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Abstract: In this paper, we study the limit behavior for the maxima of continuous mean

square differentiable stationary Gaussian process. Using a different weight function from that in

Tan (2013), we obtain an almost sure limit theorem for the maxima of continuous mean square

differentiable stationary Gaussian process under some mild conditions, which expands the corre-

sponding results in Tan (2013).
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1 Introduction

The class of stationary Gaussian processes is one of the most widely used families of
stochastic processes for modeling the problems in many branches of natural and social sci-
ences. The asymptotic properties of stationary Gaussian process recently received increas-
ing attention. The limit behavior of stationary Gaussian sequences was well established,
see Csáki and Gonchigdanzan [1] and Dudziński [2]. Kratz and Rootzen [3] studied the
convergence for extremes of mean square differentiable stationary Gaussian processes and
given the bounds for the convergent rate of the distribution of the maximum. Piterbarg [4]
studied the joint distribution of maxima of a stationary Gaussian process on a continuous
time and uniform discrete time points, proved them are asymptotically complete dependent
and asymptotically independent under approximate restrictions. Tan and Hashorva [5] ex-
tended this result. Tan [6] obtained an almost sure limit theorem (ASLT) for the maxima
of stationary Gaussian processes under some mild conditions.

The ASLT was first introduced independently by Brosamler [7] and Schatte [8] for partial
sum. Lacey and Philipp [9] proved the ASLT for partial sum used a different method from
Brosamler [7] and Schatte [8]. Zhang [10] obtained an ASLT for the maximum of Gaussian
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sequence under some conditions related to correlation. Fahrner and Stadtmüller [11] and
Cheng et al. [12] independently proved the ALST under some certain conditions for the
maxima of independent and identically distributed random variable sequences. Furthermore,
Zhang [13] studied the ASLT for the maxima of independent random sequence.

Let {X(t), t ≥ 0} be a continuous mean square differentiable stationary Gaussian process
with covariance function r(t)=̂EX(s)X(t + s) satisfying the following condition

r(t) = 1− λ

2
|t|2 + o(|t|2), t → 0, (1.1)

where λ = −r′′(0). Next, set M(T ) = max {X(t), 0 ≤ t ≤ T} and let Nu(T ) be the number
of upcrossings of the level u by {X(t), 0 ≤ t ≤ T}, so that by Rice’s formula (see, Lindgren
and Leadbetter [14])

µ = µ(u) = ENu(1) =
1
2π

λ1/2e−u2/2, (1.2)

when ENu(T ) = Tµ(uT ) → τ for some constant τ > 0, then

P (M(T ) ≤ u) → e−τ , T →∞

and
P (aT (M(T )− bT ) ≤ x) → exp(−e−x), T →∞. (1.3)

Here the normalizing constants are defined for all large T by

aT =
√

2 ln T , bT = aT + a−1
T ln

(
λ1/2

2π

)
. (1.4)

Tan [6] obtained the ASLT for the maximum M(T ) of the continuous mean square dif-
ferentiable stationary Gaussian process {X(t), t ≥ 0} with weight function 1/t, which is as
follow:

Theorem 1.1 Let {X(t), t ≥ 0} be a continuous mean square differentiable stationary
Gaussian process with covariance function r(·) satisfying (1.1) and

r′′(t)− r′′(0) ≤ ct2, t ≥ 0 (1.5)

for some constant c > 0 and

r(t)(ln t)(ln ln t)3(1+ε) = O(1)

for some constant ε > 0. Then
(i) if Tµ(uT ) → τ for 0 < τ < ∞,

lim
T→∞

1
lnT

∫ T

1

1
t
I

(
max
1≤s≤t

X(s) ≤ ut

)
dt = e−τ a.s..

(ii) if aT , bT are defined as in (1.4),

lim
T→∞

1
lnT

∫ T

1

1
t
I

(
aT

(
max
1≤s≤t

X(s)− bT

)
≤ x

)
dt = exp

(−e−x
)

a.s..
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This result is a continuous version of the ASLT for the maximum of stationary Gaussian
sequences in [1].

