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Abstract: Here is to study the numerical solution of multi-order fractional differential equa-

tions (FDEs) with variable coefficients. We derive the operational matrix of fractional integration

based on the Chebyshev wavelets. The operational matrix of fractional integration is utilized to

reduce the fractional differential equations to a system of algebraic equations. In addition, the

convergence of the Chebyshev wavelet bases and the error estimation expression are presented. A

numerical example is provided to demonstrate the accuracy and efficiency of the proposed method.

Keywords: fractional integration; the Chebyshev wavelets; operational matrix; fractional

differential equations; block pulse function

2010 MR Subject Classification: 41A35

Document code: A Article ID: 0255-7797(2015)06-1353-10

1 Introduction

During the past decades, the field of fractional differential equations attracted the inter-
est of researchers in several areas including physics, chemistry, engineering and even finance
and social sciences (see [1, 2]) and there was significant interest in developing numerical
schemes for their solution. These methods include Laplace transforms (see [3]), Fourier
transforms (see [4]), eigenvector expansion (see [5]), adomian decomposition method (ADM)
(see [6, 7]), variation iteration method (VIM)(see [8, 9]), fractional differential transform
method (FDTM) (see [10, 11]), fractional difference method (FDM) (see [12]) and power se-
ries method (see [13]). But, few papers were reported to solve the fractional order differential
equations by application of wavelets (see [14, 15]).

We intend to use the Chebyshev wavelet method to solve multi-order arbitrary differ-
ential equations with variable coefficients. First, we construct the Chebyshev wavelets and
derive the operational matrix of fractional integration; then the underlying fractional differ-
ential equation is converted to an algebraic equation by introducing the wavelet operational
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matrix of the fractional integration. In this paper, by using the Chebyshev wavelets, we solve
the following multi-order fractional differential equations (FDEs) with variable coefficients

Dv
∗u(t) +

r−1∑
i=1

γi(t)D∗
βiu(t) + γr(t)u(t) = g(t) , t ∈ [0, 1), (1.1)

u(i)(0) = di, i = 0, 1, · · · , n− 1, (1.2)

where 0 < β1 < β2 < · · · < βr−1 < v, n−1 < v ≤ n are constants. Moreover, Dv
∗ denotes

the Caputo fractional derivative of order v,the values of di(i = 0, 1 · · · , n− 1)describe the
initial state of u(t) and g(t) is a known function. The existence and uniqueness of solutions
of FDEs were studied by [16].

The paper is organized as follows. In Section 2, we introduce some necessary definitions
and mathematical preliminaries of fractional calculus. In Section 3, after describing the
basic formulation of wavelets and the Chebyshev wavelets, we derive the Chebyshev wavelet
operational matrix of the fractional differential equation. In Section 4, the method is defined
for approximate solution of the fractional problem (1.1) and (1.2). In Section 5, the error
analysis technique based on the residual function is developed for the present method. A
numerical example is given to demonstrate the validity of the method in solving fractional
differential equation in Section 6. Section 7 comments on the result.

2 Definitions and Notations

We give some necessary definitions and mathematical preliminaries of the fractional
calculus theory which are used further in this paper.

Definition 2.1 The Riemann-Liouville fractional integral operator Iα of order α(α >

0) on usual Lebesgue space L2[a, b] is given by

Iαf(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1
f(τ)dτ, t > a, (2.1)

I0f(t) = f(t), (2.2)

and its fractional derivative of order α > 0 is normally used:

Dαf(t) =
dn

dtn
(In−αf(t)), n− 1 < α ≤ n, (2.3)

where n is an integer. For Riemann-Liouville definition, one has

Iαtν =
Γ(ν + 1)

Γ(α + ν + 1)
tα+ν . (2.4)

The Riemann-Liouville derivative has certain disadvantages when trying to model real-
world phenomena with fractional differential equations. Therefore, we shall introduce now
a modified fractional differential operator Dα

