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1 Introduction

Throughout this paper R denotes an associative ring with identity, 0 : R — R is a
nonzero endomorphism. A ring R is called reduced if it has no nonzero nilpotent elements,
and a ring R is called an abelian ring if all its idempotents are central. According to Cohn
[4], a ring R is called reversible if ab = 0 implies ba = 0 for all a,b € R. Recently, Baser
et al. [3] defined a ring R to be right (left) a-shifting if whenever ac(b) = 0 (a(a)b = 0)
for a,b € R, ba(a) = 0 (a(b)a = 0), which is a generalization of revesible rings. Recall
that a ring R is semicommutative if ab = 0 implies aRb = 0 for all a,b € R. Baser et al.
[2] extended the notion of semicommutative rings and called a ring R a-semicommutative if
ab = 0 implies aRa(b) = 0 for all a,b € R. Another generalization of semicommutative rings
is the semicommutative a-rings. Wang et al. [17] called a ring R right (left) semicommutative
a-ring if aa(b) = 0 (a(a)b = 0) implies a(a)Rb = 0 (aRa(b) = 0) for all a,b € R, and
investigated characterizations of generalized semicommutative rings. According to Lamber
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[13], a ring R is called symmetric if abc = 0 implies ach = 0 for all a,b,¢c € R. Anderson
and Camillo [1] showed that a ring R is symmetric if and only if riry---7, = 0 implies
r5(1)75(2) - - ro(n) = 0 for any permutation o of the set {1,2,--- ,n} and r; € R. There
are many papers to study symmetric rings and their generalization (see [6, 8, 11, 14, 16]).
In Kwak [12], an endomorphism « of a ring R is called right (left) symmetric if whenever
abc = 0 for a,b,c € R, aca(b) = 0 (a(b)ac = 0). A ring R is called right (left) a-symmetric
if there exists a right (left) symmetric endomorphism o of R. The notion of an a-symmetric
ring is a generalization of a-rigid rings as well as an extension of symmetric rings. Following
[15], a ring R is called a weak symmetric ring if abc € nil(R) implies that acb € nil(R) for all
a,b,c € R, where nil(R) is the set of all nilpotent elements of R. Let o be an endomorphism,
and 0 an a-derivation of R, that is, ¢ is an additive map such that d(ab) = §(a)b+ a(a)d(b),
for a,b € R. When a = idg, an a-derivation ¢§ is called a derivation of R. A ring R is
called a weak a-symmetric provided that abc € nil(R) implies aca(b) € nil(R) for a,b,c € R.
Moreover, R is called a weak §-symmetric if for a,b,¢ € R, abc € nil(R) implies that
acd(b) € nil(R). If R is both weak a-symmetric and weak d-symmetric, then R is called a
weak (a, §)-symmetric ring. In [15], Ouyang and Chen studed the related properties of weak
symmetric rings and weak (o, §)-symmetric rings.

Motivated by the above, for an endomorphism ¢ of a ring R, and a o-derivation § of the
R, we introduce in this article the notions of symmetric o-ring and weak symmetric (o, )-
rings to extend symmetric rings and weak symmetric rings respectively, and investigate their
properties. First, we discuss the relationship between symmetric o-rings and related rings.
Next, we investigate the extension properties of weak symmetric (o, d)-rings. Several known

results are obtained as corollaries of our results.

2 Symmetric o-Rings and Related Rings

As a generalization of symmetric rings, we now introduce the notion of a symmetric
o-ring.

Definition 2.1 Let R be a ring, o a nonzero endomorphism of R. We say that R is a
symmetric o-ring, if abo(¢) = 0 implies aco(b) = 0, for any a,b,c € R.

Similarly, a ring R is said to be a left symmetric o-ring whenever o(a)bc = 0 implies
o(b)ac =0, for a,b,c € R.

Obviously, if 0 = idg, the identity endomorphism of R, then a (left) symmetric o-ring
is a symmetric ring.

