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Abstract: In this paper, we study the optimal long term investment problem and optimal

discounted consumption problem on infinite time horizon with logarithmic utility in CIR interest

rate model. By solving the corresponding dynamic programming equations, we obtain the optimal

strategies and value functions for the two optimization problems in explicit form.
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1 Introduction

The financial market considered in this paper is complete and consists of one bank
account and one risky stock. Let (Ω,F , P, (Ft)t≥0) be a filtered probability space with the
augmented Brownian filtration generated by the two dimensional Brownian motion W :=
(W1,W2)∗ ((·)∗ denotes the transpose of a vector or a matrix). We assume the bank account
process B = (Bt)t≥0 and the price process S = (St)t≥0 of the risky stock evolve respectively
according to

dBt = Btr(Yt)dt, B0 > 0

and
dSt = St {µ(Yt)dt + e∗dW (t)} , S0 > 0,

where r(y), µ(y) are two continuous functions and e is defined by

e := (
√

1− ρ2, ρ)∗ ∈ [0, 1]× [−1, 1],
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here Y is a stochastic factor process which affects the mean-return-rate µ(Yt) of S and the
risk-free interest rate r(Yt) of B, given by

dYt =
(

b−1

Yt

+ bYt

)
dt + σdW2(t), Y0 = y > 0, (1.1)

where b, b−1, σ ∈ R and b 6= 0.
As Hata ect (see [1, 2]), in present paper, we treat the setting

r(y) = y2, µ(y) = y2 + λy,

where λ ∈ R.
The factor process Y defined in (1.1) is employed in Heston [3] for the modelling of

the stochastic volatility of stock price process. According to (1.1), the risk-free interest rate
rt := r(Yt) = Y 2

t satisfies

drt = k(θ − rt)dt + 2σ
√

rtdW2(t), r0 = y2, (1.2)

where k = −2b, θ = − 2b−1+σ2

2b
. The interest rate defined in equation (1.2) is called Cox-

Ingersoll-Ross (CIR for short) interest rate which is introduced in Cox, Ingersoll and Ross
[4], and the market model described in the above is called CIR interest rate model (see [1, 2]
for some details).

Assumption 1.1 2b−1 ≥ σ2.
Remark 1.1 (i) Assumption 1.1 with Y0 = y > 0 ensures that

P (Yt > 0 for all t ≥ 0) = 1,

which means that the interest rate process is always strictly positive [1].
(ii) Applying Itô’s formula to ektrt, where rt satisfies equation (1.2), we can get

Ey(Y 2
t ) = y2e−kt + θ

(
1− e−kt

)
, (1.3)

where k = −2b, θ = − 2b−1+σ2

2b
and Ey(·) denotes the conditional expectation about initial

value Y0 = y of the factor process Y .
In the above market model, Hata etc. (see [1, 2]) considered the large deviation control

problems which can be transformed to the risk sensitive control problems whose utilities are
exponential functionals. In this paper, we consider the optimal long term investment prob-
lem and optimal discounted consumption problem on infinite time horizon with logarithmic
utility, corresponding to the HARA utility function when risk parameter is 0.

First, we consider the case that there is only investment but not consumption in the
CIR interest rate model. Denote πt the proportion of the investor’s wealth invested in the
risky stock at time t and Xπ the wealth process under strategy π. Then Xπ satisfies

dXπ
t

Xπ
t

= πt
dSt

St

+ (1− πt)
dBt

Bt

, Xπ
0 = x > 0,
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or equivalently,

Xπ
t = x exp

{∫ t

0

(
Y 2

s + λYsπs − π2
s

2

)
ds +

∫ t

0

πse
∗dW (s)

}
. (1.4)

One of our purposes in this paper is to solve the following optimal investment problem.
Problem I Maximize the averaging logarithmic cost criterion (the criterion goes back

to Kelly [5]) per unit time on infinite time horizon

J(x, y;π) = lim
T→∞

Ex,y (log Xπ
T )

