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1 Introduction

Throughout this paper R denotes an associative ring with identity, σ : R −→ R is a
nonzero endomorphism. A ring R is called reduced if it has no nonzero nilpotent elements,
and a ring R is called an abelian ring if all its idempotents are central. According to Cohn
[4], a ring R is called reversible if ab = 0 implies ba = 0 for all a, b ∈ R. Recently, Baser
et al. [3] defined a ring R to be right (left) α-shifting if whenever aα(b) = 0 (α(a)b = 0)
for a, b ∈ R, bα(a) = 0 (α(b)a = 0), which is a generalization of revesible rings. Recall
that a ring R is semicommutative if ab = 0 implies aRb = 0 for all a, b ∈ R. Baser et al.
[2] extended the notion of semicommutative rings and called a ring R α-semicommutative if
ab = 0 implies aRα(b) = 0 for all a, b ∈ R. Another generalization of semicommutative rings
is the semicommutative α-rings. Wang et al. [17] called a ring R right (left) semicommutative
α-ring if aα(b) = 0 (α(a)b = 0) implies α(a)Rb = 0 (aRα(b) = 0) for all a, b ∈ R, and
investigated characterizations of generalized semicommutative rings. According to Lamber
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[13], a ring R is called symmetric if abc = 0 implies acb = 0 for all a, b, c ∈ R. Anderson
and Camillo [1] showed that a ring R is symmetric if and only if r1r2 · · · rn = 0 implies
rσ(1)rσ(2) · · · rσ(n) = 0 for any permutation σ of the set {1, 2, · · · , n} and ri ∈ R. There
are many papers to study symmetric rings and their generalization (see [6, 8, 11, 14, 16]).
In Kwak [12], an endomorphism α of a ring R is called right (left) symmetric if whenever
abc = 0 for a, b, c ∈ R, acα(b) = 0 (α(b)ac = 0). A ring R is called right (left) α-symmetric
if there exists a right (left) symmetric endomorphism α of R. The notion of an α-symmetric
ring is a generalization of α-rigid rings as well as an extension of symmetric rings. Following
[15], a ring R is called a weak symmetric ring if abc ∈ nil(R) implies that acb ∈ nil(R) for all
a, b, c ∈ R, where nil(R) is the set of all nilpotent elements of R. Let α be an endomorphism,
and δ an α-derivation of R, that is, δ is an additive map such that δ(ab) = δ(a)b + α(a)δ(b),
for a, b ∈ R. When α = idR, an α-derivation δ is called a derivation of R. A ring R is
called a weak α-symmetric provided that abc ∈ nil(R) implies acα(b) ∈ nil(R) for a, b, c ∈ R.
Moreover, R is called a weak δ-symmetric if for a, b, c ∈ R, abc ∈ nil(R) implies that
acδ(b) ∈ nil(R). If R is both weak α-symmetric and weak δ-symmetric, then R is called a
weak (α, δ)-symmetric ring. In [15], Ouyang and Chen studed the related properties of weak
symmetric rings and weak (σ, δ)-symmetric rings.

Motivated by the above, for an endomorphism σ of a ring R, and a σ-derivation δ of the
R, we introduce in this article the notions of symmetric σ-ring and weak symmetric (σ, δ)-
rings to extend symmetric rings and weak symmetric rings respectively, and investigate their
properties. First, we discuss the relationship between symmetric σ-rings and related rings.
Next, we investigate the extension properties of weak symmetric (σ, δ)-rings. Several known
results are obtained as corollaries of our results.

2 Symmetric σ-Rings and Related Rings

As a generalization of symmetric rings, we now introduce the notion of a symmetric
σ-ring.

Definition 2.1 Let R be a ring, σ a nonzero endomorphism of R. We say that R is a
symmetric σ-ring, if abσ(c) = 0 implies acσ(b) = 0, for any a, b, c ∈ R.

Similarly, a ring R is said to be a left symmetric σ-ring whenever σ(a)bc = 0 implies
σ(b)ac = 0, for a, b, c ∈ R.

Obviously, if σ = idR, the identity endomorphism of R, then a (left) symmetric σ-ring
is a symmetric ring.

The next example shows that if σ 6= idR, a symmetric σ-ring need not be symmetric
and a symmetric σ-ring need not be a left symmetric σ-ring yet. Therefore, the classes of
symmetric σ-ring and left symmetric σ-ring are non-trivial extension of symmetric rings,
and the symmetric σ-property for a ring is not left-right symmetric, and the concepts of
symmetric σ-rings and that of left symmetric σ-rings are independent of each other.