∗ proposed by Caputo.
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Definition 2.2 The Caputo definition of fractional differential operator is given by

D∗
αf(t) =

1
Γ(n− α)

∫ t

a

(t− τ)n−α−1
f (n)(τ)dτ, n− 1 < α ≤ n, (2.5)

where n is an integer.
It has the following basic properties for n− 1 < α ≤ n and f ∈ L2[a, b],

D∗
αIαf(t) = f(t), (2.6)

IαD∗
αf(t) = f(t)−

n−1∑
k=0

f (k)(a+)
tk

k!
, t > a, (2.7)

Dβ
∗ f(t) = Iv−βDv

∗f(t). (2.8)

3 The Chebyshev Wavelets and Operational Matrix of the Fractional

Integration

In this section, we use the Chebyshev polynomials to construct the Chebyshev wavelets
and give some properties of the wavelets.

3.1 The Chebyshev Wavelets and Operational Matrix of the Fractional Integra-
tion

Wavelets are a family of functions constructed from dilation and translation of a single
function ψ(t) called the mother wavelet. When the dilation parameter a and the translation
parameter b vary continuously we have the following family of continuous wavelets as [17]:

ψab(t) = |a|− 1
2 ψ(

t− b

a
), a, b ∈ R, a 6= 0. (3.1)

If we restrict the parameters a and b to discrete values as a = a−k
0 , b = nb0a

−k
0 , a0 > 0,

b0 > 0, where n and k are positive integers, the family of discrete wavelets are defined as

ψkn(t) = |a0|
k
2 ψ(ak

0t− nb0), (3.2)

where ψkn form wavelet bases for L2(R). In particular, when a0 = 2 and b0 = 1, ψkn form
orthogonal bases.

The Chebyshev wavelets ψnm(t) = ψ(k, n,m, t), which are defined on the interval [0, 1),
involve four arguments. That is, k is assumed any positive integer, n = 1, 2, · · · , 2k−1, m is
the degree of the Chebyshev polynomials and t is the normalized time. They are defined on
the interval [0, 1) as

ψnm(t) =





2
k
2 T̃m(2kt− 2n + 1),

n− 1
2k−1

≤ t <
n

2k−1
,

0, otherwise,
(3.3)
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where
T̃0 =

1√
π

,

T̃m(t) =

√
2
π

Tm(t),m = 1, 2, · · · ,M − 1,

(3.4)

here Tm(t) are the Chebyshev polynomials of degree m which respect to the weight function
ω(t) = 1/

√
1− t2 on interval [−1, 1] and satisfy the following recursive formula

T0(t) = 1, T1(t) = t, Tm+1(t) = 2tTm(t)− Tm−1(t),m = 1, 2, · · · . (3.5)

A function f(t) defined on the interval [0, 1] may be expanded as

f(t) =
∞∑

n=1

∞∑
m=0

cnmψnm(t), (3.6)

where

cnm = (f(t), ψnm(t))ωn
=

∫ 1

0

ωn(t)ψnm(t)f(t)dt. (3.7)

If the infinite series in eq. (3.6) is truncated, then eq. (3.6) can be written as

f(t) ≈
2k−1∑
n=1

M−1∑
m=0

cnmψnm(t) = CT Ψ(t), (3.8)

where T indicates transposition, C and Ψ(t) are 2k−1M dimensional column vectors given
by

C = [c10, c11, · · · , c1(M−1), c20, · · · , c2(M−1), · · · , c2k−10, · · · , c2k−1(M−1)]T , (3.9)

Ψ(t) = [ψ10(t), · · · , ψ1(M−1)(t), ψ20(t), · · · , ψ2(M−1)(t), · · · , ψ2k−10(t), · · · , ψ2k−1(M−1)(t)]T .

(3.10)
Taking the collocation points as following

ti =
2i− 1
2kM

, i = 1, 2, · · · , 2k−1M. (3.11)

We define the Chebyshev wavelet matrix Φm′×m′ as

Φm′×m′ = [Ψ(t1),Ψ(t2), · · · ,Ψ(tm′)], (3.12)

where m′ = 2k−1M .

