LOCALIZATION IN HOM-COMPUTABLE COALGEBRAS

ZHANG Su-juan1,2, YAO Hai-lou1

(1. College of Applied Sciences, Beijing University of Technology, Beijing 100124, China)
(2. Department of Math. and Phy., Shijiazhuang Tiedao University, Shijiazhuang 050043, China)

Abstract: In this paper, the localization problems of computable comodules and Hom-computable coalgebras are studied. By applying some localization techniques, the equivalent conditions for computable comodules and Hom-computable coalgebras are obtained, which extend the developing of localization theory of coalgebras.

Keywords: coalgebra; comodule; Hom-computable coalgebra; localization

2010 MR Subject Classification: 16T15; 18E35; 18F05; 20E25

1 Introduction

It is well known that the localization plays an important role in the theory of algebras. It was developed continuously from different aspects. The canonical procedure is actually the formulation of rings of fractions and the associated process of localization which are the most important technical tools in commutative algebra. Meanwhile, Goodearl, Warfield and others investigated the localization in the noncommutative case and obtain many nice results. Also, Gabriel described the localization abstractly in Abelian and Grothendieck category [1]. In the process of localization, one usually applies a functor onto a new category, the quotient category, which has a right adjoint, the section functor. Specifically, if $T: \mathcal{A} \rightarrow \mathcal{A}'$ is an exact functor between Abelian categories, and $S: \mathcal{A}' \rightarrow \mathcal{A}$ is a full and faithful right adjoint functor of T, then the dense subcategory $\ker T$, with object class $\{X \in \mathcal{A} | T(X) = 0\}$, is a localizing subcategory of \mathcal{A}, and the category \mathcal{A}' is equivalent to $\mathcal{A}/\ker T$. In particular, localization in which \mathcal{A} is a Grothendieck category is the same as in Abelian categories. Starting from the localization of rings, some mathematicians developed a theory of localization for coalgebras. For instance, Navarro elaborated Gabriel’s ideas in comodule categories (Grothendieck categories of finite type) in [2–6]. The key point of the theory lies in the description that quotient category becomes a comodule category. In other words, a quotient category \mathcal{M}^C/T is a category of comodules \mathcal{M}^D for certain coalgebra D, where

* Received date: 2014-01-07 \hspace{1cm} Accepted date: 2014-09-09

* Foundation item: Supported by National Natural Science Foundation of China (11271119); the Natural Science Foundation of Beijing (1122002).

C is a coalgebra, and \mathcal{T} is a localizing subcategory of \mathcal{M}^C. Indeed, this is because the category \mathcal{M}^C of right comodules over a coalgebra C is a locally finite Grothendieck category in which the theory of localization can be applied. The advantage of this is that it is better to understand than the case of modules over an arbitrary algebra. It is worth mentioning that the key point in most of such applications is the behaviour of simple comodules through the action of the section functor. Therefore, by studying on a set of localized coalgebras of any coalgebra C, we can obtain some information about C or its category of comodules \mathcal{M}^C.

In this paper, we give a description of the localization in Hom-computable coalgebras. The paper is organized as follows. In Section 2, we list some notations and basic facts about coalgebras, localization and quivers, in order to make the article self-contained. In Section 3, we characterize the localization in Hom-computable coalgebras, and obtain two localizing properties about computable comodules and Hom-computable coalgebras.

2 Preliminaries

Throughout this paper K will be a ground field, and C is a K-coalgebra. We denote by \mathcal{M}^C and \mathcal{M}_f^C the categories of right C-comodules and right C-comodules of finite K-dimension, respectively.