T
,

where π ranges over the set of all admissible strategies (to be described later), and Ex,y

denotes the conditional expectation about initial wealth Xπ
0 = x and initial value Y0 = y of

the factor process Y .
Furthermore, we consider the case that there are both investment and consumption in

the CIR interest rate model. Denote Xπ,c
t the wealth process at time t, where πt is the

proportion of the investor’s wealth invested in the risky stock and ct is the control variable
such that ctX

π,c
t is the rate at which wealth is consumed. Then, Xπ,c satisfies the stochastic

differential equation

dXπ,c
t

Xπ,c
t

= πt
dSt

St

+ (1− πt)
dBt

Bt

− ctdt, Xπ,c
0 = x,

i.e.,
dXπ,c

t = Xπ,c
t [Y 2

t + λYtπt − ct]dt + Xπ,c
t πte

∗dW (t), Xπ,c
0 = x. (1.5)

Our another purpose is to consider the optimal consumption problem as follows.
Problem II Maximize the discounted logarithmic cost criterion on infinite time horizon

J(x, y;π, c) = Ex,y

[∫ ∞

0

e−αt log(ctX
π,c
t )dt

]
, α > 0,

where (π, c) ranges over the set of all admissible strategies (to be described later).
Problem I and II were studied for some different market models, for example, Matsumoto

[6] considered Problem I in finite time horizon for the classical Merton wealth problem in
which the risky asset is not completely liquid, Christensen [7] studied Problem I based on
impulse control strategies such that number of trades per unit does not exceed a fixed level,
Noh and Kim [8] considered Problem II with factor process following geometric Brownian
motion, Goll and Kallsen [9] considered Problem II in a general semi-martingale market
model and Pang [10] considered Problem II in the market model in which interest rate
follows Itô process, etc, but the market models considered in previous works do not include
CIR interest rate model.

The contribution of this paper is solving Problems I and II for CIR interest rate model.
In previous works, the main approach used to deal with the two problems is dynamic pro-
gramming method which is a classical method for optimization problems. Similarly, in
present paper, we still invoke the approach to solve our problems.
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2 Optimal Long Term Investment Problem

In this section, we deal with Problem I. First we give the definition of admissible strategy
for this problem.

Definition 2.1 Strategy (πt)t≥0 is said to be an admissible strategy if πt is σ(Ss, Ys, 0 ≤
s ≤ t) - progressively measurable process such that for any T > 0,

Ex,y

(∫ T

0

π2
t dt

)
< ∞. (2.1)

The set of all admissible strategies for Problem I will be denoted by A.
According to (1.4) and (2.1), for any admissible strategy π,

J(x, y;π) = lim
T→∞

Ex,y (log Xπ
T )

T

= lim
T→∞

Ex,y

[∫ T

0

(
Y 2

s + λYsπs − π2
s

2

)
ds

]

T
+ lim

T→∞

Ex,y

(∫ T

0
πse

∗dW (s)
)

T

= lim
T→∞

1
T

Ex,y

[∫ T

0

(
Y 2

s + λYsπs − π2
s

2

)
ds

]
.

Hence, Problem I can be rewritten by

Γ = sup
π∈A

J(x, y;π) = sup
π∈A

lim
T→∞

1
T

Ex,y

[∫ T

0

(
Y 2

s + λYsπs − π2
s

2

)
ds

]
. (2.2)

The corresponding dynamic programming equation associated with control problem (2.2) is

Γ =
σ2

2
v′′ +

(
b−1

y
+ by

)
v′ + sup

π∈R

{
y2 + λyπ − π2

2

}
, (2.3)

where the unknown in equation (2.3) is the pair (Γ, v), and Γ is a constant (see [11, 12]).
In order to solve equation (2.3), we invoke the vanishing discount method discussed

by Bensoussan [11] and Morimoto and Okada [12] in ergodic control, that is to construct
an infinite time horizon discounted cost problem, and treat (2.3) as a limiting case of the
corresponding discounted type Bellman equation as the discount vanishes. First, let us
consider the discounted optimal control problem associated with problem (2.2), that is

uα(x) = sup
π∈A

I(x, y;α, π), (2.4)

where

I(x, y;α, π) = Ex,y

[∫ ∞

0

e−αs

(
Y 2

s + λYsπs − π2
s

2

)
ds

]
, α > 0.

