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Abstract: In this paper, we study the optimal long term investment problem and optimal
discounted consumption problem on infinite time horizon with logarithmic utility in CIR interest
rate model. By solving the corresponding dynamic programming equations, we obtain the optimal
strategies and value functions for the two optimization problems in explicit form.
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1 Introduction

The financial market considered in this paper is complete and consists of one bank
account and one risky stock. Let (2, F, P, (F;)t>0) be a filtered probability space with the
augmented Brownian filtration generated by the two dimensional Brownian motion W :=
(W1, Wy)* ((-)* denotes the transpose of a vector or a matrix). We assume the bank account
process B = (B;):>o and the price process S = (5;);>¢ of the risky stock evolve respectively

according to
dBt = Bt’f’(}/t)dt, BO >0

and
dSt = St {/L(Y;)dt + e*dW(t)} s So > 07

where r(y), u(y) are two continuous functions and e is defined by

e:=(\1-p%p) € {07 1] X {_171]7
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here Y is a stochastic factor process which affects the mean-return-rate p(Y;) of S and the

risk-free interest rate r(Y;) of B, given by

b_
dy, = <Y1 + bYt> dt + ocdWs(t), Yo =1y > 0, (1.1)
t

where b,b_1,0 € R and b # 0.
As Hata ect (see [1, 2]), in present paper, we treat the setting

r(y) =y wy) ="+ Ny,

where A € R.

The factor process Y defined in (1.1) is employed in Heston [3] for the modelling of
the stochastic volatility of stock price process. According to (1.1), the risk-free interest rate
re :=1r(Y;) = Y2 satisfies

dry = k(0 — r)dt + 20T dWs(t), 1o = ¥, (1.2)
where k = —2b, 0 = —%. The interest rate defined in equation (1.2) is called Cox-

Ingersoll-Ross (CIR for short) interest rate which is introduced in Cox, Ingersoll and Ross
[4], and the market model described in the above is called CIR interest rate model (see [1, 2]
for some details).

Assumption 1.1 2b_; > o2,

Remark 1.1 (i) Assumption 1.1 with Y; =y > 0 ensures that

P(Y,>0forallt>0)=1,

which means that the interest rate process is always strictly positive [1].

(ii) Applying Ito’s formula to e*r;, where r; satisfies equation (1.2), we can get
B,(Y2) = e 10 (1—e M), (13)

where k = —2b, 0 = —% and E,(-) denotes the conditional expectation about initial
value Yy = y of the factor process Y.

In the above market model, Hata etc. (see [1, 2]) considered the large deviation control
problems which can be transformed to the risk sensitive control problems whose utilities are
exponential functionals. In this paper, we consider the optimal long term investment prob-
lem and optimal discounted consumption problem on infinite time horizon with logarithmic
utility, corresponding to the HARA utility function when risk parameter is 0.

First, we consider the case that there is only investment but not consumption in the
CIR interest rate model. Denote m; the proportion of the investor’s wealth invested in the

risky stock at time ¢ and X™ the wealth process under strategy m. Then X™ satisfies

dXT dsS;
= TT+—
Xr ©S,

a5,
B’

+ (1 —m) Xg=x>0,
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or equivalently,

t 2 t
X[ =xexp {/ (Yf + A\, — 7;5) ds + / Wse*dW(S)} (1.4)
0 0

One of our purposes in this paper is to solve the following optimal investment problem.
Problem I Maximize the averaging logarithmic cost criterion (the criterion goes back
to Kelly [5]) per unit time on infinite time horizon

FE log X7
J(z,y;7) = lim Bay (log X7)

T—o0 T ’

where 7 ranges over the set of all admissible strategies (to be described later), and E, ,
denotes the conditional expectation about initial wealth X§ = = and initial value Y, = y of
the factor process Y.

Furthermore, we consider the case that there are both investment and consumption in
the CIR interest rate model. Denote X;"° the wealth process at time ¢, where 7, is the
proportion of the investor’s wealth invested in the risky stock and c¢; is the control variable
such that ¢; X/ is the rate at which wealth is consumed. Then, X™¢ satisfies the stochastic

differential equation

dXxre dSt dBt Tc
T;aczﬂ't?t“r(l—ﬂ't)ﬁ—ctdt, )(07 =,
ie.,
dXZnC = XZT,CD/;? + AYtﬂ't - Ct]dt + X:’cﬂ'te*dW(t), Xg,c =xT. (15)

Our another purpose is to consider the optimal consumption problem as follows.