Example 2.2 Consider the ring R =

{(
a b

0 c

)
| a, b, c ∈ Z

}
, where Z is the ring of
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integers, the endomorphism σ : R → R, σ

((
a b

0 c

))
=

(
a 0
0 0

)
. It is easy to verify

that R is not symmetric. Let

A =

(
a1 b1

0 c1

)
,B =

(
a2 b2

0 c2

)
,C =

(
a3 b3

0 c3

)
∈ R

with ABσ(C) = 0, then a1a2a3 = 0, so we have a1a3a2 = 0 and ACσ(B) = 0, concluding
that R is a symmetric σ-ring. For

A =

(
0 1
0 1

)
,B =

(
1 1
0 0

)
,C =

(
1 1
0 1

)
∈ R,

we have σ(A)BC = 0, but σ(B)AC =

(
0 1
0 0

)
6= 0, thus R is not a symmetric σ-ring.

The next example provides that if σ 6= idR, then there exists a symmetric ring which is
not a symmetric σ-ring.

Example 2.3 Let Z2 be the ring of integers modulo 2. We consider ring R = Z2

⊕
Z2

with the usual addition and multiplication. Then R is a commutative reduced ring, and so R

is symmetric. Now let σ : R −→ R given by σ((a, b)) = (b, a). Then σ is an endomorphism
of R. For A = (1, 0), B = (0, 1), C = (1, 1) ∈ R, we have ABσ(C) = (1, 0)(0, 1)(1, 1) = 0,
but ACσ(B) = (1, 0)(1, 1)(1, 0) = (1, 0) 6= 0. Thus R is not a symmetric σ-ring.

The next example shows that symmetric σ-rings need not be σ-rigid rings.

Example 2.4 Consider the ring R =

{(
a b

0 a

)
| a, b ∈ Z

}
and the automorphism

σ : R → R,

σ

((
a b

0 a

))
=

(
a −b

0 a

)
.

R is not reduced and hence not σ-rigid. But R is a symmetric σ-ring. In fact, for any

A =

(
a b

0 a

)
,B =

(
c d

0 c

)
,C =

(
e f

0 e

)
∈ R

with ABσ(C) = 0, we have ace = 0, −acf + ade + bce = 0, it follows that a = 0 or c = 0 or
e = 0. If a = 0, then acf = ade = bce = 0, and then aec = −aed + afc + bec = 0, hence

ACσ(B) =

(
aec −aed + afc + bec

0 aec

)
= 0.

Similarly, for c = 0 or e = 0, we have ACσ(B) = 0.
Proposition 2.5 For a nonzero endomorphism σ of a ring R, the following statements

are equivalent:
(1) R is a symmtric σ-ring;
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(2) lR(bσ(c)) ⊆ lR(cσ(b)) for any a, b, c ∈ R;
(3) ABσ(C) = 0 ⇐⇒ ACσ(B) = 0 for any A,B, C ⊆ R

Proof (1) ⇐⇒ (3) Suppose ACσ(B) = 0 for A,B, C ⊆ R. Then abσ(c) = 0 for any
a ∈ A, b ∈ B, c ∈ C, and hence acσ(b) = 0. Therefore, ACσ(B) = {∑ aiciσ(bi)|ai ∈ A, bi ∈
B, ci ∈ C} = 0. The converse is obvious.

(1) ⇐⇒ (2) It is clear.
Proposition 2.6 Let σ be a nonzero endomorphism of a ring R. Then we have the

following:
(1) If σ2 = idR, then R is a right (left) σ-shifting ring if and only if R is a right (left)

semicommutative σ-ring;
(2) If R is a reversible ring, then R is a right (left) σ-shifting ring if and only if R is a

right (left) semicommutative σ-ring.
Proof (1) Suppose that R is right σ-shifting and aσ(b) = 0 for a, b ∈ R. Then we have

bσ(a) = 0, σ(b)σ2(a) = 0 and σ(b)σ2(a)α(R) = 0. It implies that σ(a)Rσ2(b) = 0 since R is
σ-shifting, and hence σ(a)Rb = 0 by σ2 = idR.

(2) Suppose that R is left σ-shifting and σ(a)b = 0 for a, b ∈ R. Then bσ(a) = 0 since
R is reversible, and hence bσ(a)σ(r) = bσ(ar) = 0 for all r ∈ R. By the assumption, we
have arσ(b) = 0, including that R is a left semicommutative σ-ring. Conversely, assume that
R is a left semicommutative σ-ring. If a, b ∈ R with aσ(b) = 0, then σ(b)a = 0 since R is
reversible. So we obtain that bRσ(a) = 0 since R is a left semicommutative σ-ring, and hence
bσ(a) = 0. So R is left σ-shifting.

Proposition 2.7 Let σ be a monomorphism of a ring R. If R is a symmetric σ-ring,
then R is semicommutative.

