ON TL-FUZZY IDEALS IN LATTICES

HE Peng-fei, YANG Yong-wei

(Department of Mathematics, Northwest University, Xi'an 710127, China)

Abstract: In this paper, we study TL-fuzzy ideals in lattices. By a TL-fuzzy ideal generated by an L-fuzzy subset, we prove that the lattice of T_M -fuzzy ideals in a modular lattice is a complete modular lattice. Moreover, using the projection and the cut shadow of an L-fuzzy set, we obtain necessary and sufficient conditions for a TL-fuzzy ideal of a Cartesian product of lattices to be a T-product of TL-fuzzy ideals of lattices. Our results generalize and develop the fuzzy ideal theory in lattices.

Keywords:left continuous t-norm; TL-fuzzy ideal; modular lattice; T-product2010 MR Subject Classification:06D72; 08A72Document code:AArticle ID:0255-7797(2015)06-1341-12

1 Introduction

An important notion in fuzzy set theory is that of triangular norms: t-norms are used to define a generalized intersection. By a fuzzy subset μ in a given universe X we understand a mapping μ : $X \to [0, 1]$, the membership degrees $\mu(x)$ can in a natural way be understood as the truth value (in fuzzy logic) of the statement "x belongs to μ ". In the same way, the intersection $\mu \cap \nu$ of fuzzy sets μ, ν can be viewed as having the membership degree $(\mu \cap \nu)(x)$ corresponding to the truth degree of the statement "x belongs to μ " and "x belongs to ν ". Here AND refers to a suitably defined conjunction connective, defined according to the different possibilities which one has to determine the membership degrees $(\mu \cap \nu)(x)$. For example, AND can be understood as taking the minimum or as taking the (usual, i.e., algebraic) product, or more generally, it also can be understood as a t-norm. Accordingly, the t-norms were considered as the candidates for generalized conjunction connectives of the background many-valued logic. The fuzzy logic based on t-norms, especially left continuous t-norms, was developed significantly by Hájek, Esteva et al. (see [1-4]). Also, there are many applications of triangular norms in several fields of mathematics and artificial intelligence [5].

In 1971, Rosenfeld [6] used the concept of fuzzy sets to formulate the notion of fuzzy groups. Since then, many other fuzzy algebraic concepts of fuzzy groups have been developed. Anthony and Sherwood [7] redefined fuzzy subgroups, which we call *T*-fuzzy subgroups

Received date: 2013-04-24 **Accepted date:** 2013-09-23

Foundation item: Supported by Graduate Independent Innovation Foundation of Northwest University (YZZ12061); Scientific Research Program Funded by Shaanxi Provincial Education Department (2013JK0562).

Biography: He Pengfei (1986–), male, born at Xi'an, Shaanxi, Ph.D. candidate, major in fuzzy algebras, rough set theory.

in this note, in terms of t-norm T which replaced the minimum operation and they [7, 8] characterized basic properties of T-fuzzy subgroups. In [9], Hu studied T-fuzzy groups with thresholds. Chon [10] characterized necessary and sufficient conditions whereby a fuzzy subgroup of a Cartesian product of groups is the product of fuzzy subgroups under minimum operation. He pointed out that finding necessary and sufficient conditions for T-fuzzy subgroups under a t-norm is still an open problem. In 2011, Yamak et al.[11] solved this open problem and identified necessary and sufficient conditions for TL-subgroups of a Cartesian product of groups, which can be represented as a T-product of TL-subgroups under t-norm operation. In the same paper, they also pointed out that the same problem could be studied in other algebraic structures such as rings and lattices.

In [6], the idea of a least fuzzy subgroupoid containing a given fuzzy set was also introduced. Consequently, Rosenfeld constructed the lattice of all fuzzy subgroupoids of a given group. In a recent paper [12], Jahan established that the lattice of all fuzzy ideals of a ring is modular. In fact, the proof of modularity is heavily based on the property of the unit interval that it is a dense chain. However, modularity of the lattices of *L*-normal subgroups of a group and *L*-ideals of a ring remains an open question. In 2011, Jahan [13] answered the question of modularity of the lattice of *L*-ideals of a ring.

With the development of theories of fuzzy algebra, Swamy [14] discussed the correspondence relation between fuzzy ideals and fuzzy congruences in a distributive lattice. In 2008, Koguep et al.[15] studied the notion of fuzzy prime ideal and highlighted the difference between fuzzy prime ideal and prime fuzzy ideal of a lattice. However, not much attention was paid to the studies of the lattices of fuzzy ideals of a lattice and the modularity of them.

The present work has been started as a continuation of these studies. In this paper, we will discuss modularity of the lattices of fuzzy ideals in a lattice. Moreover, we will explore necessary and sufficient conditions for a fuzzy ideal of a Cartesian product of lattices to be a T-product of fuzzy ideals of lattices under a left continuous t-norm T on a complete lattice L.

2 Preliminaries

In this section, we recall some notions and definitions that will be used in the sequel.

Let $(L, \wedge, \lor, \leq, 0, 1)$ denote a complete lattice with the top and bottom elements 1 and 0, respectively.

Definition 2.1 [5] A binary operation T on L is called a *t*-norm if it satisfies the following conditions: for any $a, b, c \in L$,

- (T1) aT1 = a;
- (T2) aTb = bTa;
- (T3) (aTb)Tc = aT(bTc);
- (T4) if $b \leq c$, then $aTb \leq aTc$.

Because of associative and commutative properties, for any $a_1, a_2, \dots, a_n \in L$ $(n \ge 1)$, $a_1Ta_2T\cdots Ta_n$ is well defined and its value is irrelevant to the order of a_1, a_2, \dots, a_n . We write $T_{i=1}^n a_i = a_1 T a_2 T \cdots T a_n$. If $aT(\bigvee_{i \in I} b_i) = \bigvee_{i \in I} (aTb_i)$, for $a, b_i \in L$, where I is the set of natural numbers, then T is called a left continuous *t*-norm, see [2].