3.2 Operational Matrix of the Fractional Integration

The integration of the vector Ψ(t) defined in eq. (3.10) can be obtained as
∫ 1

0

Ψ(t)dt ≈ PΨ(t), (3.13)

where P is the 2k−1M × 2k−1M operational matrix for integration [17].
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Our purpose is to derive the Chebyshev wavelet operational matrix of the fractional
integration. For this purpose, we rewrite Riemann-Liouville fractional integration, as follow-
ing

Iαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1
f(τ)dτ =

1
Γ(α)

tα−1 ∗ f(t), t > 0. (3.14)

Now, if f(t) is expanded in the Chebyshev wavelets, as showed in eq. (3.8), the Riemann-
Liouville fractional integration becomes

Iαf(t) =
1

Γ(α)
tα−1 ∗ f(t) ≈ CT 1

Γ(α)
{
tα−1 ∗Ψ(t)

}
. (3.15)

Thus if tα−1 ∗ f(t) can be integrated, then expanded in the Chebyshev wavelets, the
Riemann-Liouville fractional integration is solved.

Also, we define a m′-set of Block Pulse function (BPF) as

bi(t) =





1,
i

m′ ≤ t <
i + 1
m′ ,

0, otherwise,
(3.16)

where i = 0, 1, 2, · · · ,m′ − 1.
The functions bi(t) are disjoint and orthogonal. That is

bi(t)bl(t) =

{
bi(t), i = l,

0, i 6= l,
(3.17)

∫ 1

0

bi(t)bl(t) =





1
m′ , i = l,

0, i 6= l.
(3.18)

From the orthogonality property of BPF, it is possible to expand functions into their
Block Pulse series. This means that for every f(t) ∈ [0, 1) we can write

f(t) ≈
m′−1∑
i=0

fibi(t) = fT Bm′(t), (3.19)

where
fT = [f0, f1, · · · , fm′−1], BT

m′(t) = [b0(t), b1(t), · · · , bm′−1(t)], (3.20)

such that fi for i = 0, 1, 2, · · · ,m′ − 1 are obtained by fi = m′
∫ 1

0

f(t)bi(t)dt.

Similarly, the Chebyshev wavelets may be expanded into an m′-term block pulse func-
tions (BPF) as

Ψ(t) ≈ Φm′×m′Bm′(t). (3.21)

We derive the Block Pulse operational matrix of the fractional integration F α as fol-
lowing

IαBm′(t) = F αBm′(t), (3.22)
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where

F α =
1

2αm′αΓ(α + 1)




1 ξ1 ξ2 ξ3 · · · ξm′−1

0 1 ξ1 ξ2 · · · ξm′−2

0 0 1 ξ1 · · · ξm′−3

...
...

...
...

. . .
...

0 0 0 0 · · · ξ1

0 0 0 0 0 1




(3.23)

with ξk = (2k + 1)α − (2k − 1)α, k = 1, 2, · · · ,m′ − 1.
Next, we derive the Chebyshev wavelet operational matrix of the fractional integration.

Let
IαΨ(t) ≈ Pα

m′×m′Ψ(t). (3.24)

Using eqs. (3.21), (3.22), we have

IαΨ(t) ≈ IαΦm′×m′Bm′(t) = Φm′×m′IαBm′(t) ≈ Φm′×m′F αBm′(t). (3.25)

From eqs. (3.24), (3.25), we get

Pα
m′×m′Ψ(t) ≈ Φm′×m′F αBm′(t). (3.26)

Then from eqs. (3.21), (3.26), the Chebyshev wavelet operational matrix of the frac-
tional integration Pα

m′×m′ is given by

P α
m′×m′ = Φm′×m′F αΦ−1

m′×m′ . (3.27)

It should be noted that the operational matrix Pα
m′×m′ contains many zero entries. This

phenomenon makes calculations fast. The calculation for the matrix Pα
m′×m′ is carried out

once and is used to solve fractional order as well as integer order differential equations.

