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method on polynomials, we prove that if R is (α, δ)-skew Armendariz and (α, δ)-compatible, then
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1 Introduction

Throughout this paper, R denotes an associative ring with identity, α is an endo-
morphism and δ an α-derivation of R, that is, δ is an additive map such that δ(ab) =
δ(a)b + α(a)δ(b) for a, b ∈ R. We denote by R[x;α, δ] the Ore extension whose elements are
the polynomials over R, the addition is defined as usual, and the multiplication subject to
the relation xr = α(r)x + δ(r) for any r ∈ R. When δ = 0R, we write R[x;α] for R[x;α, 0]
and call it the skew polynomial ring (also called an Ore extension of endomorphism type);
when α = 1R, we write R[x; δ] for R[x; 1R, δ] and call it the differential polynomial ring (also
called an Ore extension of derivation type). For a ring R, we denote by nil(R) the set of all
nilpotent elements of R, and denote by Nil∗(R) its prime radical.

Lambek [1] called a ring R to be symmetric if abc = 0 implies acb = 0 for all a, b, c ∈ R.
Recall that a ring R is called reduced if it has no nonzero nilpotent elements; a ring R is
called 2-primal if its prime radical contains every nilpotent element of R; and a ring R is
called semicommutative if ab = 0 implies aRb = 0 for all a, b ∈ R. In [2], semicommutative
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property is called the insertion-of-factors-property, or IFP. There were many papers to study
semicommutative rings and their generalization (see [3–5]). Liu and Zhao [6] proved that
if R is a semicommutative ring then nil(R) is an ideal of R. Mohammadi et al. [7] called
a ring R to be nil-semicommutative if for any a, b ∈ nil(R), ab = 0 implies aRb = 0.
Obviously, semicommutative rings are nil-semicommutative rings and every subring of a nil-
semicommutative ring is nil-semicommutative. [7] proved that if R is nil-semicommutative
then nil(R) is an ideal of R and nil-semicommutative rings are 2-primal rings. We have the
following implications:

reduced ⇒ symmetric ⇒ semicommutative ⇒ nil-semicommutative ⇒ 2-primal.
In general, each of these implications is irreversible (see [7, 8]).

According to Krempa [9], an endomorphism α of a ring R is called rigid if aα(a) = 0
implies a = 0 for all a ∈ R, and a ring R is called α-rigid if there exists a rigid endomorphism
α of R. Notice that every rigid endomorphism of a ring is a monomorphism and α-rigid rings
are reduced by Hong et al. [10]. Following Annin [11], for an endomorphism α and an α-
derivation δ, a ring R is called α-compatible if for each a, b ∈ R, ab = 0 ⇔ aα(b) = 0.
Moreover, R is called δ-compatible if for each a, b ∈ R, ab = 0 ⇒ aδ(b) = 0. If R is
both α-compatible and δ-compatible, R is called (α, δ)-compatible. In this case, clearly the
endomorphism α is injective. Hashemi and Moussavi [12] proved that R is α-rigid if and
only if R is α-compatible and reduced.

Rege and Chhawchharia [13] called a ring R to be Armendariz if whenever polynomials

f(x) =
n∑

i=0

aix
i, g(x) =

m∑
j=0

bjx
j ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0 for each i, j.

Hong et al. [14] called a ring R with an endomorphism α to be α-skew Armendariz if

whenever polynomials f(x) =
n∑

i=0

aix
i, g(x) =

m∑
j=0

bjx
j ∈ R[x;α] satisfy f(x)g(x) = 0, then

aiα
i(bj) = 0 for each i, j. Following [15], a ring R with a derivation δ is called δ-skew

Armendariz, for each f(x) =
n∑

i=0

aix
i, g(x) =

m∑
j=0

bjx
j ∈ R[x; δ], if f(x)g(x) = 0 implies

aiδ
i(bj) = 0 ( or aibj = 0 ) for each 0 ≤ i ≤ n, 0 ≤ j ≤ m. By Moussavi and Hashemi [16],

a ring R with an endomorphism α and an α-derivation δ is called (α, δ)-skew Armendariz if

whenever polynomials f(x) =
n∑

i=0

aix
i, g(x) =

m∑
j=0

bjx
j ∈ R[x;α, δ] satisfy f(x)g(x) = 0, then

aix
ibjx

j = 0 for each i, j. Note that each α-skew Armendariz is (α, δ)-skew Armendariz,
where δ is the zero mapping. Obviously, every α-rigid ring is (α, δ)-skew Armendariz, but
the converse does not hold (see [14], Example 1).