The dynamic programming equation associated with control problem (2.4) is

αuα(y) =
σ2

2
u′′α +

(
b−1

y
+ by

)
u′α + sup

π∈R

{
y2 + λyπ − π2

2

}
(2.5)
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(see [11, 12]). By substitution, we can look for the solution of (2.5) as follows

uα(y) =
(λ2 + 2)(σ2 + 2b−1)

2α(α− 2b)
+

λ2 + 2
2(α− 2b)

y2,

and the potential optimal control strategy

π̂ = λy.

Set vα(y) = uα(y)− uα(0+). By direct verification, we obtain the following proposition.
Proposition 2.1 If Assumption 1.1 holds, in addition to b < 0, then

αuα(0+) → Γ̃ :=
(λ2 + 2)(σ2 + 2b−1)

−4b
, vα(y) → ṽ(y) :=

λ2 + 2
−4b

y2, (2.6)

as α → 0. Furthermore, the limit (Γ̃, ṽ) satisfies (2.3).
Now, we return to problem (2.2).
Theorem 2.1 Under condition of Proposition 2.1, let Γ̃ be the constant obtained in

(2.6), then for any admissible strategy π,

Γ̃ ≥ J(x, y;π) = lim
T→∞

Ex,y (log Xπ
T )

T
.

Furthermore, the optimal strategy and value function for problem (2.2) are respectively given
by π̂t = λYt and Γ̃, i.e.,

Γ̃ = sup
π∈A

J(x, y;π) = J(x, y; π̂).

Proof For any π ∈ A and T > 0, applying Itô’s formula to ṽ(Yt) = λ2+2
−4b

Y 2
t between 0

and T , we get

ṽ(YT ) = ṽ(y) +
∫ T

0

[
σ2

2
ṽ′′(Ys) +

(
b−1

Ys

+ bYs

)
ṽ′(Ys)

]
ds +

∫ T

0

σṽ′(Ys)dW2(s).

By virtue of (1.3),
∫ T

0

σṽ′(Ys)dW2(s) is a martingale. Hence

Ex,y [ṽ(YT )] = ṽ(y) + Ex,y

[∫ T

0

[
σ2

2
ṽ′′ +

(
b−1

Ys

+ bYs

)
ṽ′

]
ds

]
. (2.7)

Since (Γ̃, ṽ) satisfies equation (2.3), from (2.7), we get

Ex,y [ṽ(YT )] ≤ ṽ(y) + Γ̃T − Ex,y

[∫ T

0

(
Y 2

s + λYsπs − π2
s

2

)
ds

]
. (2.8)

Thanks to (1.3), we have, as T →∞,

Ex,y [ṽ(YT )]
T

=
(λ2 + 2)Ex,y(Y 2

T )
−4bT

=
(λ2 + 2)

[
y2e2bT + θ

(
1− e2bT

)]

−4bT
→ 0,
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since b < 0. Hence, according to (2.8),

Γ̃ ≥ lim
T→∞

1
T

Ex,y

[∫ T

0

(
Y 2

s + λYsπs − π2
s

2

)
ds

]
= lim

T→∞
Ex,y (log Xπ

T )
T

= J(x, y;π).

In particular, if π̂t = λYt, it is easy from (1.3) to check that π̂ ∈ A. Since for any t ≥ 0,

σ2

2
ṽ′′(Yt) +

(
b−1

Yt

+ bYt

)
ṽ′(Yt) = Γ̃−

(
Y 2

t + λYtπ̂t − π̂2
t

2

)
,

when π = π̂t, inequality (2.8) becomes equality, which implies

Γ̃ = lim
T→∞

1
T

Ex,y

[∫ T

0

(
Y 2

s + λYsπ̂s − π̂2
s

2

)
ds

]
= sup

π∈A
J(x, y;π).

The proof is completed.

3 Optimal Discounted Consumption Problem on Infinite Time Horizon

In this section, we consider Problem II. First we give the definition of admissible strategy
for this problem.