In what follows, let L = [0, 1], there are some examples of the most popular *t*-norms: for any $x, y \in [0, 1]$,

- (1) the Lukasiewicz *t*-norm: $xT_Ly = \max\{x+y-1, 0\};$
- (2) the algebraic product: $xT_Py = xy$;
- (3) the standard min operation: $xT_M y = \min\{x, y\}.$

Throughout this paper, unless otherwise stated, $(L, \land, \lor, \leq, 0, 1)$ always represents a given complete lattice with a left continuous *t*-norm *T*.

An *L*-fuzzy subset of *X* is a mapping from *X* to *L*. The family of all *L*-subsets of *X* is denoted by LF[X] (see [16]). When L = [0, 1], the *L*-subsets of *X* are known as fuzzy subsets of *X* (see [17]). Let $\mu, \nu \in LF[X]$ be given, μ is said to be included in ν and written as $\mu \subseteq \nu$ if $\mu(x) \leq \nu(x)$ for all $x \in X$.

The following are the most popular operators on *L*-fuzzy sets: for all $\mu, \nu \in LF[X]$, $x \in X$, $(\mu \cup \nu)(x) = \mu(x) \lor \nu(x)$, $(\mu \cap \nu)(x) = \mu(x) \land \nu(x)$.

3 TL-Fuzzy Ideals

In this section, we shall introduce the notion of TL-fuzzy ideals in lattices and give some properties of them that will be used in the sequel.

Definition 3.1 Let (X, \land, \lor, \le) be a lattice and μ be an *L*-fuzzy subset of *X*. Then μ is called a *TL*-fuzzy ideal of *X* if it satisfies the following conditions: for all $x, y \in X$,

(i) $\mu(x \lor y) \ge \mu(x)T\mu(y)$,

(ii) $\mu(x \wedge y) \ge \mu(x) \lor \mu(y)$.

We shall denote the set of all TL-fuzzy ideals of the lattice X as TLFI[X].

In particular, a TL-fuzzy ideal is called an L-fuzzy ideal when $T = \wedge$. Moreover, when L = [0, 1], a TL-fuzzy ideal and an L-fuzzy ideal of X are, respectively, referred to as a T-fuzzy ideal and fuzzy ideal of the lattice X.

Now, the following result gives an equivalent version of the concept of TL-fuzzy ideals in lattices.

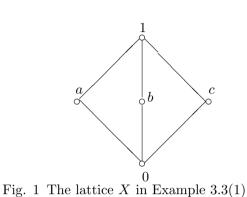
Theorem 3.2 Let (X, \land, \lor, \leq) be a lattice and μ be an *L*-fuzzy subset of *X*. Then μ is a *TL*-fuzzy ideal of *X* if and only if it satisfies the following conditions: for all $x, y \in X$,

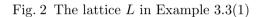
(i)
$$\mu(x \lor y) \ge \mu(x)T\mu(y)$$
,

(ii) if $y \leq x$, then $\mu(y) \geq \mu(x)$.

Proof The proof is straightforward.

Example 3.3 (1) Let $X = \{0, a, b, c, 1\}$ be a lattice, the partial order on X is defined as shown in Fig. 1. Let $L = \{1, 2, 3, 4, 5, 6\}$, the partial order on L is defined as shown in Fig. 2, $T = \wedge$. Define two L-fuzzy subsets μ and ν of X as follows: $\mu(0) = 6$, $\mu(a) = 2$, $\mu(b) = 5$, $\mu(c) = 2$, $\mu(1) = 2$. By routine calculations, it is easy to check that μ is a TL-fuzzy ideal of X.





 $\binom{6}{5}$

4

3

2

d1

(2) Let $X = \{0, a, b, 1\}$ be a lattice, the partial order on X is defined as shown in Fig. 3. Let L = [0, 1] and $T = T_L$, that is $xT_Ly = \max\{x+y-1, 0\}$, for any $x, y \in L = [0, 1]$. Define two L-fuzzy subsets μ and ν of X as follows: $\mu(0) = \frac{4}{5}$, $\mu(a) = \frac{3}{5}$, $\mu(b) = \frac{3}{10}$, $\mu(1) = \frac{3}{10}$. By routine calculations, it is easy to check that μ is a T_L -fuzzy ideal of X.

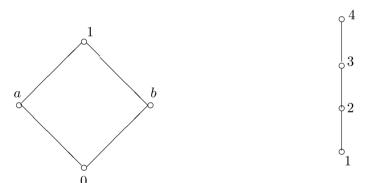


Fig. 3 The lattice X in Example 3.3(2) Fig. 4 The lattice L in Example 4.3

In the following, we give some properties of TL-fuzzy ideals, which will be used in the sequel.

Proposition 3.4 Let $\mu_i (i \in I)$ be *TL*-fuzzy ideals of a lattice *X*. Then $\bigcap_{i \in I} \mu_i$ is a *TL*-fuzzy ideal of *X*.

Proof The proof is straightforward.

By the following example we show that the union of two TL-fuzzy ideals is not a TL-fuzzy ideal.

Example 3.5 Let $X = \{0, a, b, 1\}$ be a lattice, the partial order on X is defined as shown in Fig. 3 in Example 3.3 (2). Let L = [0, 1] and $T = T_M$. Define two L-fuzzy subsets μ and ν of X as follows: $\mu(0) = \frac{3}{5}$, $\mu(a) = \frac{1}{2}$, $\mu(b) = \frac{1}{5}$, $\mu(1) = \frac{1}{5}$; $\nu(0) = \frac{7}{10}$, $\nu(a) = \frac{1}{10}$, $\nu(b) = \frac{3}{10}$, $\nu(1) = \frac{1}{10}$. Then we can check that both μ and ν are TL-fuzzy ideals of X. Now $(\mu \cup \nu)(0) = \frac{7}{10}$, $(\mu \cup \nu)(a) = \frac{1}{2}$, $(\mu \cup \nu)(b) = \frac{3}{10}$, $(\mu \cup \nu)(1) = \frac{1}{5}$. Since $(\mu \cup \nu)(a \lor b) = (\mu \cup \nu)(1) = \frac{1}{5} < (\mu \cup \nu)(a) \land (\mu \cup \nu)(b) = \frac{3}{10}$, $\mu \cup \nu$ is not a TL-fuzzy ideal of X.