Due to the fact that many of the quantized algebras and their representations can be
expressed in terms of iterated skew polynomial rings, it is interesting to know if the general
Ore extension S = R[x;α] of a ring R share the same property with the ring R. In this
paper we will show that:

(1) Let R be (α, δ)-skew Armendariz and (α, δ)-compatible. Then R is nil-semicommut
ative if and only if R[x;α, δ] is nil-semicommutative;

(2) Let R be weak (α, δ)-compatible and nil(R) is an ideal of R. Then R is a weak
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(α, δ)-skew Armendariz ring;

(3) Let R be weak (α, δ)-compatible and nil-semicommutative. Then R[x] is a weak
(ᾱ, δ̄)-skew Armendariz ring.

In the following, for integers i, j with 0 6 i 6 j, f j
i ∈ End(R, +) will denote the map

which is the sum of all possible words in α, δ built with i letters α and i − j letters δ. For
instance, f4

2 = α2δ2 + δ2α2 + δα2δ + αδ2α + αδαδ + δαδα. In particular, f0
0 = 1, f i

i = αi,
f i
0 = δi, f j

j−1 = αj−1δ + αj−2δα + · · ·+ δαj−1. For every f j
i ∈ End(R, +) with 0 6 i 6 j, it

has Ci
j monomials in α, δ built with i letters α and i − j letters δ. As is known to all that

for any integer n and r ∈ R, we have xnr =
n∑

i=0

fn
i (r)xi in the ring R[x;α, δ].

2 Ore Extensions of Nil-Semicommutative Rings

Lemma 2.1 (see [12], Lemma 2.1) Let R be an (α, δ)-compatible ring. Then we have
the following:

(1) If ab = 0, then aαn(b) = αn(a)b = 0, for all positive integers n;

(2) If αk(a)b = 0 for some positive integer k, then ab = 0;

(3) If ab = 0, then αn(a)δm(b) = δm(a)αn(b) = 0 for all positive integers m,n.

Proposition 2.2 Let R be an (α, δ)-compatible ring. Then we have the following:

(1) If ab = 0, then af j
i (b) = 0 for all 0 6 i 6 j and a, b ∈ R;

(2) For a, b ∈ R and any positive integer m, ab ∈ nil(R) if and only if aαm(b) ∈ nil(R).

Proof (1) If ab = 0, then aαi(b) = aδj(b) = 0 for all i > 0 and j > 0 by Lemma 2.1.
Hence af j

i (b) = 0 for all 0 6 i 6 j.

(2) It is an immediate consequence of Lemma 3.1 in [5] and Lemma 2.8 [17].

Proposition 2.3 Let R be an (α, δ)-compatible ring. Then we have the following:

(1) If abc = 0, then aδ(b)c = 0 for any a, b, c ∈ R;

(2) If abc = 0, then af j
i (b)c = 0 for all 0 6 i 6 j and a, b, c ∈ R;

(3) If ab ∈ nil(R), then aδ(b) ∈ nil(R) for any a, b ∈ R.

Proof (1) If abc = 0, we have α(ab)δ(c) = 0, α(a)α(b)δ(c) = 0 and aα(b)δ(c) = 0. On
the other hand, we also have aδ(bc) = 0, a(δ(b)c + α(b)δ(c)) = 0 and aδ(b)c + aα(b)δ(c) = 0.
So aδ(b)c = 0.

(2) If abc = 0, we have aα(bc) = 0, aα(b)α(c) = 0 and aα(b)c = 0. It follows that
aαm(b)c = 0 and aδnαm(b)c = 0 for any positive integer m,n. On the other hand, we
can obtain that aδ(b)c = 0 by (1). This implies that aδj(b)c = 0 and aαiδj(b)c = 0. So
af j

i (b)c = 0 for all 0 6 i 6 j.

(3) Since ab ∈ nil(R), there exists some positive integer k such that (ab)k = 0. In the
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following computations, we use freely (1):

(ab)k = ab(ab · · · ab) = 0

⇒ aδ(b)(ab · · · ab) = (aδ(b)a)b(ab · · · ab) = 0

⇒ (aδ(b)a)δ(b)(ab · · · ab) = 0

⇒ · · ·
⇒ (aδ(b))k−1ab1 = 0

⇒ (aδ(b))k = 0.

This implies that aδ(b) ∈ nil(R).
Proposition 2.4 If R is an (α, δ)-compatible and nil-semicommutative ring, then

ab ∈ nil(R) implies af j
i (b) ∈ nil(R) for all 0 6 i 6 j and a, b ∈ R.