Problem IT Maximize the discounted logarithmic cost criterion on infinite time horizon
J(I.’ ¥, C) = Efr’ll |:/ e_at log(CtXch)dt , > 07
0

where (7, ¢) ranges over the set of all admissible strategies (to be described later).

Problem I and II were studied for some different market models, for example, Matsumoto
[6] considered Problem I in finite time horizon for the classical Merton wealth problem in
which the risky asset is not completely liquid, Christensen [7] studied Problem I based on
impulse control strategies such that number of trades per unit does not exceed a fixed level,
Noh and Kim [8] considered Problem II with factor process following geometric Brownian
motion, Goll and Kallsen [9] considered Problem II in a general semi-martingale market
model and Pang [10] considered Problem II in the market model in which interest rate
follows It6 process, etc, but the market models considered in previous works do not include
CIR interest rate model.

The contribution of this paper is solving Problems I and II for CIR interest rate model.
In previous works, the main approach used to deal with the two problems is dynamic pro-
gramming method which is a classical method for optimization problems. Similarly, in

present paper, we still invoke the approach to solve our problems.
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2 Optimal Long Term Investment Problem

In this section, we deal with Problem I. First we give the definition of admissible strategy
for this problem.
Definition 2.1 Strategy (m:):>0 is said to be an admissible strategy if 7; is o(Ss, Y5, 0 <

s < t) - progressively measurable process such that for any 7" > 0,

T
E,, (/ 7Tt2dt> < oo. (2.1)
0

The set of all admissible strategies for Problem I will be denoted by A.
According to (1.4) and (2.1), for any admissible strategy m,

Eyy (log X7)
T

E., [IOT (Yﬁ + Y7, — %) ds} E., ( N ﬂse*dW(s)>
= lim + lim

T—o0 T T—o0 T

1 r 9 72

Hence, Problem I can be rewritten by

J(z,y;m) = lim

1 T 2
I'=sup J(z,y;m) = sup lim —F, [/ (Yf + AY, 7, — ﬂ;) ds} . (2.2)
0

T,y
TeA reAT—oo T

The corresponding dynamic programming equation associated with control problem (2.2) is

o)l 3]
I'= —v"+ | —+by|v +supqy”+A\ym — — 5, (2.3)
2 Y 7€R 2

where the unknown in equation (2.3) is the pair (I',v), and T' is a constant (see [11, 12]).

In order to solve equation (2.3), we invoke the vanishing discount method discussed
by Bensoussan [11] and Morimoto and Okada [12] in ergodic control, that is to construct
an infinite time horizon discounted cost problem, and treat (2.3) as a limiting case of the
corresponding discounted type Bellman equation as the discount vanishes. First, let us
consider the discounted optimal control problem associated with problem (2.2), that is

uo () = sup I(z, y; o, ), (2.4)
TeA

where - )
I(z,y;a,m) = E, [/ e * <Y52 + Y7 — 7;5> ds] , a>0.
0

The dynamic programming equation associated with control problem (2.4) is

o? b_ w2
aug(y) = Eu’c’! + <1 + by> ul, + sup {y2 + \ym — 2} (2.5)
Y TeR
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(see [11, 12]). By substitution, we can look for the solution of (2.5) as follows

(A% +2)(0? +2b_) A+2

ualy) = 50— 20) 20a— 267

and the potential optimal control strategy
T=\y.

Set v4(y) = ua(y) — ua(0T). By direct verification, we obtain the following proposition.
Proposition 2.1 If Assumption 1.1 holds, in addition to b < 0, then

- A2 +2)(0? + 2b_ s A2 42
o (0) - T o= CFTEDD ) o) = X202 )

as o — 0. Furthermore, the limit (I', ) satisfies (2.3).
Now, we return to problem (2.2).
Theorem 2.1 Under condition of Proposition 2.1, let T be the constant obtained in

(2.6), then for any admissible strategy ,

~ E,, (log X7
FZJ(x,y;ﬂ):Tlim w.