Proof Assume that R is a symmetric σ-ring with a monomorphism σ. Since 1 ∈ R, R

is a right σ-shifting ring. For a, b ∈ R, if ab = 0, then σ(a)σ(b) = 0, and hence bσ(σ(a)) = 0.
So we have rbσ(σ(a)) = 0 and σ(a)σ(rb) = σ(arb) = 0 for any r ∈ R. It shows that arb = 0
since σ is a monomorphism of R, entailing that R is semicommutative.

Proposition 2.8 Let σ be an endomorphism of a ring R with σ(e) = e for any
e2 = e ∈ R. If R is a symmetric σ-ring, then R, R[x] and R[x;σ] are all abelian.

Proof Assume that R is a symmetric σ-ring. Then R is a right σ-shifting ring. For
any r ∈ R, we have

eσ(1− e)σ(r) = eσ((1− e)r) = 0,

(1− e)σ(e)σ(r) = (1− e)σ(er) = 0.

Hence (1−e)rσ(e) = 0, erσ(1−e) = 0 since R is right σ-shifting. Thus we get re = ere = er,
proving that R is an abelian ring.

Now, suppose that f2(x) = f(x) ∈ R[x;σ], where f(x) =
m∑

i=0

eix
i. Then we have,

m∑
k=0

(
∑

i+j=k

eiσ
i(ej))xk =

m∑
i=0

eix
i.
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It follows that the following system of equations:

e2
0 = e0; (2.1)

e0e1 + e1σ(e0) = e1; (2.2)

e0e2 + e2σ
2(e0) + e1σ(e1) = e2; (2.3)

...

e0en + e1σ(en−1) + e2σ
2(en−2) + · · ·+ ene0 = en. (2.4)

From eq. (2.2), we have 2e1e0 = e1, 2e1e0(1 − e0) = e1(1 − e0) and e1 = e1e0, e1 = 0
since σ(e0) = e0 is central. Eq. (2.3) yields 2e0e2 = e2 and so e2 = 0 by the same method
as above. Continuing this procedure implies ei = 0 for i = 1, 2, · · · ,m. Consequently,
f(x) = e0 = e2

0 ∈ R is central.
Let Rγ be a ring and σγ an endomorphism of Rγ for each γ ∈ Γ. Then σ : Πγ∈ΓRγ →

Πγ∈ΓRγ , σ((aγ)γ∈Γ) = (σγ(aγ))γ∈Γ is an endomorphism of the direct product Πγ∈ΓRγ of
Rγ , γ ∈ Γ.

The following proposition is a direct verification.
Proposition 2.9 Πγ∈ΓRγ is a symmetric σ-ring if and only if Rγ is a symmetric σγ-ring

for each γ ∈ Γ.
Given a ring R and a bimodule RMR, the trivial extension of R by M is the ring

T (R, M) = R
⊕

M with the usual addition and the following multiplication:

(r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2).

T (R, M) is isomorphic to the ring of all matrices

(
r m

0 r

)
, where r ∈ R, m ∈ M

and the usual matrix operations are used. For an endomorphism σ of a ring R , the map
σ̄ : T (R, R) → T (R, R) defined by σ̄((a, b)) = (σ(a), σ(b)) is an endomorphism of T (R, R),
where (a, b) ∈ T (R, R), a, b ∈ R.

Proposition 2.10 Let R be a reduced ring with an endomorphism σ. If R is a sym-
metric σ-ring, then T (R, R) is a symmetric σ̄-ring.

Proof Suppose that R is a symmetric σ-ring. LetA =

(
a1 b1

0 a1

)
,B =

(
a2 b2

0 a2

)
,

C =

(
a3 b3

0 a3

)
∈ T (R, R) with ABσ̄(C) = 0. Then we have

a1a2σ(a3) = 0; (2.5)

a1a2σ(b3) + a1b2σ(a3) + b1a2σ(a3) = 0. (2.6)

It is known that reduced rings are symmetric rings. Multiplying eq. (2.5) on the right
side by b1 gives a1b1a2σ(a3) = 0. If we multiply eq. (2.6) on the left side by a1, then we have

a1a1a2σ(b3) + a1a1b2σ(a3) = 0. (2.7)
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Multiplying eq. (2.5) on the left side by a1 and on the right side by b2 gives a1a1b2σ(a3)a2 =
0. Multiplying eq. (2.7) by a2 on the right side gives 0 = a1a1a2σ(b3)a2 = a1a2σ(b3)a1a2σ(b3) =
(a1a2σ(b3))2, so a1a2σ(b3) = 0. Thus we have the following equation

a1b2σ(a3) + b1a2σ(a3) = 0. (2.8)

If we multiply eq. (2.5) by b2 on the right side, then we get a1b2σ(a3)a2 = 0. Multiplying
eq. (2.8) by a2 on the right side gives 0 = b1a2σ(a3)a2 = b1a2σ(a3)a2b1σ(a3) = (b1a2σ(a3))2.
Thus we obtain b1a2σ(a3) = 0, a1b2σ(a3) = 0, and hence we have a1a3σ(a2) = a1b3σ(a2) =
a1a3σ(b2) = b1a3σ(a2) = 0 since R is a symmetric σ-ring. So ACσ̄(B) = 0, proving that
T (R, R) is a symmetric σ̄-ring.