The next example shows that if ¢ # idg, a symmetric o-ring need not be symmetric
and a symmetric o-ring need not be a left symmetric o-ring yet. Therefore, the classes of
symmetric o-ring and left symmetric o-ring are non-trivial extension of symmetric rings,
and the symmetric o-property for a ring is not left-right symmetric, and the concepts of
symmetric o-rings and that of left symmetric o-rings are independent of each other.

a b

Example 2.2 Consider the ring R = { ( 0
c

) |a,b,ce Z}, where Z is the ring of
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b 0
integers, the endomorphism o : R — R, o (( “ )) = ( ¢ 0 > It is easy to verify

0 c 0
that R is not symmetric. Let

A @™ by B- az by C— az b3 cR
0 C1 0 Co 0 C3

with ABo(C) = 0, then ajasaz = 0, so we have ajazaz = 0 and ACo(B) = 0, concluding
that R is a symmetric o-ring. For

A 01 B- 11 C= 11 € R
01 0 0 01

we have 0(A)BC = 0, but 6(B)AC = 8 (1) # 0, thus R is not a symmetric o-ring.

The next example provides that if o # idg, then there exists a symmetric ring which is
not a symmetric o-ring.

Example 2.3 Let Z, be the ring of integers modulo 2. We consider ring R = Zy @ Z
with the usual addition and multiplication. Then R is a commutative reduced ring, and so R
is symmetric. Now let 0 : R — R given by o((a,b)) = (b,a). Then o is an endomorphism
of R. For A= (1,0),B = (0,1),C = (1,1) € R, we have ABo(C) = (1,0)(0,1)(1,1) = 0,
but ACo(B) = (1,0)(1,1)(1,0) = (1,0) # 0. Thus R is not a symmetric o-ring.

The next example shows that symmetric o-rings need not be o-rigid rings.

a

0

a b a —b
o = .
0 a 0 a
R is not reduced and hence not o-rigid. But R is a symmetric o-ring. In fact, for any

()t (6 0
a Cc (&

with ABo(C) = 0, we have ace = 0, —acf + ade + bce = 0, it follows that a = 0 or ¢ = 0 or
e =0. Ifa =0, then acf = ade = bce = 0, and then aec = —aed + afc + bec = 0, hence

b
Example 2.4 Consider the ring R = { ( > |a,be Z} and the automorphism
a

oc:R— R,

ACo(B) = ( aec —aed + afc+ bec ) —0
0 aec
Similarly, for ¢ = 0 or e = 0, we have ACo(B) = 0.
Proposition 2.5 For a nonzero endomorphism o of a ring R, the following statements
are equivalent:

(1) Ris a symmtric o-ring;
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(2) Ir(bo(c)) C lg(ca(b)) for any a,b,c € R;

(3) ABo(C) =0 <= ACo(B) =0 for any A,B,C C R

Proof (1) <= (3) Suppose ACo(B) = 0 for A, B,C C R. Then abo(c) = 0 for any
a € Abe B,ce C, and hence aco(b) = 0. Therefore, ACo(B) = {>_ a;c;o(b;)|a; € A, b; €
B,c¢; € C} = 0. The converse is obvious.

(1) < (2) It is clear.

Proposition 2.6 Let 0 be a nonzero endomorphism of a ring R. Then we have the
following;:

(1) If 0® = idg, then R is a right (left) o-shifting ring if and only if R is a right (left)
semicommutative o-ring;

(2) If Ris a reversible ring, then R is a right (left) o-shifting ring if and only if R is a
right (left) semicommutative o-ring.

Proof (1) Suppose that R is right o-shifting and ac(b) = 0 for a,b € R. Then we have
bo(a) =0, o(b)o?(a) = 0 and o(b)o?(a)a(R) = 0. It implies that o(a)Ro?(b) = 0 since R is
o-shifting, and hence o(a)Rb = 0 by 02 = idx.

(2) Suppose that R is left o-shifting and o(a)b = 0 for a,b € R. Then bo(a) = 0 since
R is reversible, and hence bo(a)o(r) = bo(ar) = 0 for all r € R. By the assumption, we
have aro(b) = 0, including that R is a left semicommutative o-ring. Conversely, assume that
R is a left semicommutative o-ring. If a,b € R with ao(b) = 0, then o(b)a = 0 since R is
reversible. So we obtain that bRo(a) = 0 since R is a left semicommutative o-ring, and hence
bo(a) = 0. So R is left o-shifting.