4 The Lattice of *TL*-Fuzzy Ideals

Now, we give a procedure to construct the TL-fuzzy ideal generated by an L-fuzzy subset. And we shall discuss the algebraic structure of the set of all TL-fuzzy ideals in lattices.

Definition 4.1 Let μ be an *L*-fuzzy subset in a lattice *X*. A *TL*-fuzzy ideal ν of the lattice *X* is said to be generated by μ , if $\mu \subseteq \nu$ and for any *TL*-fuzzy ideal ω of *X*, $\mu \subseteq \omega$ implies $\nu \subseteq \omega$. The *TL*-fuzzy ideal generated by μ will be denoted by $(\mu)_{TL}$.

It follows from Definition 4.1 that $(\mu]_{TL}$ is the smallest TL-fuzzy ideal of the lattice X containing μ . And we can easily get that $(\mu]_{TL} = \bigcap_{i \in I} \{\mu_i \in TLFI[X] | \mu_i \supseteq \mu, i \in I\}$.

It is easy to verify that for μ and ν be L-fuzzy subsets of X. Then

- (1) if μ is a *TL*-fuzzy ideal of the lattice *X*, then $(\mu]_{TL} = \mu$,
- (2) $\mu \subseteq \nu$ implies $(\mu]_{TL} \subseteq (\nu]_{TL}$.

In what follows, we give the formula for calculating the TL-fuzzy ideals generated by L-fuzzy subsets.

Theorem 4.2 Let μ be an *L*-fuzzy subset in the lattice *X*. Then for any $x \in X$,

$$(\mu]_{TL}(x) = \vee \{\mu(a_1)T\mu(a_2)T\cdots T\mu(a_n) | x \le a_1 \lor a_2 \lor \cdots \lor a_n, a_i \in X, i \in I\}.$$

Proof Let

$$\nu(x) = \vee \{\mu(a_1)T\mu(a_2)T\cdots T\mu(a_n) | x \le a_1 \lor a_2 \lor \cdots \lor a_n, a_i \in X, i \in I\}.$$

First, we prove that ν is a *TL*-fuzzy ideal of *X*.

For any $x, y \in X$, we have that

$$\begin{split} \nu(x)T\nu(y) &= (\vee\{\mu(a_1)T\mu(a_2)T\cdots T\mu(a_n)|x \le a_1 \lor a_2 \lor \cdots \lor a_n, a_i \in X, i \in I\})T\\ &\quad (\vee\{\mu(b_1)T\mu(b_2)T\cdots T\mu(b_m)|y \le b_1 \lor b_2 \lor \cdots \lor b_m, b_j \in X, j \in I\})\\ &= \vee\{\mu(a_1)T\mu(a_2)T\cdots T\mu(a_n)T\mu(b_1)T\mu(b_2)T\cdots T\mu(b_m)|x\\ &\le a_1 \lor a_2 \lor \cdots \lor a_n, y \le b_1 \lor b_2 \lor \cdots \lor b_m, a_i, b_j \in X, i, j \in I\}\\ &\le \vee\{\mu(c_1)T\mu(c_2)T\cdots T\mu(c_l)|x \lor y \le c_1 \lor c_2 \lor \cdots \lor c_l, c_i \in X, l \in I\}\\ &= \nu(x \lor y). \end{split}$$

If $y \leq x$ and $x \leq a_1 \lor a_2 \lor \cdots \lor a_n$ for some $a_1, a_2, \cdots, a_n \in X$, then $y \leq a_1 \lor a_2 \lor \cdots \lor a_n$. It follows that $\nu(y) \geq \nu(x)$. By Theorem 3.2, we can get that ν is a *TL*-fuzzy ideal of *X*.

Next, since $x \leq x$, we have that $\nu(x) \geq \mu(x)$. So $\mu \subseteq \nu$.

Finally, suppose that ω is a *TL*-fuzzy ideal of *X* with $\mu \subseteq \omega$. Then for any $x \in X$, $\mu(x) \leq \omega(x)$. Moreover, for any $a_1, a_2, \dots a_n \in X$ with $x \leq a_1 \vee a_2 \vee \dots \vee a_n$, we have $\mu(a_1)T\mu(a_2)T\cdots T\mu(a_n) \leq \omega(a_1)T\omega(a_2)T\cdots T\omega(a_n) \leq \omega(a_1 \vee a_2 \vee \dots \vee a_n) \leq \omega(x)$, since ω is a *TL*-fuzzy ideal of *X*. It follows that $\nu(x) \leq \omega(x)$. Thus, $\nu \subseteq \omega$.

Summarizing the above facts, we obtain that ν is the smallest *TL*-fuzzy ideal in the lattice X with $\mu \subseteq \nu$, that is, ν is the *TL*-fuzzy ideal generated by μ in X. Therefore, $\nu = (\mu]_{TL}$.

Example 4.3 Let $X = \{0, a, b, 1\}$ be a lattice, the partial order on X is defined as shown in Fig. 3 in Example 3.3 (2). Let $L = \{1, 2, 3, 4\}$, the partial order on L is defined as shown in Fig. 4 and $T = \wedge$. Define an L-fuzzy subset μ of X as follows: $\mu(0) = 3$, $\mu(a) = 2$, $\mu(b) = 4$, $\mu(1) = 1$. One can easily check that the TL-fuzzy ideal $(\mu]_{TL}$ generated by μ as follows: $(\mu)_{TL}(0) = 4$, $(\mu)_{TL}(a) = 2$, $(\mu)_{TL}(b) = 4$, $(\mu)_{TL}(1) = 2$.