Corollary 2.11 (see [8], Corollary 2.4) Let R be a reduced ring, then T (R, R) is a
symmetric ring.

Proposition 2.12 Let σ be an endomorphism of an abelian ring R with σ(e) = e for
any e2 = e ∈ R. Then the following statements are equivalent:

(1) R is a symmetric σ-ring;
(2) eR and (1− e)R are symmetric σ-rings.
Proof (1) ⇒ (2) Since σ(eR) ⊆ eR, σ((1 − e)R) ⊆ (1 − e)R, it is obvious by the

definition.
(2) ⇒ (1) Let a, b, c ∈ R with abσ(c) = 0. Then eabσ(c) = 0 and (1 − e)abσ(c) = 0.

By the assumption, we get eabσ(c) = e3abσ(c) = eaebeσ(c) = eaebσ(ec) = 0 and (1 −
e)abσ(c) = (1 − e)a(1 − e)bσ((1 − e)c) = 0. Since eR and (1 − e)R are symmetric σ-rings,
eaecσ(eb) = eacσ(b) = 0 and (1− e)a(1− e)cσ((1− e)b) = (1− e)acσ(b) = 0, hence acσ(b) =
eacσ(b) + (1− e)acσ(b) = 0, proving that R is a symmetric α-ring.

Corollary 2.13 (see [8], Proposition 3.6(2)) Let R be an abelian ring. Then R is sym-
metric if and only if eR and (1− e)R are symmetric.

Recall that for a monomorphism σ of a ring R, an over-ring A of R is a Jordan extension

of R if σ can be extended to an automorphism of A and A =
∞⋃

n=0

σ−n(R) (see [10]).

Proposition 2.14 Let A be the corresponding Jordan extension of a ring R and σ be a
monomorphism of R. Then R is a symmetric σ-ring if and only if A is a symmetric σ-ring.

Proof Since σ(R) ⊆ R, it suffices to obtain the necessity.
Assume that R is a symmetric σ-ring and abσ(c) = 0 for a, b, c ∈ A. By the definition of

A, there exists n > 0 such that σn(a), σn(b), σn(c) ∈ R. It follows that σn(a)σn(b)σ(σn(c)) =
σn(abσ(c)) = 0. Since R is a symmetric σ-ring, σn(a)σn(c)σ(σn(b)) = σn(acσ(b)) = 0. Then,
we have acσ(b) = 0 since σ is a monomorphism, and proving that A is a symmetric σ-ring.

Proposition 2.15 Let R be a ring with an endomorphism σ, S a ring and τ : R → S a
ring isomorphism. Then R is a symmetric σ-ring if and only if S is a symmetric τστ−1-ring.

Proof For a, b, c ∈ R, let a
′

= τ(a), b
′

= τ(b) and c
′

= τ(c) ∈ S. Suppose
that R is a symmetric σ-ring and a

′
b
′
τστ−1(c

′
) = 0 for a

′
, b
′
, c
′ ∈ S. Then we have

τ(a)τ(b)τστ−1(τ(c)) = τ(abσ(c)) = 0, hence abσ(c) = 0 since τ is a isomorphism. By
the assumption, we get acσ(b) = 0, so a

′
c
′
τστ−1(b

′
) = τ(acσ(b)) = 0, including that S is
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a symmetric τστ−1-ring. On the contrary, assume that S is a symmetric τστ−1-ring and
abσ(c) = 0 for a, b, c ∈ R. Then a

′
b
′
τστ−1(c

′
) = τ(abσ(c)) = 0. By the assumption, we get

a
′
c
′
τστ−1(b

′
) = τ(acσ(b)) = 0, this implies acσ(b) = 0. So R is a symmetric σ-ring.

3 Weak Symmetric (σ, δ)-Rings and their Extensions

As a extended weak symmetric rings, we now introduce the notion of a weak symmetric
(σ, δ)-ring.