Proof If ab ∈ nil(R), we have aαi(b) ∈ nil(R) and aδj(b) ∈ nil(R) for all i > 0
and j > 0 by Proposition 2.2 and Proposition 2.3. This implies that aδjαi(b) ∈ nil(R) and
aαiδj(b) ∈ nil(R). Since nil(R) is a ideal of R, we have af j

i (b) ∈ nil(R) for all 0 6 i 6 j.
Theorem 2.5 Let R be an (α, δ)-compatible and nil-semicommutative ring, and f(x) =

n∑
i=0

aix
i ∈ R[x;α, δ]. Then f(x) ∈ nil(R[x;α, δ]) if and only if ai ∈ nil(R) for each i. That

is, we have
nil(R[x;α, δ]) = nil(R)[x;α, δ].

Proof (⇒) Suppose that f(x) =
n∑

i=0

aix
i ∈ R[x;α, δ]. Then there exists a positive

integer k such that f(x)k = (a0 + a1x + · · ·+ anxn)k = 0. It follows that

f(x)k =“lower terms”+ anαn(an)α2n(an) · · ·α(k−1)n(an)xnk = 0.

Hence

anαn(an)α2n(an) · · ·α(k−1)n(an) = 0

⇒ anαn(anαn(an) · · ·α(k−2)n(an)) = 0

⇒ ananαn(an) · · ·α(k−2)n(an) = 0

⇒ a2
nαn(anαn(an) · · ·α(k−3)n(an)) = 0

⇒ · · · ⇒ ak
n = 0 ⇒ an ∈ nil(R).

Therefore, by Proposition 2.4, an = 1 · an ∈ nil(R) implies 1 · f t
s(an) = f t

s(an) ∈ nil(R) for
all 0 6 s 6 t. Let Q = a0 + a1x + · · ·+ an−1x

n−1. Then we have

0 = (Q + anxn)k

= (Q + anxn)(Q + anxn) · · · (Q + anxn)

= (Q2 + Q · anxn + anxn ·Q + anxn · anxn)(Q + anxn) · · · (Q + anxn)

= · · · = Qk + ∆,
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where ∆ ∈ R[x;α, δ]. Notice that the coefficients of ∆ can be written as sums of monomials
in ai and fv

u(aj) where ai, aj ∈ {a0, a1, · · · , an} and 0 6 u 6 v are positive integers, and each
monomial has an or f t

s(an). Since nil(R) is an ideal of R, we obtain that each monomial
is in nil(R), and then ∆ ∈ nil(R)[x;α, δ]. Thus we obtain (a0 + a1x + · · · + an−1x

n−1)k =
“lower terms”+ an−1α

n−1(an−1) · · ·α(n−1)(k−1)(an−1)x(n−1)k ∈ nil(R)[x;α, δ]. Hence by
Proposition 2.3 we have

an−1α
n−1(an−1) · · ·α(n−1)(k−1)(an−1) ∈ nil(R)

⇒ an−1α
n−1(an−1α

n−1(an−1) · · ·α(n−1)(k−2)(an−1)) ∈ nil(R)

⇒ a2
n−1α

n−1(an−1) · · ·α(n−1)(k−2)(an−1) ∈ nil(R)

⇒ a3
n−1α

n−1(an−1) · · ·α(n−1)(k−3)(an−1) ∈ nil(R)

⇒ · · · ⇒ ak−1
n−1 ∈ nil(R) ⇒ an−1 ∈ nil(R).

Using induction on n we have ai ∈ nil(R) for all 0 6 i 6 n.

(⇐) Let f(x) =
n∑

i=0

aix
i ∈ nil(R)[x;α, δ], where ai ∈ nil(R) for all 0 6 i 6 n. Suppose

that ami

i = 0 for i = 0, 1, 2, · · · , n. Putting k = m0 + m1 + · · ·+ mn + 1, we claim that

f(x)k = (a0 + a1x + · · ·+ anxn)k = 0.

From

(
n∑
i

aix
i)2 =(

n∑
i

aix
i)(

n∑
i

aix
i)

=(
n∑
i

aix
i)a0 + (

n∑
i

aix
i)a1x + · · ·+ (

n∑
i

aix
i)asx

s + · · ·+ (
n∑
i

aix
i)anxn

=
n∑

i=0

aif
i
0(a0) + (

n∑
i=1

aif
i
1(a0))x + · · ·+ (

n∑
i=s

aif
i
s(a0))xs + · · ·+ anαn(a0)xn

+ (
n∑

i=0

aif
i
0(a1) + (

n∑
i=1

aif
i
1(a1))x + · · ·+ anαn(a1)xn)x

+ · · ·+ (
n∑

i=0

aif
i
0(as) + (

n∑
i=1

aif
i
1(as))x + · · ·+ anαn(as)xn)xs

+ · · ·+ (
n∑

i=0

aif
i
0(an) + (

n∑
i=1

aif
i
1(an))x + · · ·+ anαn(an)xn)xn

=
n∑

i=0

aif
i
0(a0) + (

n∑
i=1

aif
i
1(a0) +

n∑
i=0

aif
i
0(a1))x

+ · · ·+ (
∑

s+t=k

(
n∑

i=s

aif
i
s(at)))xk + · · ·+ anαn(an)x2n,

it is easy to check that the coefficients of (
n∑

i=0

aix
i)k can be written as sums of mono-

mials of length k in ai and fv
u(aj), where ai, aj ∈ {a0, a1, · · · , an} and 0 6 u 6 v are
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positive integers. Consider each monomial ai1f
t2
s2