Let X be a lattice. For any $\mu_1, \mu_2 \in TLFI[X]$, we define $\mu_1 \oplus \mu_2$ and $\mu_1 \otimes \mu_2$ as follows: $\mu_1 \oplus \mu_2 = \mu_1 \cap \mu_2$, $\mu_1 \otimes \mu_2 = \bigcap \{ \mu \in TLFI[X] | \mu \supseteq \mu_1 \cup \mu_2 \} = (\mu_1 \cup \mu_2]_{TL}$. In general, for any $\mu_i \in TLFI[X]$, where $i \in I$, we define $\oplus \{\mu_i | i \in I\} = \bigcap \{\mu_i | i \in I\}$, $\otimes \{\mu_i | i \in I\} = \bigcap \{\mu \in TLFI[X] | \mu \supseteq \bigcup_{i \in I} \mu_i\} = (\bigcup_{i \in I} \mu_i]_{TL}$. Therefore, we can get the following result.

Theorem 4.4 $(TLFI[X], \oplus, \otimes)$ is a complete lattice, which is called the lattice of *TL*-fuzzy ideals.

In particular, when L = [0, 1], we can give the simple formulas for calculating the *T*-fuzzy ideals generated by the union of *T*-fuzzy ideals.

Theorem 4.5 Let μ_1, μ_2 be *T*-fuzzy ideals of a lattice *X*. Then for any $x \in X$,

$$(\mu_1 \cup \mu_2]_T(x) = \sup\{\{\mu_1(a) | x \le a\} \cup \{\mu_2(b) | x \le b\} \cup \{\mu_1(a) T \mu_2(b) | x \le a \lor b\}\}.$$

Proof By Theorem 4.2, we have

$$(\mu_1 \cup \mu_2]_T(x) = \sup\{(\mu_1 \cup \mu_2)(a_1)T(\mu_1 \cup \mu_2)(a_2)T\cdots T(\mu_1 \cup \mu_2)(a_n)|x \\ \leq a_1 \vee \cdots \vee a_n, a_i \in X, i \in I\}.$$

Given an arbitrary small $\epsilon > 0$, we have the following three cases:

Case 1 There exist $a_1, \dots, a_n \in X$, satisfying

- (1) $x \leq a_1 \lor a_2 \lor \cdots \lor a_n$,
- (2) $(\mu_1 \cup \mu_2]_T(x) < \epsilon + \max\{\mu_1(a_1), \mu_2(a_1)\} T \cdots T \max\{\mu_1(a_n), \mu_2(a_n)\},\$
- (3) $\mu_2(a_i) \le \mu_1(a_i), i = 1, \cdots, n.$

Thus $(\mu_1 \cup \mu_2]_T(x) < \epsilon + \mu_1(a_1)T\mu_1(a_2)\cdots T\mu_1(a_n).$

Denote $a = a_1 \vee \cdots \vee a_n$. Since μ_1 is a T-fuzzy ideal of a lattice X, we have

$$\mu_1(a) \ge \mu_1(a_1) T \mu_1(a_2) \cdots T \mu_1(a_n),$$

it follows that $x \leq a$ and $(\mu_1 \cup \mu_2]_T(x) < \epsilon + \mu_1(a)$.

Case 2 There exist $b_1, \dots, b_m \in X$, satisfying

(1) $x \leq b_1 \vee b_2 \vee \cdots \vee b_m$,

(2)
$$(\mu_1 \cup \mu_2]_T(x) < \epsilon + \max\{\mu_1(b_1), \mu_2(b_1)\} T \cdots T \max\{\mu_1(b_m), \mu_2(b_m)\},\$$

(3) $\mu_1(b_i) \le \mu_2(b_i), i = 1, \cdots, m.$

Thus $(\mu_1 \cup \mu_2]_T(x) < \epsilon + \mu_2(b_1)T\mu_2(b_2)T\cdots T\mu_2(b_m).$

Denote $b = b_1 \vee b_2 \vee \cdots \vee b_m$. Since μ_2 is a *T*-fuzzy ideal of a lattice *X*, we have $\mu_2(b) \ge \mu_2(b_1)T\mu_2(b_2)\cdots T\mu_2(b_m)$, it follows that $x \le b$ and $(\mu_1 \cup \mu_2]_T(x) < \epsilon + \mu_2(b)$.

Cases 3 There exist $a_1, \dots, a_s, b_1, \dots, b_t \in X$, satisfying

(1) $x \leq a_1 \vee \cdots \vee a_s \vee b_1 \vee \cdots \vee b_t$, (2)

$$(\mu_1 \cup \mu_2]_T(x) < \epsilon + \max\{\mu_1(a_1), \mu_2(a_1)\}T \cdots T \max\{\mu_1(a_s), \mu_2(a_s)\} T \max\{\mu_1(b_1), \mu_2(b_1)\}T \cdots \max\{\mu_1(b_t), \mu_2(b_t)\},$$

(3) $\mu_2(a_i) \le \mu_1(a_i), \mu_1(b_j) \le \mu_2(b_j), i = 1, 2, \cdots, s, j = 1, 2, \cdots t.$ Thus

$$(\mu_1 \cup \mu_2]_T(x) < \epsilon + \mu_1(a_1)T\mu_1(a_2)\cdots T\mu_1(a_s)T\mu_2(b_1)T\mu_2(b_2)T\cdots T\mu_2(b_t).$$

Denote $a = a_1 \vee \cdots \vee a_s$ and $b = b_1 \vee \cdots \vee b_t$, then $x \leq a \vee b$. Since μ_1 and μ_2 are *T*-fuzzy ideals of a lattice *X*, we have

$$\mu_1(a) \ge \mu_1(a_1)T\mu_1(a_2)\cdots T\mu_1(a_s), \ \mu_2(b) \ge \mu_2(b_1)T\mu_2(b_2)\cdots T\mu_2(b_t).$$