Definition 3.1 Let σ be an endomorphism and δ a σ-derivation of a ring R. A ring R

is called a weak symmetric σ-ring if abσ(c) ∈ nil(R) implies acσ(b) ∈ nil(R), for a, b, c ∈ R.
Moreover, R is called a weak symmetric δ-ring if for a, b, c ∈ R, abδ(c) ∈ nil(R) implies
acδ(b) ∈ nil(R). If R is both a weak symmetric σ-ring and a weak symmetric δ-ring, then R

is called a weak symmetric (σ, δ)-ring.
Similarly, a ring R is said to be a left weak symmetric (σ, δ)-ring if σ(a)bc ∈ nil(R) then

σ(b)ac ∈ nil(R), and if δ(a)bc ∈ nil(R) then δ(b)ac ∈ nil(R), for a, b, c ∈ R.
It is easy to see that every subring S with σ(S) ⊆ S, δ(S) ⊆ S of a (left) weak symmetric

(σ, δ)-ring is also a (left) weak symmetric (σ, δ)-ring.
Consider the R and σ in Example 2.3. Taking δ = 0, then this example shows that

the notions of weak symmetric (σ, δ)-rings are not left-right symmetric. Obviously, if σ =
idR, δ = 0, then a (left) weak symmetric (σ, δ)-ring is a weak symmetric ring. The next
example provides that if σ 6= idR, δ 6= 0, then there exists a weak symmetric ring which is
not a weak symmetric (σ, δ)-ring.

Example 3.2 Let Z2 be the ring of integers modulo 2, and consider the ring R =
Z2

⊕
Z2 with the usual addition and multiplication. Then R is a commutative reduced

ring, and so R is weak symmetric. Now let σ : R −→ R given by σ((a, b)) = (b, a) and
σ : R −→ R given by δ((a, b)) = (1, 0)(a, b)− σ(a, b)(1, 0) for each (a, b) ∈ Z2. Then σ is an
endomorphism of R and δ is a σ-derivation of R. For A = (1, 0), B = (0, 1), C = (1, 1) ∈ R,
we have ABσ(C) = (1, 0)(0, 1)(1, 1) = 0 ∈ nil(R), but ACσ(B) = (1, 0)(1, 1)(1, 0) = (1, 0) is
not in nil(R). Thus R is not weak symmetric (σ, δ)-ring.

In the following, we always suppose that σ is an endomorphism and δ a σ-derivation of
R.

Now we consider the n-by-n upper triangular matrix ring Tn(R) over R and the ring

Sn(R) =








a0 a1 a2 · · · an−1

0 a0 a1 · · · an−2

...
...

...
. . .

...
0 0 0 · · · a0



|ai ∈ R, i = 0, 1, · · · , n− 1





.

For an endomorphism σ and a σ-derivation δ of R, the natural extension σ̄ : Tn(R) −→
Tn(R) defined by σ̄((aij)) = (σ(aij)) is an endomorphism of Tn(R) and δ̄ : Tn(R) −→ Tn(R)
defined by δ((aij)) = (δ(aij)) is a σ̄-derivation of Tn(R).

Proposition 3.3 The following statements are equivalent:
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(1) R is a weak symmetric (σ, δ)-ring;
(2) Tn(R) is a weak symmetric (σ̄, δ̄)-ring;
(3) Sn(R) is a weak symmetric (σ̄, δ̄)-ring.
Proof (1) =⇒ (2) Let A = (aij),B = (bij),C = (cij) ∈ Tn(R), where aij = 0, bij =

0, cij = 0, for all i > j, with ABσ(C) ∈ nil(Tn(R)) and ABδ(C) ∈ nil(Tn(R)). Then
aiibiiσ(cii) ∈ nil(R), aiibiiδ(cii) ∈ nil(R) for all 0 ≤ i ≤ n, and so aiiciiσ(bii) ∈ nil(R),
aiiciiδ(bii) ∈ nil(R) since R is a weak symmetric (σ, δ)-ring. It follows that ACσ̄(B) ∈
nil(Tn(R)) and ACδ̄(B) ∈ nil(Tn(R)). Therefore, Tn(R) is a weak symmetric (σ̄, δ̄)-ring.

(2) =⇒ (1) Suppose that Tn(R) is a weak symmetric (σ̄, δ̄)-ring. For a, b, c ∈ R with
abα(c) = 0 and abδ(c) = 0, we have aEbEσ̄(cE) = 0 and aEbEδ̄(cE) = 0, and hence
aEcEσ̄(bE) = 0 and aEcEδ̄(bE) = 0 since Tn(R) is a weak symmetric (σ̄, δ̄)-ring, where E

denote the identity matrix. This implies that acσ(b) = 0 and acδ(b) = 0. So R is a weak
symmetric (σ, δ)-ring.

(1) ⇐⇒ (3) It is similar to (1) ⇐⇒ (2).
Corollary 3.4 The trivial extension T (R, R) of R by R is a weak symmetric (σ̄, δ̄)-ring

if and only if R is a weak symmetric (σ, δ)-ring.
Proof By the isomorphism T (R, R) ∼= T2(R), we obtain the proof.
Corollary 3.5 R[x]/〈xn〉 is a weak symmetric (σ̄, δ̄)-ring if and only if R is a weak

symmetric (σ, δ)-ring, where 〈xn〉 is an ideal of R generated by xn and n is any positive
integer.