Proposition 2.7 Let o be a monomorphism of a ring R. If R is a symmetric o-ring,
then R is semicommutative.

Proof Assume that R is a symmetric o-ring with a monomorphism ¢. Since 1 € R, R
is a right o-shifting ring. For a,b € R, if ab = 0, then o(a)o(b) = 0, and hence bo(o(a)) = 0.
So we have rbo(o(a)) = 0 and o(a)o(rb) = o(arb) = 0 for any r € R. It shows that arb =0
since o is a monomorphism of R, entailing that R is semicommutative.

Proposition 2.8 Let 0 be an endomorphism of a ring R with o(e) = e for any
e? = e € R. If Ris a symmetric o-ring, then R, R[z] and R[x; 0] are all abelian.

Proof Assume that R is a symmetric o-ring. Then R is a right o-shifting ring. For

any r € R, we have

eoc(l—e)o(r) =eo((1 —e)r) =0,
(1 —-e)o(e)o(r) = (1 —e)o(er) =0.
Hence (1—e)ro(e) =0, ero(1—e) = 0since R is right o-shifting. Thus we get re = ere = er,

proving that R is an abelian ring.

Now, suppose that f?(z) = f(z) € R[z; 0], where f(z) = > e;z'. Then we have,
i=0

Z( Z eio'(e;))zh = Zeimi.

k=0 i+j=k i=0
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It follows that the following system of equations:

et = eo; (2.1)
eoer +ejo(eg) = e (2.2)
epes + ea0?(eg) + ero(er) = ey; (2.3)
eon + €10 (en_1) + €20*(en_2) + -+ enep = €,. (2.4)

From eq. (2.2), we have 2ejeq = e1, 2eje0(l — eg) = e1(1 — ep) and e; = ejeg, €7 = 0
since o(eg) = ep is central. Eq. (2.3) yields 2epes = €5 and so e; = 0 by the same method
as above. Continuing this procedure implies e; = 0 for ¢ = 1,2,--- ;m. Consequently,
f(xz) =€y =€} € R is central.

Let R, be a ring and o, an endomorphism of R, for each v € I'. Then o : Il,cr R, —
IIyerRy, 0((ay)yer) = (04(ay))qer is an endomorphism of the direct product II,erR, of
R,,vel.

The following proposition is a direct verification.

Proposition 2.9 IL,crR, is a symmetric o-ring if and only if R, is a symmetric o,-ring
for each vy € I

Given a ring R and a bimodule gMpg, the trivial extension of R by M is the ring
T(R,M) = R@ M with the usual addition and the following multiplication:

(r1,m1)(ra, ma) = (1172, 11mMg + M4T2).

T(R, M) is isomorphic to the ring of all matrices g mn , wherer € R,m € M
r

and the usual matrix operations are used. For an endomorphism ¢ of a ring R, the map
o :T(R,R) — T(R, R) defined by ((a,b)) = (c(a),o(b)) is an endomorphism of T'(R, R),
where (a,b) € T(R, R), a,b € R.

Proposition 2.10 Let R be a reduced ring with an endomorphism o. If R is a sym-
metric o-ring, then T'(R, R) is a symmetric g-ring.

b b
Proof Suppose that Ris a symmetric o-ring. Let A = a0 ,B = @2 02 ,
0 ay 0 (45}

b

C= ( %3 ’ ) € T(R, R) with AB&(C) = 0. Then we have
as

ajazo(as) = 0; (2.5)

alaga(bg) + CleQU(ag) + blaQU(CLg) =0. (26)

It is known that reduced rings are symmetric rings. Multiplying eq. (2.5) on the right
side by by gives a1bjaz0(as) = 0. If we multiply eq. (2.6) on the left side by a;, then we have

ayayazo(bs) + ararbyo(as) = 0. (2.7)
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Multiplying eq. (2.5) on the left side by a; and on the right side by by gives aya1b20(az)as =
0. Multiplying eq. (2.7) by az on the right side gives0 = ajaja20(b3)as = ajaz0(bz)araso(bs) =