(ai2) · · · f tp
sp (aip

) where ai1 , ai2 , · · · , aip
∈

{a0, a1, · · · , an}, and tj , sj(tj > sj , 2 6 j 6 p) are nonnegative integers. We will show that
ai1f

t2
s2

(ai2) · · · f tp
sp (aip

) = 0. If the number of a0 in ai1f
t2
s2

(ai2) · · · f tp
sp (aip

) is greater than m0,
then we write ai1f

t2
s2

(ai2) · · · f tp
sp (aip

) as

b1(f t01
s01

(a0))j1b2(f t02
s02

(a0))j2 · · · bv(f t0v
s0v

(a0))jvbv+1,

where j1+j2+· · ·+jv > m0, 1 6 j1, j2, · · · , jv, and bq(q = 1, 2, · · · , v+1) is a product of some
elements chosen from {ai1 , f

t2
s2

(ai2), · · · , f
tp
sp (aip

)} or is equal to 1. Since aj1+j2+···+jv

0 = 0, by
Proposition 2.4 we have

0 = aj1+j2+···+jv

0 = a0a0 · · · a0

⇒ 1 · f t01
s02

(a0)a0 · · · a0 = 0

⇒ (f t01
s01

(a0))j1a0 · · · a0 = 0

⇒ (f t01
s01

(a0))j1f t02
s02

(a0)a0 · · · a0 = 0

⇒ (f t01
s01

(a0))j1(f t02
s02

(a0))j2a0 · · · a0 = 0

⇒ · · ·
⇒ (f t01

s01
(a0))j1(f t02

s02
(a0))j2 · · · (f t0v

s0v
(a0))jv = 0.

By Proposition 2.4, a0 = 1 · a0 ∈ nil(R) implies 1 · f t
s(a0) = f t

s(a0) ∈ nil(R) for 0 6 s 6 t.
Since R is nil-semicommutative, we have

(f t01
s01

(a0))j1(f t02
s02

(a0))j2 · · · (f t0v
s0v

(a0))jv = 0

⇒ b1(f t01
s01

(a0))j1(f t02
s02

(a0))j2 · · · (f t0v
s0v

(a0))jv = 0

⇒ b1(f t01
s01

(a0))j1b2(f t02
s02

(a0))j2 · · · (f t0v
s0v

(a0))jv = 0

⇒ · · ·
⇒ b1(f t01

s01
(a0))j1b2(f t02

s02
(a0))j2 · · · bv(f t0v

s0v
(a0))jvbv+1 = 0.

Thus ai1f
t2
s2

(ai2) · · · f tp
sp (aip

) = 0. If the number of ai in ai1f
t2
s2

(ai2) · · · f tp
sp (aip

) is greater than
mi, then similar discussion yields that ai1f

t2
s2

(ai2) · · · f tp
sp (aip

) = 0. So each term appeared in

(
n∑

i=0

aix
i)k equal 0. Therefore,

n∑
i=0

aix
i ∈ R[x;α, δ] is a nilpotent element.

Corollary 2.6 (see [7], Theorem 3.3) If R is a nil-semicommutative ring, then nil(R[x])
= nil(R)[x].

Corollary 2.7 If R is a semicommutative ring, then nil(R[x]) = nil(R)[x].
Theorem 2.8 Let R be an (α, δ)-skew Armendariz and (α, δ)-compatible ring. Then

R is nil-semicommutative if and only if R[x;α, δ] is nil-semicommutative.
Proof (⇒) Suppose that R[x;α, δ] is nil-semicommutative. Since any subring of nil-

semicommutative rings is also nil-semicommutative, thus it is easy to see that R is a nil-
semicommutative ring.
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(⇐) Let f(x) =
m∑

i=0

aix
i, g(x) =

n∑
j=0

bjx
j ∈ nil(R[x;α, δ]). Since R is nil-semicomm

utative and (α, δ)-compatible, by Theorem 2.5, we have nil(R[x;α, δ]) = nil(R)[x;α, δ]. So
ai, bj ∈ nil(R) for 0 6 i 6 m, 0 6 j 6 n. Suppose f(x)g(x) = 0. Since R is (α, δ)-skew
Armendariz, we have aix

ibjx
j = 0 for 0 6 i 6 m and 0 6 j 6 n. Thus we can obtain

i∑
k=0

aif
i
k(bj)xk+j = 0 and aif

i
k(bj) = 0 for k = 0, 1, · · · , i, 0 6 i 6 m and 0 6 j 6 n.