Proof By the isomorphism R[x]/〈xn〉 ∼= Sn(R), we obtain the proof.
An ring R is said to be an NI ring [9] provided that nil(R) = Nil∗(R), where Nil∗(R)

denotes the upper nil radical of R.
Proposition 3.6 Let R be an NI ring, e2 = e ∈ R a central idempotent element of

R. If σ(e) = e, σ(1) = 1, δ(e) = δ(1) = 0, then the following statements are equivalent:
(1) R is a weak symmetric (σ, δ)-ring;
(2) eR and (1− e)R are weak symmetric (σ, δ)-rings.
Proof (1) =⇒ (2) Suppose that abσ(c) ∈ nil(I), abδ(c) ∈ nil(I) for a, b, c ∈ I, where I

denotes eR (resp., (1−e)R). Then we have acσ(b) ∈ nil(R), acδ(b) ∈ nil(R) since R is a weak
symmetric (σ, δ)-ring, and hence acσ(b) ∈ (nil(R)

⋂
I) = nil(I), acδ(b) ∈ (nil(R)

⋂
I) =

nil(I).
(2) =⇒ (1) Let a, b, c ∈ R with abσ(c) ∈ nil(R), abδ(c) ∈ nil(R). Then eaebeσ(c) ∈

nil(eR) and (1−e)a(1−e)b(1−e)σ(c) ∈ nil((1−e)R) since eR, (1−e)R are ideals of R and e ∈
eR, 1−e ∈ (1−e)R. It follows that eaeceσ(b) = eacσ(b) ∈ nil(eR), and (1−e)a(1−e)cσ((1−
e)b) = (1− e)acσ(b) ∈ nil((1− e)R) since eR and (1− e)R are weak symmetric (σ, δ)-rings.
Hence acσ(b) ∈ nil(R) because nil(R) is an ideal of R. On the other hand, by assumption we
have δ(ex) = δ(e)x + σ(e)δ(x) = eδ(x) and δ((1 − e)x) = (1 − e)δ(x) for any x ∈ R. Thus,
from abδ(c) ∈ nil(R) we have eaebδ(ec) ∈ nil(R), (1− e)a(1− e)bδ((1− e)c) ∈ nil(R). Hence
eaecσ(eb) = eacδ(b) ∈ nil(R) and 1 − e)a(1 − e)cδ((1 − e)b) = (1 − e)acδ(b) ∈ nil(R) since
eR and (1− e)R are weak symmetric (σ, δ)-rings. This implies that acδ(b) ∈ nil(R) since R
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is an NI ring. Therefore, R is a weak symmetric (σ, δ)-ring.
An ideal I of a ring R is said to be (σ, δ)-stable if σ(I) ⊆ I and δ(I) ⊆ I. If I is a (σ, δ)-

stable ideal, then σ̄ : R/I −→ R/I defined by σ̄(ā) = ¯σ(a) for ā ∈ R/I is an endomorphism
of the factor ring R/I, and δ̄ : R/I −→ R/I defined by δ(ā) = ¯δ(a) for ā ∈ R/I is an additive
map of the ring R/I. We can easily see that δ̄ is a σ̄-derivation of the ring R/I.

Theorem 3.7 Let I be a (σ, δ)-stable and weak symmetric (σ, δ)-ideal of R. If I ⊆
nil(R), then R/I is a weak symmetric (σ̄, δ̄)-ring if and only R is a weak symmetric (σ, δ)-ring.

Proof Suppose āb̄σ̄(c̄) ∈ nil(R/I) and āb̄δ̄(c̄) ∈ nil(R/I). Then there exist some
positive integer m,n such that (abσ(c))n ∈ I, (abδ(c))n ∈ I. Thus abσ(c) ∈ nil(R) and
abδ(c) ∈ nil(R) since I ⊆ nil(R). Because R is a weak symmetric (σ, δ)-ring, we get acσ(b) ∈
nil(R) and acδ(b) ∈ nil(R). It follows that āc̄σ̄ ¯(b) ∈ nil(R/I) and āc̄δ̄ ¯(b) ∈ nil(R/I). Hence
R/I is a weak symmetric (σ, δ)-ring.

Conversely, assume that R/I is a weak symmetric (σ̄, δ̄)-ring. Let abσ(c) ∈ nil(R),
abδ(c) ∈ nil(R) for a, b, c ∈ R. Then āb̄ ¯σ(c) ∈ nil(R/I), āb̄ ¯δ(c) ∈ nil(R/I). Thus we
have āc̄ ¯σ(b) = ¯acσ(b) ∈ nil(R/I), and āc̄ ¯δ(b) = ¯acδ(b) ∈ nil(R/I) since R/I is a weak
symmetric (σ, δ)-ring. So there exist some positive integers s and t such that (acσ(b))s ∈ I

and (acδ(b))t ∈ I . Thus acσ(b) ∈ nil(I) and acδ(b) ∈ nil(I). Therefore, R is a weak
symmetric (σ, δ)-ring.