In this paper, we try to expand the ASLT for the maxima of continuous mean square
differentiable stationary Gaussian process {X(t), t ≥ 0} by a different weight function from
that in Tan [6]. The rest of the paper is organized as follows. The main result is listed in
Section 2. Some preliminary lemmas and the proof of the main result is given in Section 3.
The proofs of Lemma 3.1 and Lemma 3.2 are collected in Appendix.

2 Main Result

Theorem 2.1 Let {X(t), t ≥ 0} be a continuous mean square differentiable stationary
Gaussian process with covariance function r(·) satisfying (1.1), (1.5) and

r(t)(ln t)3β+ε = O(1). (2.1)

Suppose 0 < β < 1
2

and set

wt =
exp

(
(ln t)β

)

t
, WT =

∫ T

1

wtdt. (2.2)

(i) If Tµ(uT ) → τ for 0 < τ < ∞, then

lim
T→∞

1
WT

∫ T

1

wtI

(
max
1≤s≤t

X(s) ≤ ut

)
dt = e−τ a.s.. (2.3)

(ii) If aT , bT are defined as in (1.4), then

lim
T→∞

1
WT

∫ T

1

wtI

(
aT

(
max
1≤s≤t

X(s)− bT

)
≤ x

)
dt = exp

(−e−x
)

a.s.. (2.4)

Remark 2.1 Theorem 2.1 remains valid if we replace the function of weight wt by w∗t

such that 0 ≤ w∗t ≤ wt,
∫ ∞

1

w∗t dt = ∞.

Remark 2.2 The lower limit of integral in (2.3), (2.4) and Remark 2.1 can be replaced
by any positive constant.

3 Proof

The following lemmas will be useful in the proof of Theorem 2.1.
Lemma 3.1 Let {ξ(t), t ≥ 0} be a real-valued random process with continuous and

bounded sample paths, if wt,WT are defined as in (2.2), and

Var
(∫ T

1

wtξ(t)dt

)
¿ (WT )2 (lnWT )−(1+ε) (3.1)

for some ε > 0, here f(T ) ¿ g(T ) denotes that there exists a constant c > 0 such that
f(T ) ≤ cg(T ) for sufficiently large T . The symbol c stands for a generic positive constant
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which may differ from one place to another. Then, we have

lim
T→∞

1
WT

∫ T

1

wt (ξ(t)− Eξ(t))dt = 0 a.s.. (3.2)

Proof The proof can refer to Appendix.
Lemma 3.2 Suppose {X(t), t ≥ 0} is a continuous mean square differentiable sta-

tionary Gaussian process with covariance function r(·) satisfying conditions (1.1), (1.5) and
(2.1). Let q = u−1

t (ln t)−β(1+ε), we have

sup
s∈(0,t)

s

q

∑
δ≤iq≤t

|r(iq)| exp
(
− u2

s + u2
t

2 (1 + |r(iq)|)

)
¿ (ln t)−β(1+ε)

for some constant δ > 0.
Proof The proof can refer to Appendix.
Lemma 3.3 (see Tan [6]) Let {X(t), t ≥ 0} be a stationary Gaussian process with

covariance function r(·) satisfying the conditions (1.1), and Tµ(uT ) → τ, 0 < τ < ∞. For
large enough s and t, s < t, we have

E |I (M ([1, t]) ≤ ut)− I (M ([s, t]) ≤ ut)| ¿ s

t
.

Lemma 3.4 Let {X(t), t ≥ 0} be a stationary Gaussian process with covariance
function r(·) satisfying (1.1), (1.5), (2.1) and Tµ(uT ) → τ , for 0 < τ < ∞. Set q =
u−1

t (ln t)−β(1+ε). For large enough s and t, s < t, we have

|Cov (I (M ([1, s])) ≤ us, I (M ([s, t])) ≤ ut)| ¿ s−1 (ln s)−1/2 + (ln t)−β(1+ε)
.

Proof Using Lemma 3.2 and Lemma 3.3, the proof of Lemma 3.4 is similar to that of
Lemma 3.5 of Tan [6].

Proof of Theorem 2.1 Case (i) Let

η(t) = I (M ([1, t]) ≤ ut)− P (M ([1, t]) ≤ ut) .

Notice that η(t) is a real-valued random process with continuous and bounded sample paths

and Var (η(t)) < 1. First, we estimate Var
(∫ T

1

wtη(t)dt

)
. Clearly

Var
(∫ T

1

wtη(t)dt

)
≤ E

(∫ T

1

wtη(t)dt

)2

= 2
∫∫

1≤s<≤T

wswtE (η(s)η(t)) dtds.