(a1a20(b3))?, so ajazo(bsz) = 0. Thus we have the following equation
albga'((lg) + blaga'((lg) = 0. (28)

If we multiply eq. (2.5) by by on the right side, then we get a;byo(az)as = 0. Multiplying
eq. (2.8) by as on the right side gives 0 = byaso(az)as = byaso(as)asbio(az) = (brazo(az))?.
Thus we obtain biaso(as) = 0, a;byo(az) = 0, and hence we have ajazo(az) = ajbso(az) =
ajazo(by) = bjago(as) = 0 since R is a symmetric o-ring. So ACa(B) = 0, proving that
T(R, R) is a symmetric 5-ring.

Corollary 2.11 (see [8], Corollary 2.4) Let R be a reduced ring, then T'(R, R) is a
symmetric ring.

Proposition 2.12 Let o be an endomorphism of an abelian ring R with o(e) = e for
any €2 = e € R. Then the following statements are equivalent:

(1) Ris a symmetric o-ring;

(2) eR and (1 — e)R are symmetric o-rings.

Proof (1) = (2) Since o(eR) C eR, o((1 — e)R) C (1 — e)R, it is obvious by the
definition.

(2) = (1) Let a,b,¢c € R with abo(c) = 0. Then eabo(c) = 0 and (1 — e)abo(c) = 0.
By the assumption, we get eabo(c) = e3abo(c) = eacbea(c) = eaebo(ec) = 0 and (1 —
e)abo(c) = (1 —e)a(l — e)bo((1 — e)c) = 0. Since eR and (1 — e)R are symmetric o-rings,
eaeco(eb) = eaco(b) = 0and (1 —e)a(l —e)co((1—e)b) = (1 —e)aco(b) = 0, hence aco(b) =
eaco(b) + (1 — e)aco(b) = 0, proving that R is a symmetric a-ring.

Corollary 2.13 (see [8], Proposition 3.6(2)) Let R be an abelian ring. Then R is sym-
metric if and only if eR and (1 — e) R are symmetric.

Recall that for a monomorphism o of a ring R, an over- ring A of Ris a Jordan extension
of R if o can be extended to an automorphism of A and A = U o "(R) (see [10]).

Proposition 2.14 Let A be the corresponding Jordan ext(zensmn of a ring R and ¢ be a
monomorphism of R. Then R is a symmetric o-ring if and only if A is a symmetric o-ring.
Proof Since o(R) C R, it suffices to obtain the necessity.
Assume that R is a symmetric o-ring and abo(c) = 0 for a, b, ¢ € A. By the definition of
A, there existsn > Osuch that 0™ (a), 0™ (b), 0™ (c) € R. It follows that o™ (a)o™(b)o(c™(c)) =
o"(abo(c)) = 0. Since R is a symmetric o-ring, 0™ (a)o™(c)o (0" (b)) = 0™ (aco (b)) = 0. Then,
we have aco(b) = 0 since o is a monomorphism, and proving that A is a symmetric o-ring.
Proposition 2.15 Let R be a ring with an endomorphism o, Saringand7: R — Sa
ring isomorphism. Then R is a symmetric o-ring if and only if S is a symmetric 707~ !-ring.
Proof For a,b,c € R, let a = 7(a), b = 7(b) and ¢ = 7(c) € S. Suppose
that R is a symmetric o-ring and a'b 707 '(¢) = 0 for a’,b,¢ € S. Then we have
T(a)T(b)ToT ! (7(c)) = T(abo(c)) = 0, hence abo(c) = 0 since T is a isomorphism. By

the assumption, we get aco(b) = 0, so a ¢ Tor~(b') = 7(aco(b)) = 0, including that S is
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a symmetric 707 -ring. On the contrary, assume that S is a symmetric 7o7~!