Corollary 3.8 Let σ be an endomorphism and I a weak symmetric σ-ideal of R. If
I ⊆ nil(R), then R/I is a weak symmetric σ̄-ring if and only R is a weak symmetric σ-ring.

Corollary 3.9 Let δ be a derivation and I a weak symmetric δ-ideal of R. If I ⊆ nil(R),
then R/I is a weak symmetric δ̄-ring if and only R is a weak symmetric δ-ring.

Corollary 3.10 Let I be a weak symmetric ideal of R. If I ⊆ nil(R), then R/I is a
weak symmetric ring if and only R is a weak symmetric ring.

According to Chen et al. [5], a ring R is called weakly 2-primal if the set of nilpotent
elements in R coincides with its Levitzki radical, that is, nil(R) = L-rad(R). Semicommu-
tative rings, 2-primal rings [9] and locally 2-primal rings [6] are weakly 2-primal rings, and
weakly 2-primal rings are NI-ring.

Lemma 3.11 If R is a weakly 2-primal ring and f(x) = a0 + a1x + · · ·+ anxn ∈ R[x].
Then f(x) ∈ nil(R[x]) if and only if ai ∈ nil(R) for each 0 ≤ i ≤ n. that is, we have

nil(R[x]) = nil(R)[x].

Proof Suppose that f(x) = a0 + a1x + · · · + anxn ∈ R[x] ∈ nil(R[x]). Then by [7],
Proposition 1.3, we obtain ai ∈ nil(R) for each 0 ≤ i ≤ n, and so nil(R[x]) ⊆ nil(R)[x]. Now
assume that

f(x) = a0 + a1x + · · ·+ anxn ∈ R[x] ∈ nil(R)[x].

Consider the finite subset {a0, a1, · · · , an}. Since R is weakly 2-primal and hence nil(R) = L-
rad(R). Then the subring 〈a0, a1, · · · , an〉 of R generated by {a0, a1, · · · , an} is nilpotent,
so there exists a positive integer k such that any product of k elements ai1ai2 · · · aik from
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{a0, a1, · · · , an} is zero. Hence we obtain that f(x)k+1 = 0 and so f(x) ∈ nil(R[x]). Thus,
we have nil(R[x]) = nil(R)[x].

Let σ be an endomorphism and δ a σ-derivation of R. Then the map σ̄ : R[x] −→ R[x]

defined by σ̄(
m∑

i=0

aix
i) =

m∑
i=0

σ(ai)xi is an endomorphism of the polynomial ring R[x] and

clearly this map extends σ, and the σ-derivation δ of R is also extended to δ̄ : R[x] −→ R[x]

defined by δ̄(
m∑

i=0

aix
i) =

m∑
i=0

δ(ai)xi. We can easily see that δ̄ is a σ̄-derivation of the ring

R[x].
Theorem 3.12 Let R be a weakly 2-primal ring, σ an endomorphism and δ a σ-

derivation of R. Then R is a weak symmetric (σ, δ)-ring if and only if R[x] is a weak
symmetric (σ̄, δ̄)-ring.

Proof Since any subring S with σ(S) ⊆ S, δ(S) ⊆ S of a (left) weak symmetric (σ, δ)-
ring is also a (left) weak symmetric (σ, δ)-ring. Thus it is easy to verify that if R[x] is a weak
symmetric (σ̄, δ̄)-ring, then R is a weak symmetric (σ, δ)-ring.

Conversely, assume that R is a weak symmetric (σ, δ)-ring. Let f(x) = a0 + a1x +
· · · + anxn, g(x) = b0 + b1x + · · · + bmxm, and h(x) = c0 + c1x + · · · + clx

l ∈ R[x] with
fgδ̄(h) ∈ nil(R[x]). Then we have the following equations by Lemma 3.11:

a0b0δ(c0) = ∆0 ∈ nil(R); (3.1)

a0b0δ(c1) + a0b1δ(c0) + a1b0δ(c0) = ∆1 ∈ nil(R); (3.2)

a0b0δ(c2) + a0b1δ(c1) + a0b2δ(c0) + a1b0δ(c1) + a1b1δ(c0) + a2b0δ(c0)

= ∆2 ∈ nil(R); (3.3)
...

a0b0δ(cn−1) + a0b1δ(cn−2) + · · ·+ an−2b1δ(c0) + an−1b0δ(c0) = ∆n−1 ∈ nil(R);(3.4)

a0b0δ(cn) + a0b1δ(cn−1) + · · ·+ an−1b1δ(c0) + anb0δ(c0) = ∆n ∈ nil(R). (3.5)