It follows that $x \leq a \vee b$ and $(\mu_1 \cup \mu_2]_T(x) < \epsilon + \mu_1(a)T\mu_2(b)$. Summarizing the above results we obtain

$$(\mu_1 \cup \mu_2]_T(x) \le \sup\{\{\mu_1(a) | x \le a\} \cup \{\mu_2(b) | x \le b\} \cup \{\mu_1(a) T \mu_2(b) | x \le a \lor b\}\}.$$

Conversely,

$$\begin{aligned} \sup\{\mu_1(a)|x \le a\} \\ \le & \sup\{\max\{\mu_1(a), \mu_2(a)\}|x \le a\} \\ \le & \sup\{\max\{\mu_1(a_1), \mu_2(a_1)\}T \cdots T \max\{\mu_1(a_n), \mu_2(a_n)\}|x \le a_1 \lor \cdots \lor a_n\}. \end{aligned}$$

Similarly, we have

$$\sup\{\mu_2(b)|x \le b\}$$

$$\le \quad \sup\{\max\{\mu_1(a_1), \mu_2(a_1)\}T \cdots T \max\{\mu_1(a_n), \mu_2(a_n)\}|x \le a_1 \lor \cdots \lor a_n\}.$$

Since $\mu_1(a)T\mu_2(b) \le \max\{\mu_1(a), \mu_2(a)\}T \max\{\mu_1(b), \mu_2(b)\}\$, we have

 $\sup\{\mu_1(a)T\mu_2(b)|x \le a \lor b\}$

- $\leq \sup\{\max\{\mu_1(a), \mu_2(a)\}T \max\{\mu_1(b), \mu_2(b)\} | x \leq a \lor b\}$
- $\leq \sup\{\max\{\mu_1(a_1), \mu_2(a_1)\} T \cdots T \max\{\mu_1(a_n), \mu_2(a_n)\} | x \leq a_1 \vee \cdots \vee a_n\}.$

Therefore, $\sup\{\{\mu_1(a)|x \le a\} \cup \{\mu_2(b)|x \le b\} \cup \{\mu_1(a)T\mu_2(b)|x \le a \lor b\}\} \le (\mu_1 \cup \mu_2]_T(x)$. This completes the proof.

When L = [0,1] and $T = T_M$, that is, $xT_M y = \min\{x, y\}$ for all $x, y \in [0,1]$, we can obtain the following main result.

Theorem 4.6 $(TLFI[X], \oplus, \otimes)$ is a complete modular lattice if X is a modular lattice.

Proof From Theorem 4.4, we have that $(TLFI[X], \oplus, \otimes)$ is a complete lattice. To verify that $(TLFI[X], \oplus, \otimes)$ is a modular lattice, we should show that it satisfies modular law. Now, assume $\mu_1, \mu_2, \mu_3 \in TLFI[X]$, where $\mu_1 \supseteq \mu_2$ and $x \in X$, the inequality $\mu_1 \oplus (\mu_2 \otimes \mu_3) \supseteq \mu_2 \otimes (\mu_1 \oplus \mu_3)$ is trivial. We only need to prove that $\mu_1 \oplus (\mu_2 \otimes \mu_3) \subseteq \mu_2 \otimes (\mu_1 \oplus \mu_3)$. Given an arbitrarily small $\epsilon > 0$, by Theorem 4.5, we have the following three cases:

Case 1 There exists $a \in X$ such that $x \leq a$ and $(\mu_2 \otimes \mu_3)(x) < \epsilon + \mu_2(a)$. And so

$$(\mu_1 \oplus (\mu_2 \otimes \mu_3))(x) \le \epsilon + \min\{\mu_1(x), \mu_2(a)\}.$$

Since $\mu_2(a) \le \mu_2(x) \le \mu_1(x)$, it follows that $\min\{\mu_1(x), \mu_2(a)\} = \mu_2(a)$, hence

$$(\mu_1 \oplus (\mu_2 \otimes \mu_3))(x) \le \epsilon + \mu_2(a).$$

Combining $x \leq a$, we obtain

$$(\mu_1 \oplus (\mu_2 \otimes \mu_3))(x) \le \epsilon + \mu_2(x) \le \epsilon + (\mu_2 \otimes (\mu_1 \oplus \mu_3))(x)$$

Case 2 There exists $b \in X$ such that $x \leq b$ and $(\mu_1 \otimes \mu_3)(x) < \epsilon + \mu_3(b)$. From $x \leq b$ it follows that $\mu_3(b) \leq \mu_3(x)$, hence

$$(\mu_1 \oplus (\mu_2 \otimes \mu_3))(x) \le \epsilon + \min\{\mu_1(x), \mu_3(x)\}.$$

Combining $x \leq x$ and the definition of $\mu_2 \otimes (\mu_1 \oplus \mu_3)$, we have

$$(\mu_1 \oplus (\mu_2 \otimes \mu_3))(x) \le \epsilon + (\mu_2 \otimes (\mu_1 \oplus \mu_3))(x).$$