Following [2], a full subcategory \mathcal{T} of \mathcal{M}^C is said to be dense if each exact sequence

$$0 \rightarrow M_1 \rightarrow M \rightarrow M_2 \rightarrow 0$$

in \mathcal{M}^C satisfies that M belongs to \mathcal{T} if and only if M_1 and M_2 belong to \mathcal{T}. For any dense subcategory \mathcal{T} of \mathcal{M}^C, there exists an Abelian category $\mathcal{M}^C/\mathcal{T}$ and an exact functor $T: \mathcal{M}^C \rightarrow \mathcal{M}^C/\mathcal{T}$, such that $T(M) = 0$ for each $M \in \mathcal{T}$, satisfying the following universal property: for any exact functor $F: \mathcal{M}^C \rightarrow \mathcal{C}$ such that $F(M) = 0$ for each $M \in \mathcal{T}$, there exists a unique functor $\overline{F}: \mathcal{M}^C/\mathcal{T} \rightarrow \mathcal{C}$ verifying that $F = \overline{F}T$, where \mathcal{C} is an arbitrary Abelian category. The category $\mathcal{M}^C/\mathcal{T}$ is called the quotient category of \mathcal{M}^C with respect to \mathcal{T}, and \mathcal{T} is known as the quotient functor. A dense subcategory \mathcal{T} of \mathcal{M}^C is said to be localizing if the quotient functor $T: \mathcal{M}^C \rightarrow \mathcal{M}^C/\mathcal{T}$ has a right adjoint functor S, called the section functor. If the section functor is exact, then \mathcal{T} is called perfect localizing, \mathcal{T} is said to be colocalizing if \mathcal{T} has a left adjoint functor H, called the colocalizing functor, \mathcal{T} is called perfect colocalizing if the colocalizing functor is exact.

Let us list some properties of the (co)localizing functors (see [1] and [7]).

Lemma 2.1 Let \mathcal{T} be a dense subcategory of the category of right comodules \mathcal{M}^C over a coalgebra C. The following statements hold:

(a) \mathcal{T} is exact.

(b) If \mathcal{T} is localizing, then the section functor S is left exact and the equivalence $TS \cong 1_{\mathcal{M}^C/\mathcal{T}}$ holds.

(c) If \mathcal{T} is colocalizing, then the colocalizing functor H is right exact and the equivalence $TH \cong 1_{\mathcal{M}^C/\mathcal{T}}$ holds.
In [2] and [8], localizing subcategories are described by means of idempotents in the dual algebra C^*. In particular, it is proved that the quotient category is the category of right comodules over the coalgebra eCe, where e is the idempotent associated to the localizing subcategory. The coalgebra structure of eCe is given by

$$\Delta_{eCe}(exe) = \Sigma_{(x)} x_{(1)} \otimes x_{(2)} e$$

and

$$\varepsilon_{eCe}(exe) = e(x),$$

where $\Delta_C(x) = \Sigma_{(x)} x_{(1)} \otimes x_{(2)}$ for any $x \in C$. If M is a right C-comodule, eM has a natural structure of right eCe-comodule given by

$$\rho(ex) = \Sigma_{(x)} x_{(0)} \otimes x_{(1)} e,$$

where $\rho_M(x) = \Sigma_{(x)} x_{(0)} \otimes x_{(1)}$ for any $x \in M$.

Lemma 2.2 Let C be a coalgebra and e be an idempotent in C^*. Then the following statements hold:

(a) The quotient functor $T : \mathcal{M}^C \longrightarrow \mathcal{M}^{eCe}$ is naturally equivalent to the functor $e(-)$. T is also equivalent to the cotensor functor $-\square_{eCe}$.

(b) The section functor $S : \mathcal{M}^{eCe} \longrightarrow \mathcal{M}^C$ is naturally equivalent to the cotensor functor $-\square_{eCe}$.

(c) If T is a colocalizing subcategory of \mathcal{M}^C, the colocalizing functor $H : \mathcal{M}^{eCe} \longrightarrow \mathcal{M}^C$ is naturally equivalent to the functor $\text{Cohom}_{eCe}(eC, -)$.

Next, for completeness, we remind some points about quivers and path (co)algebras.