-ring and
abo(c) = 0 for a,b,c € R. Thena'b' ror ! ¢) = r(abo(c)) = 0. By the assumption, we get
g

a'c¢Tor (b)) = 7(aco (b)) = 0, this implies aco(b) = 0. So R is a symmetric o-ring.
3 Weak Symmetric (0,0)-Rings and their Extensions

As a extended weak symmetric rings, we now introduce the notion of a weak symmetric
(0, 6)-ring.

Definition 3.1 Let o be an endomorphism and § a o-derivation of a ring R. A ring R
is called a weak symmetric o-ring if abo(c) € nil(R) implies aco(b) € nil(R), for a,b,c € R.
Moreover, R is called a weak symmetric d-ring if for a,b,¢c € R,abd(c) € nil(R) implies
acd(b) € nil(R). If R is both a weak symmetric o-ring and a weak symmetric J-ring, then R
is called a weak symmetric (o, §)-ring.

Similarly, a ring R is said to be a left weak symmetric (o, §)-ring if o(a)bc € nil(R) then
o(b)ac € nil(R), and if d(a)bc € nil(R) then §(b)ac € nil(R), for a,b,c € R.

It is easy to see that every subring S with o(S) C S, 6(S) C S of a (left) weak symmetric
(0,0)-ring is also a (left) weak symmetric (o, §)-ring.

Consider the R and ¢ in Example 2.3. Taking § = 0, then this example shows that
the notions of weak symmetric (o, d)-rings are not left-right symmetric. Obviously, if o =
idr, 6 = 0, then a (left) weak symmetric (o, d)-ring is a weak symmetric ring. The next
example provides that if o # idgr, § # 0, then there exists a weak symmetric ring which is
not a weak symmetric (o, d)-ring.

Example 3.2 Let Z; be the ring of integers modulo 2, and consider the ring R =
Zo @ Zy with the usual addition and multiplication. Then R is a commutative reduced
ring, and so R is weak symmetric. Now let ¢ : R — R given by o((a,b)) = (b,a) and
o : R — R given by §((a,b)) = (1,0)(a,b) — o(a,b)(1,0) for each (a,b) € Z3. Then o is an
endomorphism of R and § is a o-derivation of R. For A = (1,0),B = (0,1),C =(1,1) € R,
we have ABo(C) = (1,0)(0,1)(1,1) = 0 € nil(R), but ACo(B) = (1,0)(1,1)(1,0) = (1,0) is
not in nil(R). Thus R is not weak symmetric (o, §)-ring.

In the following, we always suppose that ¢ is an endomorphism and § a o-derivation of
R.

Now we consider the n-by-n upper triangular matrix ring T,,(R) over R and the ring

Gy aip az -+ QGp-1
0 a a1 -+ ap-2

S7L(R): . . . . . |ai€R7i:Oa]ﬂ"'>n_]—
o o o0 --- ag

For an endomorphism o and a o-derivation 0 of R, the natural extension 7 : T,,(R) —
T,,(R) defined by 7((a;;)) = (0(a;;)) is an endomorphism of T,,(R) and ¢ : T,,(R) — T,,(R)
defined by 0((ai;)) = (0(as;)) is a o-derivation of T),(R).

Proposition 3.3 The following statements are equivalent:
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(1)
(2)

(3) S,(R) is a weak symmetric (7, d)-ring.

Proof (1) = (2) Let A = (a;;),B = (b;;),C = (¢;5) € T,(R), where a;; = 0,b;; =
0,¢i; = 0, for all ¢ > j, with ABo(C) € nil(T,,(R)) and ABJ(C) € nil(T},(R)). Then
a;;biio(cii) € nil(R), a;b;0(ci;) € nil(R) for all 0 < i < n, and so a;c;0(b;) € nil(R),
a;;¢i;0(by;) € nil(R) since R is a weak symmetric (o,d)-ring. It follows that ACs(B) €
nil(7},(R)) and AC§(B) € nil(T,,(R)). Therefore, T,,(R) is a weak symmetric (&, J)-ring.

(2) = (1) Suppose that T},(R) is a weak symmetric (7,0)-ring. For a,b,c € R with
aba(c) = 0 and abd(c) = 0, we have aEbEG(cE) = 0 and aEbES(cE) = 0, and hence
aFEcEs(bE) = 0 and aEcES(bE) = 0 since T, (R) is a weak symmetric (&, §)-ring, where F
denote the identity matrix. This implies that aco(b) = 0 and acd(b) = 0. So R is a weak
symmetric (o, §)-ring.