Case 3 There are $a, b \in X$ such that $x \leq a \lor b$ and $(\mu_2 \otimes \mu_3)(x) < \epsilon + \min\{\mu_2(a), \mu_3(b)\}$. Hence $(\mu_1 \oplus (\mu_2 \otimes \mu_3))(x) \leq \epsilon + \min\{\mu_1(x), \mu_2(a), \mu_3(b)\}$. Denote $b_1 = (x \lor a) \land b$, then $b_1 \leq x \lor a$ and $b_1 \leq b$. Notice that X is a modular lattice, $a \lor b_1 = a \lor ((x \lor a) \land b) = (x \lor a) \land (a \lor b) \geq x$. Since μ_1, μ_3 are fuzzy ideals, we have $\mu_3(b) \leq \mu_3(b_1)$ and $\mu_1(x \lor a) \leq \mu_1(b_1)$. It follows that

$$\begin{aligned} &(\mu_1 \oplus_1 (\mu_2 \otimes \mu_3))(x) \\ &\leq \ \epsilon + \min\{\mu_2(a), \mu_1(a), \mu_1(x), \mu_3(b)\} \\ &= \ \epsilon + \min\{\mu_2(a), \min\{\mu_1(a), \mu_1(x)\}, \mu_3(b)\} \\ &\leq \ \epsilon + \min\{\mu_2(a), \mu_1(x \lor a), \mu_3(b)\} \\ &\leq \ \epsilon + \min\{\mu_2(a), \mu_1(b_1), \mu_3(b_1)\} \\ &= \ \epsilon + \min\{\mu_2(a), \min\{\mu_1(b_1), \mu_3(b_1)\}\} \\ &= \ \epsilon + \min\{\mu_2(a), (\mu_1 \oplus \mu_3)(b_1)\} \\ &\leq \ \epsilon + (\mu_2 \otimes (\mu_1 \oplus \mu_3))(x). \end{aligned}$$

Since ϵ is arbitrary, we have $(\mu_1 \oplus (\mu_2 \otimes \mu_3))(x) \leq (\mu_2 \otimes (\mu_1 \oplus \mu_3))(x)$. Therefore,

$$\mu_1 \oplus (\mu_2 \otimes \mu_3) \subseteq \mu_2 \otimes (\mu_1 \oplus \mu_3).$$

1349

Summarizing the above facts, we get that for any $x \in X$ and given an arbitrarily small $\epsilon > 0$,

$$(\mu_1 \oplus (\mu_2 \otimes \mu_3))(x) \le \epsilon + (\mu_2 \otimes (\mu_1 \oplus \mu_3))(x).$$

Therefore, $(\mu_1 \oplus (\mu_2 \otimes \mu_3))(x) \leq (\mu_2 \otimes (\mu_1 \oplus \mu_3))(x)$. So $\mu_1 \oplus (\mu_2 \otimes \mu_3) \subseteq \mu_2 \otimes (\mu_1 \oplus \mu_3)$, that is, $(TLFI[X], \oplus, \otimes)$ is a complete modular lattice.

5 T-Product of TL-Fuzzy Ideals

In this section, as a continuation of the work [11], we will explore necessary and sufficient conditions for a fuzzy ideal of a Cartesian product of lattices to be a T-product of fuzzy ideals of lattices under a left continuous t-norm T on a complete lattice L.

First, let us recall the Cartesian product of lattices for the sake of completeness.

Let $(X_1, \wedge_1, \vee_1, \leq_1)$ and $(X_2, \wedge_2, \vee_2, \leq_2)$ be two lattices. Define two binary operations \wedge and \vee on $X_1 \times X_2$ as follows: for any $(x_1, x_2), (y_1, y_2) \in X_1 \times X_2$,

$$(x_1, x_2) \land (y_1, y_2) = (x_1 \land_1 y_1, x_2 \land_2 y_2), (x_1, x_2) \lor (y_1, y_2) = (x_1 \lor_1 y_1, x_2 \lor_2 y_2).$$

Then $X_1 \times X_2$ is a lattice, which is called the Cartesian product lattice of X_1 and X_2 . The corresponding partial order \leq on $X_1 \times X_2$ as follows:

$$(x_1, x_2) \le (y_1, y_2) \Longleftrightarrow x_1 \le_1 y_1, x_2 \le_2 y_2.$$

Definition 5.1 Let $\mu_i \in LF[X_i]$, i = 1, 2. Then the *T*-product of μ_i (i = 1, 2) denoted by $\mu_1 \times_T \mu_2$ is defined as the *L*-fuzzy subset of $X_1 \times X_2$ that satisfies: for any $(x_1, x_2) \in X_1 \times X_2$, $\mu_1 \times_T \mu_2(x_1, x_2) = \mu_1(x_1)T\mu_2(x_2)$.

Theorem 5.2 Let μ_i be a *TL*-fuzzy ideal of a lattice X_i , i = 1, 2. Then $\mu_1 \times_T \mu_2$ is a *TL*-fuzzy ideal of $X_1 \times X_2$.

Proof Assume that μ_i be a *TL*-fuzzy ideal of a lattice X_i , i = 1, 2. For any (x_1, x_2) , $(y_1, y_2) \in X_1 \times X_2$, then we have that

$$\mu_1 \times_T \mu_2((x_1, x_2) \lor (y_1, y_2)) = \mu_1 \times_T \mu_2((x_1 \lor_1 y_1, x_2 \lor_2 y_2))$$

= $\mu_1(x_1 \lor_1 y_1)T\mu_2(x_2 \lor_2 y_2) \ge (\mu_1(x_1)T\mu_1(y_1))T(\mu_2(x_2)T\mu_2(y_2))$
= $(\mu_1(x_1)T\mu_2(x_2))T(\mu_1(y_1)T\mu_2(y_2))$
= $(\mu_1 \times_T \mu_2)(x_1, x_2)T(\mu_1 \times_T \mu_2)(y_1, y_2).$

On the other hand, if $(x_1, x_2) \leq (y_1, y_2)$, that is $x_1 \leq y_1, x_2 \leq y_2$. Then we have

$$\mu_1 \times_T \mu_2(x_1, x_2) = \mu_1(x_1)T\mu_2(x_2) \ge \mu_1(y_1)T\mu_2(y_2) = \mu_1 \times_T \mu_2(y_1, y_2).$$

Therefore, $\mu_1 \times_T \mu_2$ is a *TL*-fuzzy ideal of $X_1 \times X_2$.