By a quiver, Q, we mean a quadruple (Q_0, Q_1, h, s) where Q_0 is the set of vertices (points), Q_1 is the set of arrows and for each arrow $\alpha \in Q_1$, the vertices $h(\alpha)$ and $s(\alpha)$ are the source (or start point) and the sink (or end point) of α, respectively. If i and j are vertices in Q, an (oriented) path in Q of length m from i to j is a formal composition of arrows

$$p = \alpha_m \cdots \alpha_2 \alpha_1,$$

where $h(\alpha_1) = i$, $s(\alpha_m) = j$ and $s(\alpha_{k-1}) = h(\alpha_k)$ for $k = 2, \ldots, m$. To any vertex $i \in Q_0$ we attach a trivial path of length 0, say e_i, starting and ending at i such that $ae_i = a$ (resp. $e_i\beta = \beta$) for any arrow a (resp. β) with $h(\alpha) = i$ (resp. $s(\beta) = i$). We identify the set of vertices and the set of trivial paths. An (oriented) cycle is a path in Q which starts and ends at the same vertex. Q is said to be acyclic if there is no oriented cycle in Q.

Let KQ be the K-vector space generated by the set of all paths in Q. Then KQ can be endowed with the structure of a (not necessarily unitary) K-algebra with multiplication induced by concatenation of paths, that is

$$(\alpha_m \cdots \alpha_2 \alpha_1)(\beta_n \cdots \beta_2 \beta_1) = \begin{cases} \alpha_m \cdots \alpha_2 \alpha_1 \beta_n \cdots \beta_2 \beta_1, & \text{if } s(\beta_n) = h(\alpha_1), \\ 0, & \text{otherwise,} \end{cases}$$

KQ is the path algebra of the quiver Q. The algebra KQ can be graded by

$$KQ = KQ_0 \oplus KQ_1 \oplus \cdots \oplus KQ_m \oplus \cdots,$$
where Q_m is the set of all paths of length m.

Following [8], the path algebra KQ can be viewed as a graded K-coalgebra with multiplication induced by the decomposition of paths, that is, if $p = \alpha_m \cdots \alpha_2 \alpha_1$ is a path from the vertex i to the vertex j, then
\[
\Delta(p) = e_j \otimes p + p \otimes e_i + \sum_{i=1}^{m-1} \alpha_m \cdots \alpha_{i+1} \otimes \alpha_i \cdots \alpha_1 = \sum_{\eta \tau = p} \eta \otimes \tau
\]
and for a trivial path, e_i, we have $\Delta(e_i) = e_i \otimes e_i$. The counit of KQ is defined by the formula
\[
\varepsilon(\alpha) = \begin{cases}
1, & \text{if } \alpha \in Q_0, \\
0, & \text{if } \alpha \text{ is a path of length } \geq 1.
\end{cases}
\]
The coalgebra $(KQ, \Delta, \varepsilon)$ (shortly KQ) is called the path coalgebra of the quiver Q.

For any coalgebra C, we denote by $\{S_j\}_{j \in I_C}$ and $\{E_j\}_{j \in I_C}$ a complete set of pairwise nonisomorphic simple and indecomposable injective right C-comodules, respectively. From now on, we fix an idempotent element $e \in C^*$. We also denote by T_e the localizing subcategory associated to e and by $\{S_j\}_{j \in I_C \subseteq I_C}$ the subset of simple comodules of the quotient category. In what follows, we will denote by $\{E_j\}_{j \in I_e}$ a complete set of pairwise nonisomorphic indecomposable injective right eCe-comodules, and assume that E_j is the injective envelope of the simple right eCe-comodule S_j for each $j \in I_e$.