(1) <= (3) It is similar to (1) <= (2).

Corollary 3.4 The trivial extension T(R, R) of R by R is a weak symmetric (&, §)-ring

R is a weak symmetric (o, §)-ring;
T,

w(R) is a weak symmetric (&,d)-ring;
(

if and only if R is a weak symmetric (o, )-ring.

Proof By the isomorphism T'(R, R) = T>(R), we obtain the proof.

Corollary 3.5 R[z]/(z") is a weak symmetric (7, 6)-ring if and only if R is a weak
symmetric (o,d)-ring, where (z™) is an ideal of R generated by z" and n is any positive
integer.

Proof By the isomorphism R[x]/{z") = S,,(R), we obtain the proof.

An ring R is said to be an NI ring [9] provided that nil(R) = Nil*(R), where Nil*(R)
denotes the upper nil radical of R.

Proposition 3.6 Let R be an NI ring, e = e € R a central idempotent element of
R. Ifo(e)=e, o(1) =1, d(e) = (1) = 0, then the following statements are equivalent:

(1) R is a weak symmetric (o, d)-ring;

(2) eR and (1 — e)R are weak symmetric (o, d)-rings.

Proof (1) = (2) Suppose that abo(c) € nil(I), abd(c) € nil(I) for a,b, c € I, where I
denotes eR (resp., (1—e)R). Then we have aco(b) € nil(R), acd(b) € nil(R) since R is a weak
symmetric (o,0)-ring, and hence aco(b) € (nil(R)(I) = nil(I), acd(b) € (mil(R)(I) =
nil(7).

(2) = (1) Let a,b,c € R with abo(c) € nil(R), abd(c) € nil(R). Then eaebeo(c) €
nil(eR) and (1—e)a(l—e)b(1—e)o(c) € nil((1—e)R) since eR, (1—e)R are ideals of R and e €
eR, 1—e € (1—e)R. It follows that eaeceo(b) = eaco(b) € nil(eR), and (1—e)a(l—e)co((1—
e)b) = (1 — e)aco(b) € nil((1 — e)R) since eR and (1 — e)R are weak symmetric (o, d)-rings.
Hence aco(b) € nil(R) because nil(R) is an ideal of R. On the other hand, by assumption we
have d(ex) = d(e)x + o(e)d(x) = ed(x) and 6((1 — e)x) = (1 — e)d(x) for any x € R. Thus,
from abd(c) € nil(R) we have eaebd(ec) € nil(R), (1 —e)a(l — e)bd((1 — e)c) € nil(R). Hence
eaeco(eb) = eacd(b) € nil(R) and 1 — e)a(l — e)cd((1 — e)b) = (1 — e)acd(b) € nil(R) since
eR and (1 — e)R are weak symmetric (o, d)-rings. This implies that acd(b) € nil(R) since R
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is an NI ring. Therefore, R is a weak symmetric (o, §)-ring.
An ideal I of a ring R is said to be (o,0)-stable if o(I) C T and 6(I) C I. If I is a (o, §)-

stable ideal, then & : R/T — R/I defined by (@) = o(a) for a € R/I is an endomorphism
of the factor ring R/I, and 6 : R/I — R/I defined by §(a) = 6(a) for @ € R/I is an additive
map of the ring R/I. We can easily see that 0 is a -derivation of the ring R/I.

Theorem 3.7 Let I be a (0,0)-stable and weak symmetric (o, d)-ideal of R. If I C
nil(R), then R/I is a weak symmetric (&, §)-ring if and only R is a weak symmetric (o, §)-ring.

Proof Suppose abs(¢) € nil(R/I) and abé(c) € nil(R/I). Then there exist some
positive integer m,n such that (abo(c))™ € I, (abd(c))™ € I. Thus abo(c) € nil(R) and
abd(c) € nil(R) since I C nil(R). Because R is a weak symmetric (o, d)-ring, we get aco(b) €
nil(R) and acd(b) € nil(R). It follows that aca(b) € nil(R/I) and acd(b) € nil(R/I). Hence
R/I is a weak symmetric (o, d)-ring.