Definition 3.1 Strategy (πt, ct)t≥0 is said to be an admissible strategy if it is σ(Ss, Ys, 0 ≤
s ≤ t) -progressively measurable and

(i) ct ≥ 0 and there is an upper bounded L which is large enough to guarantee the
feasibility of the optimal consumption control,

(ii) for any T > 0,

Ex,y

(∫ T

0

π2
t dt

)
< ∞, (3.1)

and for any α > 0,

lim
T→∞

e−αT Ex,y

(∫ T

0

π2
t dt

)
= 0. (3.2)

The set of all admissible strategies for Problem II will be denoted by C.
Note that Problem II can be written by

V (x, y) = sup
(π,c)∈C

J(x, y;π, c) = sup
(π,c)∈C

Ex,y

[∫ ∞

0

e−αt log(ctX
π,c
t )dt

]
, α > 0. (3.3)

According to (1.5), the dynamic programming equation associated with problem (3.3) is

αV =sup
π∈R

(
λyπxVx +

1
2
π2x2Vxx + σρπxVxy

)
+ xy2Vx +

(
b−1

y
+ by

)
Vy +

σ2

2
Vyy

+ sup
c∈R

[−cxVx + log(cx)] .
(3.4)

Similar to [10], we can look for the solution of (3.4) of the form

Ṽ (x, y) = A log x + W (y),
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and the candidate optimal control policy

π̄(x, y) = λy, c̄(x, y) = α.

By substitution, we have

Ṽ (x, y) =
1
α

log x + W (y),

where W (y) satisfies

αW =
λ2 + 2

2α
y2 +

(
b−1

y
+ by

)
W ′ +

σ2

2
W ′′ + (log α− 1). (3.5)

We can find the solution of (3.5) as follows

W (y) = a0 + a1y
2,

where

a0 =
(λ2 + 2)(2b−1 + σ2)

2α2(α− 2b)
+

log α− 1
α

, a1 =
λ2 + 2

2α(α− 2b)
.

Hence,

Ṽ (x, y) =
1
α

log x + a0 + a1y
2 (3.6)

is the solution of equation (3.4).
Theorem 3.1 If Assumption 1.1 holds, in addition to α > 2b, then for any (π, c) ∈ C,

Ṽ (x, y) defined in (3.6) satisfies

Ṽ (x, y) ≥ Ex,y

[∫ ∞

0

e−αt log(ctX
π,c
t )

]
dt. (3.7)

Furthermore, the optimal strategy and value function for problem (3.3) are given respectively
by

π̄(x, y) = λy, c̄(x, y) = α,

and Ṽ (x, y), i.e.,

Ṽ (x, y) = sup
(π,c)∈C

J(x, y;π, c) = Ex,y

[∫ ∞

0

e−αt log(c̄tX
π̄,c̄
t )

]
dt. (3.8)

Proof By Itô’s rule, for any T > 0,

e−αT Ṽ (Xπ,c
T , YT ) =Ṽ (x, y) +

∫ T

0

e−αt

[
Xπ,c

t (Y 2
t + λYtπt − ct)Ṽx + Ṽy

(
b−1

Yt

+ bYt

)

+
Ṽxx

2
(Xπ,c

t )2π2
t +

σ2Ṽyy

2
+ ṼxyX

π,c
t ρσπt − αṼ

]
dt

+
∫ T

0

e−αtXπ,c
t Ṽxπte

∗dW (t) +
∫ T

0

e−αtṼyσdW2(t).
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By virtue of (1.3) and (3.1),
∫ T

0

e−αtXπ,c
t Ṽxπte

∗dW (t) and
∫ T

0

e−αtṼyσdW2(t) are martin-

gales. Hence,

e−αT Ex,y

[
Ṽ (Xπ,c

T , YT )
]

=Ṽ (x, y) + Ex,y

( ∫ T

0

e−αt

[
Xπ,c

t (Y 2
t + λYtπt − ct)Ṽx + Ṽy

(
b−1

Yt
+ bYt

)

+
Ṽxx

2
(Xπ,c

t )2π2
t +

σ2Ṽyy

2
+ ṼxyXπ,c

t ρσπt − αṼ

]
dt

)
.