Note that by Lemmas 3.3 and 3.4, for s < t, we have

|E (η(s)η(t))|
= |Cov ((I (M ([1, s]) ≤ us)) , I (M ([1, t]) ≤ ut))|
≤ |Cov ((I (M ([1, s]) ≤ us)) , [I (M ([1, t]) ≤ ut)− I (M ([s, t]) ≤ ut)])|

+ |Cov ((I (M ([1, s]) ≤ us)) , I (M ([s, t]) ≤ ut))|
¿ E |I (M ([1, t]) ≤ ut)− I (M ([s, t]) ≤ ut)|

+ |Cov ((I (M ([1, s]) ≤ us)) , I (M ([s, t]) ≤ ut))|
¿ s

t
+ s−1 (ln s)−1/2 + (ln t)−β(1+ε)

.
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Consequently

Var
(∫ T

1

wtη(t)dt

)

¿
∫∫

1≤s<t≤T

wswt
s

t
dtds +

∫∫

1≤s<t≤T

elnβ selnβ t

s2 (ln s)1/2 t
dtds +

∫∫

1≤s<t≤T

elnβ selnβ t

st (ln t)β(1+ε)
dtds

=̂ ST,1 + ST,2 + ST,3.

(3.3)
For the second and the first terms, we have

ST,2 =
∫∫

1≤s<t≤T

elnβ selnβ t

s2 (ln s)1/2 t
dtds =

∫ T

1

elnβ t

t

(∫ T

1

elnβ s

s2 (ln s)1/2
ds

)
dt

¿
∫ T

1

elnβ t

t
dt ¿ WT ¿ W 2

T

(lnWT )1+ε

(3.4)

and

ST,1 =
∫∫

1≤s<t≤T

wswt
s

t
dtds

≤
∫∫

1≤s<t≤T, s
t≤(ln WT )−2

wswt
s

t
dtds +

∫∫

1≤s<t≤T, s
t >(ln WT )−2

wswtdtds

=̂ S
(1)
T,1 + S

(2)
T,1,

here
S

(1)
T,1 =

∫∫

1≤s<t≤T, s
t≤(ln WT )−2

wswt
s

t
dtds

¿
∫∫

1≤s<t≤T,≤(ln WT )−2
wswt

1
(lnWT )2

dtds

¿ W 2
T

(lnWT )2
¿ W 2

T

(lnWT )1+ε .

By Wu and Chen [15], we gain the elementary calculation

WT ∼ 1
β

(lnT )1−β exp (lnT )β
, lnWT ∼ (lnT )β

, ln lnWT ∼ ln lnT. (3.5)

From 0 < β < 1
2
, we know that 1−2β

2β
> 0. Set ε=̂1−2β

2β
, then 1

2β
= 1 + ε. Thus

S
(2)
T,1 =

∫∫

1≤s<t≤T, s
t >(ln WT )−2

wswtdtds ¿
∫ T

1

ws

∫ s(ln WT )2

s

elnβ T

t
dtds

¿ WT

(ln WT )
1−β

β

∫ T

1

ws ln lnWT ds =
W 2

T ln lnWT

(lnWT )
1−β

β

=
W 2

T

(lnWT )
1
2β

· ln lnWT

(lnWT )
1−2β
2β

¿ W 2
T

(lnWT )
1
2β

=
W 2

T

(lnWT )1+ε .

So we obtain
ST,1 =

∫∫

1≤s<t≤T

wswt
s

t
dtds ¿ W 2

T (lnWT )−(1+ε)
. (3.6)
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It remains only to estimate the term ST,3 in (3.3). Using (3.5), we get

ST,3 =
∫∫

1≤s<t≤T

elnβ selnβ t

st (ln t)β(1+ε)
dtds =

∫ T

1

elnβ t

t (ln t)β(1+ε)

∫ t

1

elnβ s

s
dsdt

¿
∫ T

1

elnβ t

t (ln t)β(1+ε)
(ln t)1−β elnβ tdt =

∫ ln T

0

y1−2β−βεe2yβ

dy

¿
∫ ln T

0

(
1

2− 3β − βε
· 1
yβ
· y1−2β−βε · e2yβ

+ 2β · y1−2β−βε · e2yβ

)
dy

=
∫ ln T

0

d
(
y2−3β−βεe2yβ

)
¿ (lnT )2−3β−βε e2(ln T )β

¿ W 2
T

(lnWT )1+ε .