Conversely, assume that R/I is a weak symmetric (7,0)-ring. Let abo(c) € nil(R),

abd(c) € nil(R) for a,b,c € R. Then abo(c) € nil(R/I), abd(c) € nil(R/I). Thus we
have aco(b) = aco(b) € nil(R/I), and acd(b) = acé(b) € nil(R/I) since R/I is a weak
symmetric (o, d)-ring. So there exist some positive integers s and ¢ such that (aco(b))® € I
and (acd(b))t € I . Thus aco(b) € nil(I) and acd(b) € nil(I). Therefore, R is a weak
symmetric (o, §)-ring.

Corollary 3.8 Let 0 be an endomorphism and I a weak symmetric o-ideal of R. If
I Cnil(R), then R/I is a weak symmetric -ring if and only R is a weak symmetric o-ring.

Corollary 3.9 Let ¢ be a derivation and I a weak symmetric d-ideal of R. If I C nil(R),
then R/I is a weak symmetric é-ring if and only R is a weak symmetric é-ring.

Corollary 3.10 Let I be a weak symmetric ideal of R. If I C nil(R), then R/ is a
weak symmetric ring if and only R is a weak symmetric ring.

According to Chen et al. [5], a ring R is called weakly 2-primal if the set of nilpotent
elements in R coincides with its Levitzki radical, that is, nil(R) = L-rad(R). Semicommu-
tative rings, 2-primal rings [9] and locally 2-primal rings [6] are weakly 2-primal rings, and
weakly 2-primal rings are NI-ring.

Lemma 3.11 If R is a weakly 2-primal ring and f(x) = ag+a1x+ -+ a,z™ € R|x].
Then f(x) € nil(R[z]) if and only if a; € nil(R) for each 0 < ¢ < n. that is, we have

nil(R[z]) = nil(R)[z].

Proof Suppose that f(r) = ag + a1z + -+ + a,z™ € R[z] € nil(R[x]). Then by [7],
Proposition 1.3, we obtain a; € nil(R) for each 0 < i < n, and so nil(R[z]) C nil(R)[z]. Now
assume that

f(x) =ao+ a1z + -+ a,z" € R[z] € nil(R)][x].

Consider the finite subset {ag, a,- - ,a,}. Since R is weakly 2-primal and hence nil(R) = L-
rad(R). Then the subring (ag,a, - ,a,) of R generated by {ag,ai, - ,a,} is nilpotent,

so there exists a positive integer k such that any product of k elements a;ia;s - - - a;; from
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{ag, a1, ,a,} is zero. Hence we obtain that f(z)**! = 0 and so f(x) € nil(R[z]). Thus,
we have nil(R[z]) = nil(R)[z].
Let o be an endomorphism and § a o-derivation of R. Then the map ¢ : R[x] — R[x]

defined by (> a;z?) = > o(a;)z’ is an endomorphism of the polynomial ring R[z] and
i=0 i=0

clearly this map extends o, and the o-derivation § of R is also extended to § : R[x] — R[z]
defined by §(3 a;z') = > 6(a;)z’. We can easily see that & is a 5-derivation of the ring
i=0 i=0

RJz].

Theorem 3.12 Let R be a weakly 2-primal ring, ¢ an endomorphism and § a o-
derivation of R. Then R is a weak symmetric (o,d)-ring if and only if R[z] is a weak
symmetric (7, 0)-ring.

Proof Since any subring S with o(S) C S, §(S) C S of a (left) weak symmetric (o, d)-
ring is also a (left) weak symmetric (o, )-ring. Thus it is easy to verify that if R[z] is a weak
symmetric (7,0)-ring, then R is a weak symmetric (o, §)-ring.