Particularly, we have aif
i
i (bj) = 0, and hence aibj = 0 and aiRbj = 0 for 0 6 i 6 m and

0 6 j 6 n since R is (α, δ)-compatible and nil-semicommutative. Thus, for any h(x) =
p∑

k=0

ckx
k ∈ R[x;α, δ], we have aickbj = 0 for all 0 6 i 6 m, 0 6 j 6 n and 0 6 k 6 p.

According to the proof of Theorem 2.5, it is easy to check that the coefficients of f(x)h(x)g(x)
can be written as sums of monomials aif

t2
s2(ck)f t3

s3(bj), where ai ∈ {a0, a1, · · · , am}, bj ∈
{b0, b1, · · · , bn} and ck ∈ {c0, c1, · · · , cp}, and t2 > s2, t3 > s3 are nonnegative integers.
Then from aickbj = 0 we obtain that aickf

t3
s3(bj) = 0, and hence aif

t2
s2(ck)f t3

s3(bj) = 0 by
Proposition 2.2 and Proposition 2.3. Thus, each term appears in f(x)h(x)g(x) is equal 0.
So we have f(x)h(x)g(x) = 0. Therefore, R[x;α, δ] is nil-semicommutative.

Corollary 2.9 Let α be an endomorphism of R and δ an α-derivation of R. If R is
α-rigid, then R is nil-semicommutative if and only if R[x;α, δ] is nil-semicommutative.

Corollary 2.10 Let α be an endomorphism of R. If R is α-skew Armendariz and
α-compatible, then R is nil-semicommutative if and only if R[x;α] is nil-semicommutative.

Corollary 2.11 Let δ be a derivation of R. If R is δ-skew Armendariz and δ-compatible,
then R is nil-semicommutative if and only if R[x; δ] is nil-semicommutative.

Corollary 2.12 (see [7], Theorem 3.5) If R is skew Armendariz, then R is nil-semicomm
utative if and only if R[x] is nil-semicommutative.

3 Nil-Semicommutative Rings and Weak (α, δ)-Skew Armendariz Rings

Ouyang and Liu [18] introduced the notion of weak (α, δ)-compatible rings, that is a
generalization of α-rigid rings and (α, δ)-compatible rings. For an endomorphism α and
α-derivation δ, we say that R is weak α-compatible if for each a, b ∈ R, ab ∈ nil(R) ⇔
aα(b) ∈ nil(R). Moreover, R is weak δ-compatible if for each a, b ∈ nil(R), ab ∈ nil(R)
⇒ aδ(b) ∈ nil(R). If R is both weak α-compatible and weak δ-compatible, we say that
R is weak (α, δ)-compatible. Ouyang [18] proved that all (α, δ)-compatible rings are weak
(α, δ)-compatible, but the converse does not hold (see [18], Example 2.5). Ouyang [19] called
a ring R with an endomorphism α to be weak α-rigid if aα(a) ∈ nil(R) ⇔ a ∈ nil(R) for
a ∈ R. Obviously, all weak α-compatible rings are weak α-rigid.

Lemma 3.1 (see [18], Lemma 2.2) Let R be a weak (α, δ)-compatible ring. Then we
have the following:

(1) If ab ∈ nil(R), then aαn(b) ∈ nil(R), αm(a)b ∈ nil(R) for all positive integers m,n;
(2) If αk(a)b ∈ nil(R) for some positive integer k, then ab ∈ nil(R);
(3) If aαs(b) ∈ nil(R) for some positive integer s, then ab ∈ nil(R);
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(4) If ab ∈ nil(R), then αn(a)δm(b) ∈ nil(R), and δs(a)αt(b) ∈ nil(R) for all positive
integers m,n, s, t.

Lemma 3.2 (see [19], Proposition 2.3) Let R be a weak α-rigid ring and nil(R) be an
ideal of R. Then we have the following:

(1) If ab ∈ nil(R), then aαm(b) ∈ nil(R), αn(a)b ∈ nil(R) for all positive integers m,n;
(2) If αk(a)b ∈ nil(R) for some positive integer k, then ab, ba ∈ nil(R);
(3) If aαt(b) ∈ nil(R) for some positive integer t, then ab, ba ∈ nil(R).
Proposition 3.3 If nil(R) is an ideal of a ring R, then R is a weak α-compatible ring

if and only if R is a weak α-rigid ring.
Proof Obviously, weak α-compatible rings are weak α-rigid. Conversely, if R is a weak

α-rigid ring, then from ab ∈ nil(R) we have aα(b) ∈ nil(R) and aα(b) ∈ nil(R), and hence
ab ∈ nil(R) by Lemma 3.2 for all a, b ∈ R. Therefore, R is a weak α-compatible ring.