4 Solution of Eqs. (1.1) and (1.2)

By approximating the function D∗
vu(t), we have

D∗
vu(t)u(t) ≈ CT Ψ(t) (4.1)

together with the initial states, we get

D∗
βiu(t) ≈ CT P v−βi

m′×m′Ψ(t), i = 1, 2, · · · , v − 1, (4.2)

u(t) ≈ CT P v
m′×m′Ψ(t) +

n−1∑
k=0

u(k)(0)
tk

k!
. (4.3)

Substituting eqs. (4.1), (4.2) and (4.3) into eq. (1.1),we have

CT Ψ(t) +
r−1∑
i=1

γi(t)CT P v−βi

m′×m′Ψ(t) + γr(t)(CT P v
m′×m′Ψ(t) +

n−1∑
k=0

u(k)(0)
tk

k!
) = g(t). (4.4)
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Coefficient γi(t)(i = 1, 2, · · · , r) can be dispersed into γi(tl) and g(t) may be dispersed into
g(tl)(l = 1, 2, · · · ,m′) . Let

Ri =




γi(t1) 0 · · · 0
0 γi(t2) · · · 0
...

...
. . .

...
0 0 · · · γi(tm′)




(i = 1, 2, · · · , r), (4.5)

g =
[

g(t1)− γr(t1)
n−1∑
k=0

u(k)(0) tk

k!
· · · g(tm′)− γr(tm′)

n−1∑
k=0

u(k)(0) tk
m′
k!

]T

. (4.6)

Therefore, eq. (4.4) can be written as

CT (Φm′×m′ +
r∑

i=1

P v−βi

m′×m′Φm′×m′Ri) = gT . (4.7)

Eq. (4.7) is a linear system of algebraic equations.

5 Convergence of the Chebyshev Wavelet Bases

Theorem 5.1 (see [18]) Let A function f(t) define on the interval [0, 1] may be ex-
panded as

f(t) =
∞∑

n=1

∞∑
m=0

cnmψnm(t), f̃(t) =
2k−1∑
n=1

M−1∑
m=0

cnmψnm(t), (5.1)

then
2k−1∑
n=1

M−1∑
m=0

c2
nm ≤

∫ 1

0

f2(t)dt, (5.2)

where

cnm = (f(t), ψnm(t))ωn
=

∫ 1

0

ωn(t)ψnm(t)f(t)dt. (5.3)

Theorem 5.2 (see [18]) Let A function f(t) be L2[0, 1] , and

RK,M = f(t)− f̃(t), (5.4)

then
lim

K,M→∞
‖RK,M‖ = 0, (5.5)

where f(t), f̃(t) be defined as above and K = 2k−1.
Also, we present an error estimation for eq. (5.4) with the residual error function. Let

u(t), ˜u(t) be the exact solution and the Chebyshev wavelet solution of the problem (1.1) and
(1.2), R(t) = u(t)− ˜u(t). Therefore, R(t) satisfies the following problem

D∗
vR(t) +

r−1∑
i=1

γi(t)D∗
βiR(t) + γr(t)R(t) = g(t)− h(t), (5.6)

R(i)(0) = 0, i = 0, 1, · · · , n− 1, (5.7)
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where h(t) = CT Ψ(t) +
r−1∑
i=1

γi(t)CT P v−βi

m′×m′Ψ(t) + γr(t)CT P α
m′×m′Ψ(t).

By solving the error problem (5.6)–(5.7) in the same way as Section 4, we get the
approximation

R̃(t) =
2k−1∑
n=1

M−1∑
m=0

c∗nmψnm(t) (5.8)

to R(t). Here, the coefficients c∗nm, n = 1, 2, · · · , 2k−1,m = 0, 1, 2, · · · ,M − 1 are determined
by solving the error problem (5.6)–(5.7). Hence, the maximum absolute error can be esti-
mated approximately by using max

∣∣R̃(t)
∣∣. If the exact solution of the problem is not known,

this error estimation can be used to test the reliability of the results.