Conversely, assume that R is a weak symmetric (o,d)-ring. Let f(x) = ap + a1 +
vt apz™, g(z) = by + bix + -+ + ba™, and h(z) = co + iz + -+ + ¢t € R[x] with
fgo(h) € nil(R[z]). Then we have the following equations by Lemma 3.11:

apbod(co) = Ap € nil(R); (3.1)
agbod (1) + agbi0(co) + a1bod(co) = Aq € nil(R); (3.2)
apbod(c2) + apb1d(c1) + agbad(co) + a1bgd(c1) + a1b1d(co) + azbod(co)

= A, € nil(R); (3.3)

aObO(S(Cn—l) + aoblé(cn_z) + -+ CL7L_2b1(S<CQ) + an_lbo(S(Co) = An—l S n11(R),(34)
apbod(cn) + agbi0(cn_1) + -+ + an_1016(co) + anbod(co) = A, € nil(R). (3.5)

Since R is NI, nil(R) is an ideal of R. eq. (3.1) implies 6(cq)agby € nil(R), bod(co)ag €
nil(R). If multiply eq. (3.2) on the left side by byd(cp), then we have byd(co)aobod(c1) €
nil(R), bod(co)agbid(co) € nil(R). It implies that byd(co)aibyd(co) € nil(R) and a1bed(cop) €
nil(R). So we obtain that

aobod(cr) + aghi8(co) = A} € nil(R). (3.6)

If multiply eq. (3.6) on the right side by agby, then we have agb16(co)agby € nil(R),
apbod(c1)apby € nil(R), and hence agb16(co) € nil(R), agbod(c1) € nil(R).

If multiply eq. (3.3) on the right side by agbg, agbi, agbs, and a,bg, respectively, then
we obtain agbod(cz2), apb1d(c1), agbad(co), asbod(co), arbod(c1), a1b10(co) € nil(R) in turn.

Inductively assume that a;b;0(c;) € nil(R) for i+ j+k <n—1. We apply the above
method to eq. (3.5). First, If multiply eq. (3.5) on the left side by byd(co), then we have
anbod(co) € nil(R) by the induction hypotheses, and

apb10(cn_1) + agbad(cn_2) + -+ + an_1b16(co) = A;; € nil(R). (3.7)
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If we multiply eq. (15) on the right side by agby, it gives agh10(c,_1) € nil(R), and

aobgé(cn_2) + a0b35<0n_3) +---+ Gn—1b15(Co) = A;;/ € HII(R) (38)
If multiply eq. (3.8) on the right side by agbs, agbs, -, a,_1b1, respectively, then we
obtain agbad(c,—2) € nil(R), apbsd(cn—3) € nil(R),---, ap—1016(cy) € nil(R) in turn. By

induction, this shows that a;b;0(cy) = 0 for all ¢,j and k with ¢ + j + k = n, and hence
a;c,0(b;) € nil(R), for all 4,7,k with i + j + k < n since R is a weak symmetric (o, §)-ring.
Since the coefficients of fhd(g) can be written as sums Y a;c;0(b;) and nil(R) is an ideal of
R, this yields fhd(g) € nil(R) by Lemma 3.11.

Similarly, if f(z) = ap + a1x + -+ + anx™, g(x) = by + bz + -+ + bz™, and h(z) =
co+cix+ -+ ¢t € R[z] with fga(h) € nil(R[z]), by the same method as above, we can
obtain a;cyo(b;) € nil(R) for all 4,7,k with i + j + k < n. This yields fha(g) € nil(R) by
Lemma 3.11. Therefore, R[z] is a weak symmetric (7, §)-ring.

Corollary 3.13 Let R be a weakly 2-primal ring and ¢ an endomorphism of R. Then
R is a weak symmetric o-ring if and only if R[x] is a weak symmetric g-ring.

Corollary 3.14 Let R be a weakly 2-primal ring and 0 a derivation of R. Then R is
a weak symmetric é-ring if and only if R[z] is a weak symmetric §-ring.

Corollary 3.15 Let R be a weakly 2-primal ring. Then R is a weak symmetric ring
if and only if R[z] is a weak symmetric ring.

Corollary 3.16(see [15], Corollary 3.10) Let R be a semicommutative ring. Then R is
weak symmetric if and only if R[z] is weak symmetric.
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