Proposition 3.4 Let δ be an α-derivation of R. If R is a weak (α, δ)-compatible ring
and nil(R) is an ideal of R, then ab ∈ nil(R) implies af j

i (b) ∈ nil(R) for all 0 6 i 6 j and
a, b ∈ nil(R).

Proof If ab ∈ nil(R), then aαi(b) ∈ nil(R) and aδj(b) ∈ nil(R) for all i > 0 and j > 0
since R is weak (α, δ)-compatible. It follows that af j

i (b) ∈ nil(R) for all 0 6 i 6 j since
nil(R) is an ideal of R.

Alhevaz et al. [20] generalized (α, δ)-skew Armendariz rings by introducing the notion
of weak (α, δ)-skew Armendariz rings. Let α be an endomorphism and δ an α-derivation of
a ring R. A ring R is called weak (α, δ)-skew Armendariz ring, if for polynomials f(x) =
m∑

i=0

aix
i, g(x) =

n∑
j=0

bjx
j ∈ R[x;α, δ], f(x)g(x) = 0 implies aix

ibjx
j ∈ nil(R)[x;α, δ] for all

i, j. Obviously, all (α, δ)-skew Armendariz rings are weak (α, δ)-skew Armendariz.
Theorem 3.5 Let R be a weak (α, δ)-compatible ring and nil(R) is an ideal of R,

then R is a weak (α, δ)-skew Armendariz ring.

Proof Suppose that f(x) =
m∑

i=0

aix
i, g(x) =

n∑
j=0

bjx
j ∈ R[x;α, δ] such that f(x)g(x) =

0. From

f(x)g(x) = (
m∑

i=0

aix
i)(

n∑
j=0

bjx
j)

= (
m∑

i=0

aix
i)b0 + (

m∑
i=0

aix
i)b1x + · · ·+ (

m∑
i=0

aix
i)bnxn

=
m∑

i=0

aif
i
0(b0) + (

m∑
i=1

aif
i
1(b0))x + · · ·+ (

m∑
i=s

aif
i
s(b0))xs + · · ·+ amαm(b0)xm

+(
m∑

i=0

aif
i
0(b1) +

m∑
i=1

aif
i
1(b1)x + · · ·+

m∑
i=s

aif
i
s(b1)xs + · · ·+ amαm(b1)xm)x

+ · · ·+ (
m∑

i=0

aif
i
0(bn) + · · ·+ (

m∑
i=s

aif
i
s(b1))xs + · · ·+ amαm(bn)xm)xn
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=
m∑

i=0

aif
i
0(b0) + (

m∑
i=1

aif
i
1(b0) +

m∑
i=0

aif
i
0(b1))x + · · ·+ (

∑
s+t=k

(
m∑

i=s

aif
i
s(bt)))xk

+ · · ·+ amαm(bn)xm+n = 0.

We have the following system of equations

∆m+n = amαm(bn) = 0, (1)

∆m+n−1 = amαm(bn−1) + am−1α
m−1(bn) + amfm

m−1(bn) = 0, (2)

∆m+n−2 = amαm(bn−2) +
m∑

i=m−1

f i
m−1(bn−1) +

m∑
i=m−2

f i
m−2(bn) = 0, (3)

...

∆k =
∑

s+t=k

(
m∑

i=s

aif
i
s(bt)) = 0. (4)

By eq. (1), we have amαm(bn) = 0 ∈ nil(R), it implies ambn ∈ nil(R) since R is weak
α-compatible. By Proposition 3.4, we obtain amf t

s(bn) = 0 for all 0 6 s 6 t. For eq. (2), we
have

∆′
m+n−1 = amαm(bn−1) + am−1α

m−1(bn) ∈ nil(R). (5)

If we multiply eq. (5) on the left side by bn, then we obtain

bnam−1α
m−1(bn) = bn∆′

m+n−1 − bnamαm(bn−1) ∈ nil(R).

By bnam ∈ nil(R), we have bnam−1α
m−1(bn) = −bnamαm(bn−1) ∈ nil(R) because

the nil(R) is an ideal of R, and hence bnam−1bn ∈ nil(R) since R is weak α-compatible.
So bnam−1 ∈ nil(R), am−1bn ∈ nil(R) and am−1α

m−1(bn) ∈ nil(R). Thus, we have
amαm(bn−1) ∈ nil(R) and ambn−1 ∈ nil(R). Therefore, we have obtained ambn−1, am−1bn ∈
nil(R). By Proposition 3.4 and eq. (3), we have

∆m+n−2 = amαm(bn−2) + am−1α
m−1(bn−1) + amfm

m−1(bn−1)

+am−2α
m−2(bn) + am−1f

m−1
m−2 (bn) + amfm

m−2(bn) = 0.