The K-coalgebra C is said to be basic if the right C-comodule $socC_C$ has a direct sum decomposition $socC_C = \oplus_{j \in I_C} S_j$, where I_C is a set, S_j are simple comodules, and $S_i \not\cong S_j$ for all $i \neq j$. Given a basic K-coalgebra C, we fix right comodule decompositions
\[
socC_C = \oplus_{j \in I_C} S_j \quad \text{and} \quad C_C = \oplus_{j \in I_C} E_j,
\]
where I_C is a set and S_j, with $j \in I_C$, are pairwise non-isomorphic simple comodules in M^C_I and E_j is the injective envelope of S_j in M^C, for each $j \in I_C$.

Following [9] and [10], for every M in M^C_I, we define the composition length vector
\[
lgh M = (l_j(M))_{j \in I_C} \in \mathbb{Z}^{(I_C)}$
\]
where $\mathbb{Z}^{(I_C)}$ is the direct sum of I_C copies of the free Abelian group \mathbb{Z} and $l_j(M) \in \mathbb{N}$ is the number of simple composition factors of M isomorphic to the simple comodule S_j. Now we extend the definition of $lghM$ to a class of infinite-dimensional C-comodules M. We recall that, given a right C-comodule, the socle filtration of M is the chain $soc^0 M \subseteq soc^1 M \subseteq \cdots \subseteq soc^n M \subseteq \cdots \subseteq M$, where $soc^0 M = soc(M)$ and, given $n \geq 0$, $soc^{n+1} M$ is the preimage of $soc(M/soc^n M)$ under the canonical projection $M \twoheadrightarrow M/soc^n M$. Note also that, by definition, the comodule
\[
M_m = soc^m M/soc^{m-1} M = soc(M/soc^{m-1} M)
\]
is semisimple, for each $m \geq 0$, where we set $M_0 = socM$.
Following [10] and [11], we get the following definitions. Assume that C is a basic K-coalgebra.

(a) A comodule M in \mathcal{M}^C is defined to be computable if, for each $j \in I_C$, the sum

$$l_j(M) = \sum_{m=0}^{\infty} l_j(M_m)$$

called the composition S_j-length of M, is finite, where $l_j(M_m)$ is the number of times the simple comodule S_j appears as a summand in a semisimple decomposition of M_m.

(b) An arbitrary coalgebra C is defined to be Hom-computable if every indecomposable injective right C-comodule is computable.

(c) If M is a computable C-comodule, the integral vector

$$\text{lgth} M = (l_j(M))_{j \in I_C} \in \mathbb{Z}^{I_C}$$

is called the composition length vector of M, where \mathbb{Z}^{I_C} is the direct product of I_C copies of the free Abelian group \mathbb{Z}. The composition length of M is the cardinal number (finite or infinite)

$$\text{lgth}(M) = \sum_{j \in I_C} l_j(M).$$

3 Main Results

Definition 3.1 Given a coalgebra C and a comodule M with a subcomodule N, the comodule M is said to be an essential extension of N (or N is said to be an essential subcomodule of M) if for every subcomodule H of M, $H \cap N = 0$ implies that $H = 0$.

Proposition 3.2 Let $e \in C^*$ be an idempotent. If C is a basic K-coalgebra, then eCe is also a basic K-coalgebra.

Proof Note that C is basic if and only if $C_C = \bigoplus_{j \in I_C} E_j$ and that $Ce = S(eCe)$ as right C-comodule. Moreover, Ce is a direct summand of C_C. Then $eCe = \bigoplus_{j \in I_C} E_j$ because S commutes with direct sums and sends E_j to E_j for each $j \in I_C$. So, eCe is a basic K-coalgebra.

Proposition 3.3 Let C be a basic K-coalgebra and $e \in C^*$ be an idempotent. If M is a computable right C-comodule, then eM is a computable right eCe-comodule.