In what follows, we introduce the concepts of the projection and the cut shadow of an L-fuzzy set that are instrumental to determine necessary and sufficient conditions under t-norm operation. **Definition 5.3** Let $\mu \in LF[X_1 \times X_2]$. Then the projection of μ on X_i (i = 1, 2) denoted by μ_{X_i} is defined as the *L*-fuzzy subset of X_i (i = 1, 2) that satisfies, respectively, $\mu_{X_1}(x) = \bigvee_{b \in X_2} \mu(x, b)$ for any $x \in X_1$ and $\mu_{X_2}(y) = \bigvee_{a \in X_1} \mu(a, y)$ for any $y \in X_2$.

Theorem 5.4 Let X_1 and X_2 be two lattices and μ be a *TL*-fuzzy ideal of $X_1 \times X_2$. Then μ_{X_i} is a *TL*-fuzzy ideal of X_i , i = 1, 2.

Proof Assume that μ be a *TL*-fuzzy ideal of a lattice $X_1 \times X_2$. For any $x, y \in X_1$, then we have that

$$\mu_{X_1}(x \vee_1 y) = \bigvee_{b \in X_2} \mu(x \vee_1 y, b) \ge \bigvee_{b_1, b_2 \in X_2} \mu(x \vee_1 y, b_1 \vee_2 b_2)$$
$$= \bigvee_{b_1, b_2 \in X_2} \mu((x, b_1) \vee (y, b_2)) \ge \bigvee_{b_1, b_2 \in X_2} [\mu(x, b_1) T \mu(y, b_2)]$$
$$= (\bigvee_{b_1 \in X_2} \mu(x, b_1)) T(\bigvee_{b_2 \in X_2} \mu(y, b_2)) = \mu_{X_1}(x) T \mu_{X_1}(y).$$

On the other hand, we obtain

$$\mu_{X_1}(x \wedge_1 y) = \bigvee_{b \in X_2} \mu(x \wedge_1 y, b) \ge \bigvee_{b_1, b_2 \in X_2} \mu(x \wedge_1 y, b_1 \wedge_2 b_2)$$

=
$$\bigvee_{b_1, b_2 \in X_2} \mu((x, b_1) \wedge (y, b_2)) \ge \bigvee_{b_1, b_2 \in X_2} [\mu(x, b_1) \vee \mu(y, b_2)]$$

=
$$(\bigvee_{b_1 \in X_2} \mu(x, b_1)) \vee (\bigvee_{b_2 \in X_2} \mu(y, b_2)) = \mu_{X_1}(x) \vee \mu_{X_1}(y).$$

Therefore, μ_{X_1} is a *TL*-fuzzy ideal of X_1 . Dually, we have that μ_{X_2} is a *TL*-fuzzy ideal of X_2 .

Definition 5.5 Let $\mu \in LF[X_1 \times X_2]$ and $a \in X_1$, $b \in X_2$. Then the cut shadow of μ with respect to b denoted by $\mu_1|_b$ is defined as the *L*-fuzzy subset of X_1 that satisfies: for any $x \in X_1$, $\mu_1|_b(x) = \mu(x, b)$. Similarly, the cut shadow of μ with respect to a denoted by $\mu_2|_a$ is defined as the *L*-fuzzy subset of X_2 that satisfies: for any $y \in X_2$, $\mu_2|_a(y) = \mu(a, y)$.

Theorem 5.6 Let X_1 and X_2 be two lattices and μ be a *TL*-fuzzy ideal of $X_1 \times X_2$, let $a \in X_1, b \in X_2$. Then $\mu_1|_b$ is a *TL*-fuzzy ideal of X_1 and $\mu_2|_a$ is a *TL*-fuzzy ideal of X_2 .

Proof The proof is straightforward.

In order to obtain necessary and sufficient conditions for a TL-fuzzy ideal of a Cartesian product lattice to be a T-product of fuzzy ideals of lattices, we give the following lemma.

Lemma 5.7 Let X_1 and X_2 be two lattices and μ be a *TL*-fuzzy ideal of $X_1 \times X_2$ such that $Im\mu \subseteq D_T$, let $a \in X_1$, $b \in X_2$. Then $\mu_1|_b \times_T \mu_2|_a \subseteq \mu \subseteq \mu_{X_1} \times_T \mu_{X_2}$.

Proof Assume that μ is a *TL*-fuzzy ideal of a lattice $X_1 \times X_2$.

First, we prove that $\mu \subseteq \mu_{X_1} \times_T \mu_{X_2}$. For any $(x, y) \in X_1 \times X_2$, we have that

$$\mu(x,y) \le \bigvee_{b \in X_2} \mu(x,b) = \mu_{X_1}(x)$$

and $\mu(x, y) \leq \bigvee_{a \in X_1} \mu(a, y) = \mu_{X_2}(y).$

.

Thus, we obtain $\mu(x, y)T\mu(x, y) \le \mu_{X_1}(x)T\mu_{X_2}(y)$, then $\mu(x, y) \le \mu_{X_1} \times_T \mu_{X_2}(x, y)$. Hence, $\mu \subseteq \mu_{X_1} \times_T \mu_{X_2}$.

Next, let us check $\mu_1|_b \times_T \mu_2|_a \subseteq \mu$. For any $(x, y) \in X_1 \times X_2$, we can have

$$\mu_1|_b \times_T \mu_2|_a(x,y) = \mu_1|_b(x)T\mu_2|_a(y) = \mu(x,b)T\mu(a,y) \le \mu((x,b) \lor (a,y))$$

= $\mu((x \lor_1 a, b \lor_2 y)) = \mu((x,y) \lor (a,b)) \le \mu(x,y).$

Thus $\mu_1|_b \times_T \mu_2|_a \subseteq \mu$. Combining the above arguments, we can obtain

$$\mu_1|_b \times_T \mu_2|_a \subseteq \mu \subseteq \mu_{X_1} \times_T \mu_{X_2}$$

for all $a \in X_1, b \in X_2$.