6 Numerical Examples

Consider the equation

D2u(t) + sin(t)D
1
2∗ u(t) + tu(t) = f(t), u(0) = u′(0) = 0, (6.1)

where f(t) = t9 − t8 + 56t6 − 42t5 + sin(t)( 32768
6435

t
15
2 − 2048

429
t

13
2 ).

One can easily check that u(t) = t8−t7 is the unique analytical solution. The comparison
between approximate and exact solution for k = 3,M = 5 is presented in Fig.1 and we list the
absolution errors for M = 3 and different values of k and Ref. [Li and Zhao (2010)] (see[19]).
From Table 1, we can achieve a better approximation by the Chebyshev wavelet method than
Ref. [Li and Zhao (2010)]. We may also see that the error is smaller and smaller when k

increases. Therefore for better results, using a larger k is recommended. The computational
results show that the method in this article can be effectively used in numerical calculus for
fractional differential equation with variable coefficient, and the method is also feasibility to
the realistic fractional differential equation.

Figure 1: Comparison of Num. Sol. and Exam. Sol. of k = 3,M = 3
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Table 1: The absolution errors for M = 3 and different values of k
t k = 3, M=3 k = 4, M=3 k = 5, M = 3

ours Ref.[Liand ours Ref.[Liand ours Ref.[Li and
Zhao(2010)] Zhao(2010)] Zhao(2010)]

0.0625 6.816e-08 9.204e-08 5.575e-10 7.447e-10 4.452e-12 5.985e-12
0.1875 6.202e-06 1.242e-05 6.428e-07 8.363e-07 8.317e-08 5.903e-07
0.3125 5.788e-05 4.618e-07 8.146e-06 3.935e-07 1.555e-06 1.875e-07
0.4375 1.979e-04 8.814e-04 3.840e-05 8.146e-04 9.692e-06 8.026e-04
0.5625 4.184e-04 5.755e-03 1.164e-04 5.164e-03 4.490e-05 4.570e-03
0.6875 5.208e-04 2.000e-02 2.905e-04 1.736e-02 1.849e-04 1.571e-02
0.8125 1.136e-04 4.515e-02 6.403e-04 3.876e-02 5.273e-04 3.606e-02
0.9375 3.138e-03 5.972e-02 1.608e-03 5.010e-02 8.347e-04 4.936e-02

7 Conclusion

This article adopts the Chebyshev wavelet method to solve a class of multi-order frac-
tional differential equations with variable coefficients. We derive the Chebyshev wavelet
operational matrix of fractional order integration and use the wavelet basis together with
operational matrix to reduce the factional differential equation to a system of algebraic
equations. Furthermore, we present an error estimation for eq. (5.4) with the residual error
function. The matrix elements of the discrete operators are provided explicitly and this in
turn greatly simplifies the steps for obtaining solutions. An example is given to demonstrate
that the method is effective and accurate for solving multi-order FDEs. It is obvious that
the accuracy improves when we take a relatively small fixed M and only increase k. Usually,
it can reach the higher precision, even though M, k are small.
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一类变系数分数阶微分方程的数值解法

李宝凤

(唐山师范学院数学与信息科学系, 河北唐山 063000)

摘要: 本文研究了一类变系数分数阶微分方程的数值解法问题. 利用Cheyshev小波推导出的分数阶

微分方程的算子矩阵把分数阶微分方程转换为代数方程组. 同时给出了Cheyshev小波基的收敛性和误差估

计表达式, 并给出数值算例说明所提方法的精确性和有效性.
关键词: 分数阶积分; Chebvshev小波; 算子矩阵; 分数阶微分方程; block pulse函数
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