(3.7)

Thus, we can conclude from (3.3), (3.4), (3.6), (3.7) that

Var
(∫ T

1

wtη(t)dt

)
¿ W 2

T

(lnWT )1+ε .

Next, note that r(T )(lnT )1+3β(1+ε) = O(1) implies r(T )(lnT ) = o(1). From (1.3) we have

lim
t→∞

P (M [1, t] ≤ ut) = lim
t→∞

P (M [0, t] ≤ ut) = e−τ .

Clearly, we can gain

lim
T→∞

1
lnT

∫ T

1

wtP (M ([1, t]) ≤ ut) dt = e−τ . (3.8)

Now, the result of the theorem follows by Lemma 3.1 and (3.8).
Case (ii) Case (ii) is a special of Case (i).

4 Appendix

Proof of Lemma 3.1
Set

1
WT

∫ T

1

wt (ξ(t)− Eξ(t)) dt

=
W[T ]

WT

· 1
W[T ]

[T ]∑
k=2

∫ k

k−1

wt (ξ(t)− Eξ(t)) dt +
1

WT

∫ T

[T ]

wt (ξ(t)− Eξ(t)) dt

=̂
W[T ]

WT

µ[T ] + µ′[T ].

(4.1)

Clearly as T →∞,

µ′[T ] =
1

WT

∫ T

[T ]

wt (ξ(t)− Eξ(t)) dt → 0 a.s.. (4.2)
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Now, we prove as T →∞ that

µ[T ] =
1

W[T ]

[T ]∑
k=2

∫ k

k−1

wt (ξt − Eξt) dt → 0 a.s..

Let [T ]k = inf
{
[T ],W[T ] > exp (k1−η)

}
for some 0 < η < ε

1+ε
, then W[T ]k ≥ exp (k1−η) and

W[T ]k−1 < exp (k1−η). By (3.5), we get

1 ≤ W[T ]k

exp (k1−η)
∼ W[T ]k−1

exp (k1−η)
< 1,

that is
W[T ]k ∼ exp

(
k1−η

)
.

We have

∞∑
k=3

E
(
µ2

[T ]k

)
=

∞∑
k=3

(
1

W 2
[T ]

)
var

(
[T ]∑
k=2

∫ k

k−1
wt (ξ(t)− E (ξ(t))) dt

)

=
∞∑

k=3

(
1

W 2
[T ]

)
var

(∫ [T ]

1
wt (ξ(t)) dt

)

¿
∞∑

k=3

(
1

W 2
[T ]

)
·W 2

[T ] ·
(
lnW[T ]

)−(1+ε)

∼
∞∑

k=3

1
k(1−η)(1+ε) .

Since η < ε
1+ε

implies 1− η > 1
1+ε

and (1− η)(1+ ε) > 1, thus for sufficiently large k, we get

∞∑
k=3

1
k(1−η)(1+ε)

< ∞.

This implies
∞∑

k=3

µ2
[T ]k

< ∞ a.s..

Obviously for any given [T ] there is an integer k such that [T ]k < [T ] ≤ [T ]k+1, we have as
T →∞,

µ[T ] =
1

W[T ]

[T ]∑
j=2

∫ j

j−1

wt (ξ(t)− Eξ(t)) dt

≤ 1
W[T ]k

∣∣∣∣∣
[T ]k∑
j=2

∫ j

j−1

wt (ξ(t)− Eξ(t)) dt

∣∣∣∣∣ +
1

W[T ]k

[T ]k+1∑

j=[T ]k+1

∫ j

j−1

wt (ξ(t)− Eξ(t)) dt

≤
∣∣µ[T ]k

∣∣ +
1

W[T ]k

∣∣W[T ]k+1 −W[T ]k+1

∣∣ ≤ ∣∣µ[T ]k

∣∣ +
∣∣∣∣
W[T ]k+1

W[T ]k

− 1
∣∣∣∣ → 0 a.s..