Proof Let us consider the socle filtration of M

$$\text{soc}^0 M \subseteq \text{soc}^1 M \subseteq \cdots \subseteq \text{soc}^n M \subseteq \cdots \subseteq M,$$

where $\text{soc}^0 M = \text{soc} M$ and give $m \geq 0$, $\text{soc}^{m+1} M$ is the preimage of $\text{soc}(M/\text{soc}^m M) = \text{soc}^{m+1} M/\text{soc}^m M$ under the canonical projection $M \rightarrow M/\text{soc}^m M$. Since $e(-)$ is an exact functor, we obtain the inclusions

$$e(\text{soc}^0 M) \subseteq e(\text{soc}^1 M) \subseteq \cdots \subseteq e(\text{soc}^n M) \subseteq \cdots \subseteq eM.$$
and $e(\text{soc}^{m+1}M)/e(\text{soc}^mM) \cong e(\text{soc}^{m+1}M/\text{soc}^mM)$ is semisimple. We consider the socle filtration of eM

$$\text{soc}^0eM \subseteq \text{soc}^1eM \subseteq \cdots \subseteq \text{soc}^m eM \subseteq \cdots \subseteq eM.$$

From [12], we have $e(\text{soc}^mM) \subseteq \text{soc}^m eM$, because the socle filtration of eM is the “largest” series in eM.

Let

$$M_m = \text{soc}^m M/\text{soc}^{m-1} M = \text{soc}(M/\text{soc}^{m-1} M),$$
$$eM_m = \text{soc}^m eM/\text{soc}^{m-1} eM = \text{soc}(eM/\text{soc}^{m-1} eM) \subseteq \text{soc}(eM/\text{soc}^{m-1} M)$$

$$\cong \text{soc}(M/\text{soc}^{m-1} M) \subseteq \text{soc}(M/\text{soc}^{m-1} M) = M_m.$$

Thus $l_j(eM_m) \leq l_j(M_m)$, and if M is computable right C-comodule, then eM is a computable right eCe-comodule.

Corollary 3.4 Let C be a basic K-coalgebra and $e \in C^*$ be an idempotent. If C is Hom-computable, then eCe is also Hom-computable.

Proposition 3.5 Let C be a basic K-coalgebra and $e \in C^*$ be an idempotent such that $S(S_j) = S_j$ for all $j \in I$. If N is computable right eCe-comodule, then $S(N)$ is a computable right C-comodule.

Proof Let us consider the socle filtration of N

$$\text{soc}^0 N \subseteq \text{soc}^1 N \subseteq \cdots \subseteq \text{soc}^m N \subseteq \cdots \subseteq N,$$

where $\text{soc}^0 N = \text{soc} N$ and give $m \geq 0$, $\text{soc}^{m+1} N$ is the preimage of $\text{soc}(N/\text{soc}^m N) = \text{soc}^{m+1} N/\text{soc}^m N$ under the canonical projection $N \rightarrow N/\text{soc}^m N$. Since S is a left exact functor, we obtain the inclusions

$$S(\text{soc}^0 N) \subseteq S(\text{soc}^1 N) \subseteq \cdots \subseteq S(\text{soc}^m N) \subseteq \cdots \subseteq S(N)$$

and

$$S(\text{soc}^{m+1} N)/S(\text{soc}^m N) \subseteq S(\text{soc}^{m+1} N/\text{soc}^m N)$$

is semisimple. We consider the socle filtration of $S(N)$

$$\text{soc}^0 S(N) \subseteq \text{soc}^1 S(N) \subseteq \cdots \subseteq \text{soc}^m S(N) \subseteq \cdots \subseteq S(N).$$

From [12], we have $S(\text{soc}^m N) \subseteq \text{soc}^m S(N)$, because the socle filtration of $S(N)$ is the “largest” series in $S(N)$.