It follows that

∆′
m+n−2 = amαm(bn−2) + am−1α

m−1(bn−1) + am−2α
m−2(bn) ∈ nil(R). (6)

If we multiply eq. (6) on the left side by bn, bn−1, bn−2, respectively, then we obtain am−2bn

∈ nil(R), am−1bn−1 ∈ nil(R) and ambn−2 ∈ nil(R) in turn. Continuing this procedure yields
that aibj ∈ nil(R) for all i, j. Next we consider

aix
ibjx

j = ai(
i∑

k=0

f i
k(bj)xk)xj =

i∑
k=0

aif
i
k(bj)xk+j .
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Since R is a weak (α, δ)-compatible ring and nil(R) is an ideal of R, by Proposition 3.4,
aibj ∈ nil(R) implies aif

i
k(bj) ∈ nil(R) for all 0 6 k 6 i. Thus, we have

aix
ibjx

j =
i∑

k=0

aif
i
k(bj)xk+j ∈ nil(R)[x;α, δ].

Therefore, R is weak (α, δ)-skew Armendariz.
Corollary 3.6 (see [20], Theorem 3.6) Every (α, δ)-compatible semicommutative ring

is weak (α, δ)-skew Armendariz.
Corollary 3.7 (see [19], Theorem 3.3) Let R be a weak α-rigid ring and nil(R) is an

ideal of R. Then R is a weak α-skew Armendariz ring.
Corollary 3.8 Let R be a weak δ-compatible ring and nil(R) is an ideal of R. Then

R is a weak δ-skew Armendariz ring.
Corollary 3.9 If nil(R) is an ideal of a ring R, then R is a weak Armendariz ring.
Let α be an endomorphism and δ an α-derivation of a ring R. Then the map ᾱ : R[x] →

R[x] defined by ᾱ(
m∑

i=0

aix
i) =

m∑
i=0

α(ai)xi is an endomorphism of the polynomial ring R[x],

and the α-derivation δ of R is extended to δ̄ : R[x] → R[x], defined by

δ̄(
m∑

i=0

aix
i) =

m∑
i=0

δ(ai)xi.

Then δ̄ is an ᾱ-derivation of R[x].
Antoine [21] called a ring R to be nil-Armendariz if whenever two polynomials

f(x) =
m∑

i=0

aix
i, g(x) =

n∑
j=0

bjx
j ∈ R[x]

satisfy f(x)g(x) ∈ nil(R)[x] then aibj ∈ nil(R) for all 0 6 i 6 m and 0 6 j 6 n. Mohammadi
et al. [7] proved that nil-semicommutative rings are nil-Armendariz.

Theorem 3.10 If R is a weak (α, δ)-compatible and nil-semicommutative ring, then
R[x] is weak (ᾱ, δ̄)-skew Armendariz.

Proof Let F (y) =
m∑

i=0

fiy
i, G(y) =

n∑
j=0

gjy
j ∈ R[x][y; ᾱ, δ̄] such that F (y)G(y) = 0,

where

fi =
pi∑

s=0

aisx
s, gj =

qj∑
t=0

bjtx
t ∈ R[x].

Put k =
m∑

i=0

deg(fi)+
n∑

j=0

deg(gj), where deg(hj) is the degree of an polynomial h(x) in x and

the degree of zero polynomial is taken to be 0. Then F (xk) =
m∑

i=0

fix
ik and F (xk)G(xk) = 0

in R[x]. Because R is nil-semicommutative, R is nil-Armendariz by Corollary 2.9 of [7].
Thus F (xk)G(xk) = 0 ∈ nil(R)[x] can imply aisbjt ∈ nil(R) for all 0 6 i 6 m, 0 6 j 6 n,
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0 6 s 6 pi and 0 6 t 6 qj . By Proposition 2.4 of [19], α(1) = 1 and δ(1) = 0 since R is weak
α-compatible nil-semicommutative. So we have xy = yx. Next we consider

fiy
igjy

j = (
pi∑

s=0

aisx
s)yi(

qj∑
t=0

bjtx
t)yj

= (
pi∑

s=0

aisy
ixs)(

qj∑
t=0

bjty
jxt)

=
pi+qj∑
l=0

(
∑

s1+s2=l

ais1y
ibjs2y

j)xl

=
pi+qj∑
l=0

(
∑

s1+s2=l

ais1(
i∑

t1=0

f i
t1

(bjs2)y
t1)yj)xl

=
pi+qj∑
l=0

∑
s1+s2=l

i∑
t1=0

ais1f
i
t1

(bjs2)y
t1+jxl

=
i∑

t1=0

(
pi+qj∑
l=0

(
∑

s1+s2=l

ais1f
i
t1

(bjs2))x
l)yt1+j .