Since Ṽ (x, y) satisfies equation (3.4), from the previous equality, we have

Ṽ (x, y) ≥ Ex,y

[∫ T

0

e−αt log(ctX
π,c
t )dt

]
+ e−αT Ex,y

[
Ṽ (Xπ,c

T , YT )
]
. (3.9)

Next, we will show that

lim
T→∞

e−αT Ex,y

[
Ṽ (Xπ,c

T , YT )
]

=
1
α

lim
T→∞

e−αT Ex,y (log Xπ,c
T )

+ lim
T→∞

e−αT Ex,y

(
a0 + a1Y

2
T

) ≥ 0. (3.10)

Since α− 2b > 0, from (1.3),

lim
T→∞

e−αT Ex,y

[
a0 + a1Y

2
T

]
= 0. (3.11)

On the other hand, since Xπ,c satisfies (1.5) and there is an sufficiently large upper
bounded L for ct, we have

Ex,y (log Xπ,c
T ) = log x + Ex,y

[∫ T

0

(
Y 2

s + λYsπs − cs − π2
s

2

)
ds

]

≥ log x + Ex,y

[∫ T

0

(
2− λ2

2
Y 2

s −
3
2
π2

s − L

)
ds

]

= log x +
2− λ2

2
Ex,y

(∫ T

0

Y 2
s ds

)
− 3

2
Ex,y

(∫ T

0

π2
sds

)
− LT.

From the previous inequality, we can get

lim
T→∞

e−αT Ex,y (log Xπ,c
T )

≥2− λ2

2
lim

T→∞

[
e−αT Ex,y

(∫ T

0

Y 2
s ds

)]
− 3

2
lim

T→∞

[
e−αT Ex,y

(∫ T

0

π2
sds

)]
.

(3.12)

According to (1.3), since α− 2b > 0, it is not hard to show that

lim
T→∞

[
e−αT Ex,y

(∫ T

0

Y 2
t dt

)]
= 0. (3.13)

Since π is admissible control, according to (3.2),

lim
T→∞

[
e−αT Ex,y

(∫ T

0

π2
sds

)]
= 0. (3.14)
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Putting (3.13) and (3.14) into (3.12) , we get

lim
T→∞

e−αT Ex,y (log Xπ,c
T ) ≥ 0. (3.15)

By virtue of (3.15) and (3.11), we prove (3.10) which implies (3.7), combined with (3.9).
In particular, if

π̄ = λYt, c̄ = α,

then (π̄, c̄) ∈ C. Using the same procedure as the proof of (3.9), we get

Ṽ (x, y) = Ex,y

[∫ T

0

e−αt log(c̄tX
π̄,c̄
t )dt

]
+ e−αT Ex,y

[
Ṽ (X π̄,c̄

T , YT )
]
. (3.16)

Since

Ex,y

(
log X π̄,c

T

)
= log x + Ex,y

[∫ T

0

(
Y 2

s + λYsπ̄s − c̄s − π̄2
s

2

)
ds

]

= log x + Ex,y

[∫ T

0

(
2 + λ2

2
Y 2

s − α

)
ds

]
,

it is easy from (1.3) to check that

lim
T→∞

e−αT Ex,y

[
Ṽ (X π̄,c̄

T , YT )
]

= lim
T→∞

e−αT Ex,y

[
1
α

log X π̄,c̄
T + a0 + a1Y

2
T

]
= 0,

which implies (3.8), combined with (3.16). The proof is completed.
In this paper, we consider the case that r(y) and µ(y) are quadratic functions of y. In

this case, we can give the explicit forms for the value functions of Problem I and II. One can
try to consider Problem I and II for generalized forms of r(y) and µ(y). Of course, in the
generalized case, the problems become very difficult.
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李春丽1, 蔡玉杰2

(1. 冶金工业过程系统科学湖北省重点实验室,武汉科技大学, 湖北武汉 430081)

(2. 河南城建学院数理学院,河南平顶山 467036)

摘要: 本文研究了CIR 利率模型中基于对数效用的最优长期投资问题和无限时间域上的最优折算消

费问题. 通过求解相关的动态规划方程, 获得了这两个最优化问题的最优策略及值函数的明确表现形式.
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