(4.3)

From
W[T ]k+1

W[T ]k
∼ exp((k+1)1−η)

exp(k1−η)
= exp

(
k1−η((1 + 1

k
)1−η − 1)

) ∼ exp ((1− η) k−η) → 1 a.s.,
(4.3) holds.
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Now, the result of Lemma 3.1 follows by (4.1), (4.2) and (4.3).
Proof of Lemma 3.2 Let υ(δ) = supδ<iq {r(iq)}. By assumption (1.1) and {X(t), t ≥ 0}

is a stationary Gaussian process, we have υ(δ) = supδ<iq {r(iq)} < 1. Further, let α satisfy
0 < α < 1−υ(δ)

1+υ(δ)
for all sufficiently large t. We split the sum in (3.1) at tα as

sup
s∈(0,t)

s
q

∑
δ≤iq≤t

|r(iq)| exp
(
− u2

s+u2
t

2(1+|r(iq)|)

)

= sup
s∈(0,t)

s
q

∑
δ≤iq≤tα

|r(iq)| exp
(
− u2

s+u2
t

2(1+|r(iq)|)

)
+ sup

s∈(0,t)

s
q

∑
tα≤iq≤t

|r(iq)| exp
(
− u2

s+u2
t

2(1+|r(iq)|)

)

=̂Bt,1 + Bt,2.

(4.4)
Using the facts u2

t ∼ 2 ln t and q = u−1
t (ln t)−β(1+ε) we have

Bt,1 = sup
s∈(0,t)

s
q

∑
δ≤iq≤tα

|r(iq)| exp
(
− u2

s+u2
t

2(1+|r(iq)|)

)
≤ stα

q2 exp
(
− u2

s+u2
t

2(1+|r(iq)|)

)

¿ 1
q2 tα− 1

1+υ(δ) s1− 1
1+υ(δ) ¿ t1+α− 2

1+υ(δ) (ln t)2(ln t)2β(1+ε).

Since α < 1−υ(δ)
1+υ(δ)

, we get as t →∞ that

Bt,1 < t1+α− 2
1+υ(δ) → 0 (4.5)

uniformly for s ∈ (0, t]. Notice that r(t) (ln t)1+3β(1+ε) = O(1) and u2
t ∼ 2 ln t, we get

r(iq) ¿ 1

(ln(iq))1+3β(1+ε)
<

1

(ln(tα))1+3β(1+ε)
∼ 1

(ln t)1+3β(1+ε)

and as t →∞, we have

u2
t |r(iq)| ¿ ln t · 1

(ln t)1+3β(1+ε)
=

1

(ln t)3β(1+ε)
→ 0.

Consequently

B2 = s
q

∑
tα≤iq≤t

|r(iq)| exp
(
− u2

s+u2
t

2(1+|r(iq)|)

)

= s
q

∑
tα≤iq≤t

|r(iq)| exp
(
−u2

s+u2
t

2

)
exp

(
(u2

s+u2
t)|r(iq)|

2(1+|r(iq)|)

)

¿ s
q

∑
tα≤iq≤t

|r(iq)| exp
(
−u2

s+u2
t

2

)
exp (u2

s+u2
t)|r(iq)|
2

¿ s
q

∑
tα≤iq≤t

|r(iq)| exp
(
−u2

s+u2
t

2

)
exp (u2

t |r(iq)|)

¿ s
q

∑
tα≤iq≤t

|r(iq)| exp
(
−u2

s+u2
t

2

)

≤ st
q2 t−1s−1 (ln t)−1−3β(1+ε)

O(1)
¿ (ln t)−β(1+ε)

.

(4.6)

The result of Lemma 3.2 follows by (4.4), (4.5) and (4.6).
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光滑平稳高斯过程极值几乎处处极限定理的一个推广

伍欣叶,吴群英

(桂林理工大学理学院,广西桂林 541004)

摘要: 本文研究了连续均方可微的平稳高斯过程的极限性态. 通过选择一个不同于 Tan (2013) 的

权重函数, 在较弱的条件下得到了连续均方可微平稳高斯过程极值的一个几乎必然仅限定理, 推广了 Tan

(2013) 的结论.
关键词: 平稳高斯过程; 几乎处处; 极限定理; 极值; 权重函数
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