Furthermore, the optimal strategy and value function for problem (2.2) are respectively given
by #: = A\Y; and T, i.e.,
T =sup J(z,y;7) = J(z,y; 7).
TEA
Proof For any m € A and T > 0, applying Itd’s formula to 9(Y;) = ’\_Z—Zfo between 0
and T, we get

i) =) + | ) [";@"(Ys) " <”Y n bm) f/(}@)] i [ o (Y)W )

T
By virtue of (1.3), / o' (Yy)dWy(s) is a martingale. Hence
0

S

Euy[0(Yr)] = 0(y) + Eay [ /0 ' [U;v + <bY1 - b}g) v} ds] . (2.7)

Since (T, ) satisfies equation (2.3), from (2.7), we get

- T 2
E,,[v(Yr) <o(y)+TIT - E,, [/ <Y32 + Y, 7, — 7;9> ds} . (2.8)
0
Thanks to (1.3), we have, as T — oo,

By [0(Yr)] _ (P +2)B,y(Y2) _ (W +2) [y?® +6(1—7)]

T —40T —40T

— 0,
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since b < 0. Hence, according to (2.8),

_ 1 T 2 E,, (log X~
['> lim ~FE,, U <Yf YT, — 7;) ds] = lim w = J(z,y; 7).
0 —00

In particular, if #; = \Yj, it is easy from (1.3) to check that 7 € A. Since for any ¢ > 0,

0'2 b,1 ~ 7}2

?f/lﬁft) + (Y} + bY;s) {/(Y;) =I- (Y? + AY; 7 — Qf) )

when 7 = 7, inequality (2.8) becomes equality, which implies
~ 1 T 71‘_2
I'=lim —F,, / Y24+ N7, — == | ds| = sup J(z, y; 7).
0 2 TeA

The proof is completed.

3 Optimal Discounted Consumption Problem on Infinite Time Horizon

In this section, we consider Problem II. First we give the definition of admissible strategy
for this problem.

Definition 3.1 Strategy (7, ¢:):>0 is said to be an admissible strategy if it is o(S;, Y5, 0 <
s < t) -progressively measurable and

(i) ¢ > 0 and there is an upper bounded L which is large enough to guarantee the

feasibility of the optimal consumption control,

(ii) for any T'> 0,
T
E,, </ 7Tt2dt> < 00, (3.1)
0

T
Jim. e “TE,, ( / ﬂfdt> =0. (3.2)
0

The set of all admissible strategies for Problem II will be denoted by C.
Note that Problem IT can be written by

and for any a > 0,

V(z,y) = sup J(z,y;mc) = sup E,, [ / e“tlog(ctXZ”c)dt], a>0. (3.3)
(m,c)ecC (m,c)eC 0

According to (1.5), the dynamic programming equation associated with problem (3.3) is

0.2

1 b_
aV =sup (Aymvm + 57r2x2vm - Upchry> + 22V, + (1 + by> Vit 5 Vi
TeR Yy

(3.4)

+ sup [—cxV, + log(cz)] .
ceR

Similar to [10], we can look for the solution of (3.4) of the form

V(z,y) = Alogz + W (y),
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and the candidate optimal control policy

ﬁ('rvy) = Ay, E(xay) =

By substitution, we have

- 1
V(z,y) = o logz + W (y),

where W (y) satisfies

A4 2 bt 2
aW = 2+ v+ ( + by> W+ %W” + (loga —1). (3.5)
e! y

We can find the solution of (3.5) as follows

W(y) =ap+ a1y2>

where
(A2 +2)(2b_1 +0%)  loga—1 A2 +2
ag = ag = ——— .
0 202 (v — 2b) a 7 2a(a—2b)
Hence,
~ 1
V(z,y) = o log z + ag + a1y” (3.6)

is the solution of equation (3.4).
Theorem 3.1 If Assumption 1.1 holds, in addition to « > 2b, then for any (m,c) € C,
V(x,y) defined in (3.6) satisfies

f/(x,y) >E,, [/000 —ot log(e; X[7°)| dt. (3.7)