Since R is NI, nil(R) is an ideal of R. eq. (3.1) implies δ(c0)a0b0 ∈ nil(R), b0δ(c0)a0 ∈
nil(R). If multiply eq. (3.2) on the left side by b0δ(c0), then we have b0δ(c0)a0b0δ(c1) ∈
nil(R), b0δ(c0)a0b1δ(c0) ∈ nil(R). It implies that b0δ(c0)a1b0δ(c0) ∈ nil(R) and a1b0δ(c0) ∈
nil(R). So we obtain that

a0b0δ(c1) + a0b1δ(c0) = ∆
′
1 ∈ nil(R). (3.6)

If multiply eq. (3.6) on the right side by a0b0, then we have a0b1δ(c0)a0b0 ∈ nil(R),
a0b0δ(c1)a0b0 ∈ nil(R), and hence a0b1δ(c0) ∈ nil(R), a0b0δ(c1) ∈ nil(R).

If multiply eq. (3.3) on the right side by a0b0, a0b1, a0b2, and a1b0, respectively, then
we obtain a0b0δ(c2), a0b1δ(c1), a0b2δ(c0), a2b0δ(c0), a1b0δ(c1), a1b1δ(c0) ∈ nil(R) in turn.

Inductively assume that aibjδ(ck) ∈ nil(R) for i + j + k ≤ n− 1. We apply the above
method to eq. (3.5). First, If multiply eq. (3.5) on the left side by b0δ(c0), then we have
anb0δ(c0) ∈ nil(R) by the induction hypotheses, and

a0b1δ(cn−1) + a0b2δ(cn−2) + · · ·+ an−1b1δ(c0) = ∆
′′
n ∈ nil(R). (3.7)
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If we multiply eq. (15) on the right side by a0b1, it gives a0b1δ(cn−1) ∈ nil(R), and

a0b2δ(cn−2) + a0b3δ(cn−3) + · · ·+ an−1b1δ(c0) = ∆
′′′
n ∈ nil(R). (3.8)

If multiply eq. (3.8) on the right side by a0b2, a0b3, · · · , an−1b1, respectively, then we
obtain a0b2δ(cn−2) ∈ nil(R), a0b3δ(cn−3) ∈ nil(R), · · · , an−1b1δ(c0) ∈ nil(R) in turn. By
induction, this shows that aibjδ(ck) = 0 for all i, j and k with i + j + k = n, and hence
aickδ(bj) ∈ nil(R), for all i, j, k with i + j + k ≤ n since R is a weak symmetric (σ, δ)-ring.
Since the coefficients of fhδ̄(g) can be written as sums

∑
aickδ(bj) and nil(R) is an ideal of

R, this yields fhδ̄(g) ∈ nil(R) by Lemma 3.11.
Similarly, if f(x) = a0 + a1x + · · · + anxn, g(x) = b0 + b1x + · · · + bmxm, and h(x) =

c0 + c1x + · · ·+ clx
l ∈ R[x] with fgσ̄(h) ∈ nil(R[x]), by the same method as above, we can

obtain aickσ(bj) ∈ nil(R) for all i, j, k with i + j + k ≤ n. This yields fhσ̄(g) ∈ nil(R) by
Lemma 3.11. Therefore, R[x] is a weak symmetric (σ̄, δ̄)-ring.

Corollary 3.13 Let R be a weakly 2-primal ring and σ an endomorphism of R. Then
R is a weak symmetric σ-ring if and only if R[x] is a weak symmetric σ̄-ring.

Corollary 3.14 Let R be a weakly 2-primal ring and δ a derivation of R. Then R is
a weak symmetric δ-ring if and only if R[x] is a weak symmetric δ̄-ring.

Corollary 3.15 Let R be a weakly 2-primal ring. Then R is a weak symmetric ring
if and only if R[x] is a weak symmetric ring.

Corollary 3.16(see [15], Corollary 3.10) Let R be a semicommutative ring. Then R is
weak symmetric if and only if R[x] is weak symmetric.
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具有对称自同态与对称导子的环

王 尧1,王伟亮2, 任艳丽3

(1.南京信息工程大学数学与统计学院, 江苏南京 210044)

(2.天津大学电气与自动化工程学院, 天津 300072)

(3. 南京晓庄学院数学与信息技术学院, 江苏南京 211171)

摘要: 本文研究具有对称自同态和对称导子的环. 利用性质nil(R[x]) =nil(R)[x], 我们证明了: 如果 R

是弱 2-primal环, 则 R是弱对称 (σ, δ) - 环当且仅当 R[x]是弱对称 (σ̄, δ̄) -环. 本文结论拓展了关于对称环

和弱对称环的研究.
关键词: 对称环; 对称 σ - 环; 弱对称 (σ, δ) - 环; 弱 2-primal环
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