL L — bpama™(by_1) € nil(R).

By b,a,, € nil(R), we have b,a,,_1a™ (b,) = —bpa,a™(b,_1) € nil(R) because
the nil(R) is an ideal of R, and hence b,a,, 1b, € nil(R) since R is weak a-compatible.
So bpam_1 € nil(R), am_1b, € nil(R) and a,_1a™ 1(b,) € nil(R). Thus, we have
ama™ (by_1) € nil(R) and a,b,_1 € nil(R). Therefore, we have obtained a,,b,_1, am_1b, €

nil(R). By Proposition 3.4 and eq. (3), we have

Am+n72 = amam<bn72) + amflamil(bnfl) + amfan1(bn71>

+am—2am_2(bn) + am—lf:y?:gl(bn) + amf;nn—Q(bn) = 0
It follows that
Al o= ana" (by_2) + @me10™  (by—1) + Ao (by,) € nil(R). (6)

If we multiply eq. (6) on the left side by by, b,_1, b,_2, respectively, then we obtain a,,_2b,
€ nil(R), apm—1b,—1 € nil(R) and a,,b,_2 € nil(R) in turn. Continuing this procedure yields
that a;b; € nil(R) for all 7, j. Next we consider

aiw'ba’ = ai(Y fi(b)at)al =) aifi(by)att.
k=0

k=0
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Since R is a weak («,d)-compatible ring and nil(R) is an ideal of R, by Proposition 3.4,
a;b; € nil(R) implies a; f}(b;) € nil(R) for all 0 < k < i. Thus, we have
a;x'b;r! = Z aifi(b;)x** € nil(R)[r; a, ).

k=0

Therefore, R is weak (a, §)-skew Armendariz.

Corollary 3.6 (see [20], Theorem 3.6) Every (a,d)-compatible semicommutative ring
is weak (o, §)-skew Armendariz.

Corollary 3.7 (see [19], Theorem 3.3) Let R be a weak a-rigid ring and nil(R) is an
ideal of R. Then R is a weak a-skew Armendariz ring.

Corollary 3.8 Let R be a weak d-compatible ring and nil(R) is an ideal of R. Then
R is a weak §-skew Armendariz ring.

Corollary 3.9 If nil(R) is an ideal of a ring R, then R is a weak Armendariz ring.

Let « be an endomorphism and § an a-derivation of a ring R. Then the map & : R[z] —
R[z] defined by a(> a;z) = > a(a;)z’ is an endomorphism of the polynomial ring R[z],

i=0 i=0 _
and the a-derivation ¢ of R is extended to ¢ : R[x] — R|x], defined by

S(Z a;z') = Z 0(a;)z

Then ¢ is an a-derivation of R[z].

Antoine [21] called a ring R to be nil-Armendariz if whenever two polynomials

m

fla) = aia', gle) =) by’ € Rlz]
=0 j=0
satisfy f(z)g(x) € nil(R)[z] then a;b; € nil(R) for all 0 < i < m and 0 < j < n. Mohammadi
et al. [7] proved that nil-semicommutative rings are ml—Armendarlz.

Theorem 3.10 If R is a weak («a, d)-compatible and nil-semicommutative ring, then

R[] is weak (@, d)-skew Armendariz

Proof Let F(y Z fivt, Gy Z g;9° € Rlz][y; @,d] such that F(y)G(y) = 0,
7=0
where
Pi 4i
fi= Zaisﬁ, 9 = ijﬂt € R[]
s=0 t=0

Put k = Z deg(fi)+>_ deg(g;), where deg(h;) is the degree of an polynomial h(z) in = and

7=0
the degree of zero polynomial is taken to be 0. Then F(z Z fix™® and F(z*)G(2%) =0

in R[x]. Because R is nil-semicommutative, R is nil- Armendarlz by Corollary 2.9 of [7].
Thus F(2*)G(2*) = 0 € nil(R)[x] can imply a;sbj; € nil(R) for all 0 < i < m, 0 < j < n,



No. 1 Ore extensions of nil-semicommutative rings 27

0 <s<p;and 0 <t < g;. By Proposition 2.4 of [19], o(1) = 1 and (1) = 0 since R is weak

a-compatible nil-semicommutative. So we have xy = yx. Next we consider

pi q;j
frgy = O ana®)y (O buaty’

s=0 t=0
Pi q;

= O awy'e)>_buy’a")
s=0 t=0
Pitq;

= > () anybiuy)a
=0 S]+S‘2:l
pitq; i

= D (D s, O i)y )
=0 s1+s2=I t1=0
Pitq; 4

- Z Z ZaiS1ftil(bj52)ytl+jxl

=0 s1+s2=lt1=0
i Pita;

= SO CY anfi b))y

t1=0 I=0 s1+4+s2=l

Since R is a weak («, §)-compatible nil-semicommutative ring and a;s,b;s, € nil(R) implies
is, fi, (bjsy) € mil(R), we have >~ ag, ff (bjs,) € nil(R) for all 0 < I < p; + ¢; by

S1+s2=l
pPityq;
Proposition 3.4. Thus, Y (Y ais, ff,(bjs,))2" € nil(R)[z]. Furthermore, we have
=0 s1+s5=I
pitq;
D (D aisifi(bis))a’ € nil(Rlz)
=0 s1+s5=I

by Theorem 3.3 of [7]. This implies that

i Pitdq;
gy’ = (3 (Y i (0))2")y" ™ € nil(Rla])[y; 6, 0]
t1=0 1=0 s+s2=1

for each 0 <4 < m and 0 < j < n. Therefore, R[z] is weak (@, J)-skew Armendariz.

Corollary 3.11 (see [20], Theorem 3.11 (ii)) Let R be a semicommutative (a,d)-
compatible ring. Then R[x] is weak (&, d)-skew Armendariz.

Corollary 3.12 (see [7], Theorem 3.13) If R is a weak a-rigid and nil-semicommutative
ring, then R[x] is a weak a-skew Armendariz ring.

Corollary 3.13 If R is a weak d-compatible and nil-semicommutative ring, then R[z]
is a weak é-skew Armendariz ring.

Corollary 3.14 (see [7], Theorem 3.7) If R is a nil-semicommutative ring, then R[z] is
a weak Armendariz ring.

Theorem 3.15 Let R be a nil-semicommutative (v, d)-compatible ring. Then R[z; «, ]

is weak Armendariz.
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Proof Let . .
Fly)=> fy's Gy)=>_ gy’ € Rlz;a,dy]
i=0 =0
such that F(y)G(y) = 0, where

pi

qj
fi = Zaisxs, gj = ijtlEt S R[I;OZ, 6]

s=0 t=0

Put k = ) deg(f;)+ > deg(g;), where deg(g;) is the degree of an polynomial h(x) in z and
i=0 =0
the degree of zero polynomial is taken to be 0. Then

F(a*) = Zfiivik, G(2%) = Zgjfvjk € R[z;a, ]
i=0 =0

and F(z*)G(z") = 0 € R[z;a,6]. By Theorem 3.5, we have a;sz'bjax? € nil(R)[x; o, 6.

Since R is nil-semicommutative («, §)-compatible, we obtain that a;sx'bjx? € nil(R[z; av, d])

and then f;g; € nil(R[x; e, 0]) by Theorem 2.5. Therefore, R[x; e, 0] is weak Armendariz.
Corollary 3.16 (see [20], Theorem 3.11(i)) Let R be a semicommutative («, ¢)-compatible

ring. Then R[z;«, ] is weak Armendariz.
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