Furthermore, the optimal strategy and value function for problem (3.3) are given respectively
by
Tz, y) =Ny, ez,y) =«
and V(z,7), i.e
V(z,y) = sup J(z,y;7,¢) = E,, [/ e log(ctXf’E)] dt. (3.8)
0

(m,c)eC

Proof By It6’s rule, for any 7' > 0,

T
~ ~ ~ - (b
TV (XF, Yr) =V (2,y) + / “{X“(Yﬂxm—ct)v +V, (1+bn>
0

e oV,
5o (X[)m

Yy

~a?a

+

T w\“

e X Vyme*dW (t) +/ eV, adWs(t).
0
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T T
By virtue of (1.3) and (3.1), / e~ X Vyme*dW (t) and / e~ “'V,0dWs(t) are martin-
0 0

gales. Hence,

~ ~ T ~ ~
e °TE,, [V(X;’c, YT)] =V (z,y) + Ea, (/ e {Xf’c(Yf F Yy — c)Ve + V, (byi + bYt>
0 t
N -
+ V;T (X727 + 7 Yy ;/yy + nyXZr’C,OO'ﬂ't — af/} dt).
Since V(z,7) satisfies equation (3.4), from the previous equality, we have
~ T ~
V(z,y) = Epy [/ e o IOg(CtXZT’C)dt:| +e TE,, [V(XF9,Yr)] . (3.9)
0
Next, we will show that
. —« ¥ e 1 . —a ,C
Jim e™ B, [V(XE Yr)] == lim e™*" B, (log XT°)
+ lim e *TE,, (ag + a1Y7) > 0. (3.10)
Since o — 2b > 0, from (1.3),
lim e *“"E,, [ao + a1 Y] = 0. (3.11)

T—o0

On the other hand, since X™¢ satisfies (1.5) and there is an sufficiently large upper

bounded L for ¢;, we have

T 2
E;y (log X7°) =logx + E,, [/ (Y'SQ EAYm — s — 7T2s> ds]
0

T
2 —\? 3

>logx + E, [/ < YZ— - L> ds]
0 2 2

2 )\2 T T
=logx + T)\E%y </ yﬁds) — gE-W </ 7r§ds> — LT.
0 0

From the previous inequality, we can get

lim e *"E,, (log X7°)

T—o00

2 T T (3.12)
22 A fim [e—aTEz,y ( / des)] ~3 tim [e‘aTEm’y ( / 7r§ds>].
2 T—o0 0 2 T—oo 0

According to (1.3), since o — 2b > 0, it is not hard to show that

T
Jim [eaTEx,y < /0 detﬂ =0. (3.13)

Since 7 is admissible control, according to (3.2),

T
Tlim [e‘aTEm_yy </ Wde)] =0. (3.14)
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Putting (3.13) and (3.14) into (3.12) , we get

lim e *"E, , (log X7°) > 0. (3.15)

T—o0

By virtue of (3.15) and (3.11), we prove (3.10) which implies (3.7), combined with (3.9).
In particular, if
T = )\Y;ﬁ) c=q,

then (7, ¢) € C. Using the same procedure as the proof of (3.9), we get
~ T - = ~ - =
V(z,y) = E,, [/ e log(ctXZr’c)dt} +e “TE,, [V(X7°,Yr)] . (3.16)
0

Since

_ T =2
E,, (log X;’c) =logz + E,, [/ <Y2 + \Y, 7T, — Cs 7;5) ds}

T 2
2
=logz + E,, [ ( i /\ a) ds] ,

it is easy from (1.3) to check that

T—o0 T—o0

- 1 -
lim e *"E,, [V(X7°, Yr)] = hm e *TE,, [a log X7+ ap + alYﬁ} =0,

which implies (3.8), combined with (3.16). The proof is completed.

In this paper, we consider the case that r(y) and u(y) are quadratic functions of y. In
this case, we can give the explicit forms for the value functions of Problem I and II. One can
try to consider Problem I and II for generalized forms of r(y) and u(y). Of course, in the
generalized case, the problems become very difficult.
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