The following theorem gives one of the main results in this paper.

Theorem 5.8 Let X_1 and X_2 be two lattices with the bottom element 0 and μ be a TL-fuzzy ideal of $X_1 \times X_2$ such that $Im\mu \subseteq D_T$. Then μ is the T-product of a TL-fuzzy ideal of X_1 and a TL-fuzzy ideal of X_2 if and only if $\mu_1|_0 \times_T \mu_2|_0 = \mu_{X_1} \times_T \mu_{X_2}$.

Proof Assume that $\mu = \mu_1 \times_T \mu_2$, where μ_1 and μ_2 are *TL*-fuzzy ideals of X_1 and X_2 , respectively. Then $\mu_1(x) \leq \mu_1(0)$ for any $x \in X_1$ and $\mu_2(y) \leq \mu_2(0)$ for any $y \in X_2$. Thus we have $\bigvee_{x \in X_1} \mu_1(x) = \mu_1(0)$ and $\bigvee_{y \in X_2} \mu_2(y) = \mu_2(0)$. Notice this, we can obtain that

$$\mu_1|_0(x) = \mu(x,0) = \mu_1 \times_T \mu_2(x,0) = \mu_1(x)T\mu_2(0) = \mu_1(x)T(\bigvee_{y \in X_2} \mu_2(y))$$
$$= \bigvee_{y \in X_2} [\mu_1(x)T\mu_2(y)] = \bigvee_{y \in X_2} \mu(x,y) = \mu_{X_1}(x).$$

Hence, $\mu_1|_0 = \mu_{X_1}$. Similarly, we can get that $\mu_2|_0 = \mu_{X_2}$. Therefore,

$$\mu_1|_0 \times_T \mu_2|_0 = \mu_{X_1} \times_T \mu_{X_2}.$$

Conversely, assume that $\mu_1|_0 \times_T \mu_2|_0 = \mu_{X_1} \times_T \mu_{X_2}$. By Lemma 5.7, we can get $\mu = \mu_{X_1} \times_T \mu_{X_2}$. Since μ is a *TL*-fuzzy ideal of $X_1 \times X_2$, it follows from Theorem 5.4, we have μ_{X_i} is a *TL*-fuzzy ideal of X_i , i = 1, 2. That is, μ is the *T*-product of a *TL*-fuzzy ideal of X_1 and a *TL*-fuzzy ideal of X_2 .

Open Problem Whether the lattice of all TL-fuzzy ideals of a lattice X forms a distributive lattice or even a modular lattice.

References

- Cintula P, Hájek P. Triangular norm based predicate fuzzy logics[J]. Fuzzy Sets and Systems, 2010, 161: 311–346.
- [2] Esteva F, Godo L. Monoidal t-norm based logic: towards a logic for left-continuous t-norms[J]. Fuzzy Sets and Systems, 2001, 124: 271–288.
- [3] Hájek P. Observations on the monoidal *t*-norm logic[J]. Fuzzy Sets and Systems, 2002, 132: 107–112.

- [4] Noguera C, Esteva F, Godo L. Generalized continuous and left-continuous t-norms arising from algebraic semantics for fuzzy logics[J]. Information Sciences, 2010, 180: 1354–1372.
- [5] Klement E P. Mesiar R, Pap E. Triangular norms[J]. Dordrecht: Kluwer Academic Publishers, 2000.
- [6] Rosenfeld A. Fuzzy groups[J]. J. Math. Anal. Appl., 1971, 35: 512–517.
- [7] Anthony J M, Sherwood H. Fuzzy groups redefined[J]. J. Math. Anal. Appl., 1979, 69: 124–130.
- [8] Anthony J M, Sherwood H. A characterization of fuzzy subgroups[J]. J. Math. Anal. Appl., 1979, 69: 297–305.
- [9] Hu Baoqing. Fuzzy groups and T-fuzzy groups with thresholds[J]. Advances in Fuzzy Mathematics, 2010, 5: 17–29.
- [10] Chon I. Fuzzy subgroups as products[J]. Fuzzy Sets and Systems, 2004, 141: 505–508.
- [11] Yamak S, Kazanci O, Bayrak D. A solution to an open problem on the *T*-product of *TL*-fuzzy subgroups[J]. Fuzzy Sets and Systems, 2011, 178: 102–106.
- [12] Jahan I. Modularity of Ajmal for the lattices of fuzzy ideals of a ring[J]. Iran. J. Fuzzy Syst., 2008, 5: 71–78.
- [13] Jahan I. The lattice of L-ideals of a ring is modular[J]. Fuzzy Sets and Systems, 2012, 199: 121–129.
- [14] Swamy U M, Viswanadha Raju D. Fuzzy ideals and congruences of lattices[J]. Fuzzy Sets and Systems, 1998, 95: 249–253.
- [15] Koguep B B N, Nkuimi C, Lele C. On fuzzy prime ideals of lattice[J]. Samsa Journal of Pure and Applied Mathematics, 2008, 3: 1–11.
- [16] Goguen J A. L-fuzzy sets[J]. J. Math. Anal. Appl., 1967, 18: 145–174.
- [17] Zadeh L A. Fuzzy sets[J]. Inform. and Control, 1965, 8: 338–353.

格的TL - 模糊理想

贺鹏飞,杨永伟

(西北大学数学系,陕西西安 710127)

摘要: 本文研究了格的TL - 模糊理想. 利用生成TL - 模糊理想, 证明了一个模格的全体T_M - 模糊理 想形成一个完备的模格. 此外, 利用L - 模糊集的投影和截影, 获得了将直积格的TL - 模糊理想表示成分量 格的TL - 模糊理想的T - 直积的一个充分必要条件. 所得结果进一步推广和发展了格的模糊理想的理论. 关键词: 左连续t - 模; 模糊理想; 模格; T - 直积

MR(2010)主题分类号: 06D72; 08A72 中图分类号: 0159