Since R is a weak (α, δ)-compatible nil-semicommutative ring and ais1bjs2 ∈ nil(R) implies
ais1f

i
t1

(bjs2) ∈ nil(R), we have
∑

s1+s2=l

ais1f
i
t1

(bjs2) ∈ nil(R) for all 0 6 l 6 pi + qj by

Proposition 3.4. Thus,
pi+qj∑
l=0

(
∑

s1+s2=l

ais1f
i
t1

(bjs2))xl ∈ nil(R)[x]. Furthermore, we have

pi+qj∑
l=0

(
∑

s1+s2=l

ais1f
i
t1

(bjs2))x
l ∈ nil(R[x])

by Theorem 3.3 of [7]. This implies that

fiy
igjy

j =
i∑

t1=0

(
pi+qj∑
l=0

(
∑

s1+s2=l

ais1f
i
t1

(bjs2))x
l)yt1+j ∈ nil(R[x])[y; ᾱ, δ̄]

for each 0 6 i 6 m and 0 6 j 6 n. Therefore, R[x] is weak (ᾱ, δ̄)-skew Armendariz.
Corollary 3.11 (see [20], Theorem 3.11 (ii)) Let R be a semicommutative (α, δ)-

compatible ring. Then R[x] is weak (ᾱ, δ̄)-skew Armendariz.
Corollary 3.12 (see [7], Theorem 3.13) If R is a weak α-rigid and nil-semicommutative

ring, then R[x] is a weak ᾱ-skew Armendariz ring.
Corollary 3.13 If R is a weak δ-compatible and nil-semicommutative ring, then R[x]

is a weak δ̄-skew Armendariz ring.
Corollary 3.14 (see [7], Theorem 3.7) If R is a nil-semicommutative ring, then R[x] is

a weak Armendariz ring.
Theorem 3.15 Let R be a nil-semicommutative (α, δ)-compatible ring. Then R[x;α, δ]

is weak Armendariz.



28 Journal of Mathematics Vol. 36

Proof Let

F (y) =
m∑

i=0

fiy
i, G(y) =

n∑
j=0

gjy
j ∈ R[x;α, δ][y]

such that F (y)G(y) = 0, where

fi =
pi∑

s=0

aisx
s, gj =

qj∑
t=0

bjtx
t ∈ R[x;α, δ].

Put k =
m∑

i=0

deg(fi)+
n∑

j=0

deg(gj), where deg(gj) is the degree of an polynomial h(x) in x and

the degree of zero polynomial is taken to be 0. Then

F (xk) =
m∑

i=0

fix
ik, G(xk) =

n∑
j=0

gjx
jk ∈ R[x;α, δ]

and F (xk)G(xk) = 0 ∈ R[x;α, δ]. By Theorem 3.5, we have aisx
ibjtx

j ∈ nil(R)[x;α, δ].
Since R is nil-semicommutative (α, δ)-compatible, we obtain that aisx

ibjtx
j ∈ nil(R[x;α, δ])

and then figj ∈ nil(R[x;α, δ]) by Theorem 2.5. Therefore, R[x;α, δ] is weak Armendariz.
Corollary 3.16 (see [20], Theorem 3.11(i)) Let R be a semicommutative (α, δ)-compatible

ring. Then R[x;α, δ] is weak Armendariz.
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诣零半交换环上的Ore 扩张

王 尧1,姜美美1,任艳丽2

(1.南京信息工程大学数学与统计学院,江苏南京 210044)

(2.南京晓庄学院数学与信息技术学院,江苏南京 211171)

摘要: 本文研究诣零半交换环上的 Ore 扩张环的性质. 利用对多项式的逐项分析方法, 我们证

明了: 设 α 是环 R 上的一个自同态, δ 是环 R 上的一个 α -导子. 如果 R 是 (α, δ) -斜 Armendariz 的

(α, δ)-compatible 环, 则 R[x; α, δ] 是诣零半交换环当且仅当环 R 是诣零半交换环; 如果 R 是诣零半交换的

(α, δ)-compatible 环, 则 R[x; α, δ] 是斜Armendariz 环. 所得结果推广了近期关于斜多项式环的相关结论.
关键词: 诣零半交换环; Ore扩张; (α, δ)-compatible环;弱(α, δ)-compatible环; (α, δ) -斜Armendari

环; 弱(α, δ) -斜Armendari 环
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