Let

$$N_m = \text{soc}^m N/\text{soc}^{m-1} N = \text{soc}(N/\text{soc}^{m-1} N),$$
$$S(N)_m = \text{soc}^m S(N)/\text{soc}^{m-1} S(N) = \text{soc}(S(N)/\text{soc}^{m-1} S(N)) \subseteq \text{soc}(S(N)/S(\text{soc}^{m-1} N))$$
$$\subseteq \text{soc}(N/\text{soc}^{m-1} N) = \text{soc}(N/\text{soc}^{m-1} N) = N_m.$$
Thus $l_j(S(N)_m) \leq l_j(N_m)$, and if N is computable right eCe-comodule, then $S(N)$ is a computable right C-comodule.

Following [2], the idempotent $e \in C^*$ is said to be left (right) semicentral if $eCe = eC(eCe = Ce)$.

Corollary 3.6 Let C be a basic K-coalgebra and $e \in C^*$ be a right semicentral idempotent. If N is a computable right eCe-comodule, then $S(N)$ is a computable right C-comodule.

Proof By [5], e is right semicentral if and only if $S(S_j) = S_j$ for all $j \in I_e$. Then the statement follows from the former result.

Example 1 Let KQ be the path coalgebra of the quiver

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

and $e \in C^*$ be the idempotent associated to the set $X_e = \{3\}$. Then $E_1 = \langle 1 \rangle, E_2 = \langle 2, \alpha \rangle, E_3 = \langle 3, \beta, \beta \alpha \rangle, eE_1 = 0, eE_2 = 0, eE_3 = E_3$. Thus e is a left semicentral idempotent, by [5]. If $e' \in C^*$ is an idempotent associated to the set $X_{e'} = \{1\}$, then the localized coalgebra $e'Ce'$ is S_1 and

$$S(S_1) = S_1 \sqcup CE'Ce' = e'C'e' \sqcup e'Ce' = Ce' \cong (1) \cong S_1.$$

Thus e' is a right semicentral idempotent, by [5].

The following notations are given in [13] and [14]. Let S_i be a simple C-comodule, we define the set

$$I(\updownarrow i) = \{S_j \text{ simple } C\text{-comodule} \mid \text{there is a path in } (Q_C, d_C) \text{ from } S_j \text{ to } S_i\}.$$

It is easy to see that $I(\updownarrow i)$ is the set of predecessors of S_i in the Gabriel quiver of C (see [10]). In general, for some subset $U \subseteq I_C$, we set

$$I(\updownarrow U) = \bigcup_{i \in U} I(\updownarrow i).$$

Observe that, for any subset $U \subseteq I_C$, the idempotent e_U associated to the set of simple comodules $I(\updownarrow U)$ is right semicentral, by [5].

Example 2 Consider the quiver Q,

$$1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3 \xrightarrow{\alpha_4} 4 \xrightarrow{\alpha_5} 5 \xrightarrow{\alpha_6} 6 \xrightarrow{\alpha_7} \cdots$$
then the Gabriel quiver \((Q_{KQ}, d_{KQ})\) of \(KQ\) is given by

\[
\begin{array}{c}
S_1 \rightarrow S_2 \\
S_3 \rightarrow \vdots
\end{array}
\]

\(I_C = \{1, 2, 3, 4, 5, 6, \cdots\}\), if \(U = \{2, 4, 5\} \subseteq I_C\), \(I(\triangleright U) = \{S_1, S_2, S_3, S_4\}\), then \(e_U\) associated to the set of simple comodules \(I(\triangleright U)\) is right semicentral; if \(U = \{3, 5, 6\} \subseteq I_C\), \(I(\triangleright U) = \{S_1, S_2, S_3, S_4, S_5\}\), then \(e_U\) associated to the set of simple comodules \(I(\triangleright U)\) is right semicentral.

By above results, we get the following localizing properties.

Theorem 3.7 Let \(C\) be a basic \(K\)-coalgebra. \(M\) is a computable right \(C\)-comodule if and only if \(e_U M\) is a computable right \(e_U Ce_U\)-comodule for each finite set \(U \subseteq I_C\).

Proof It is only to prove if \(S(e_U M)\) is computable then \(M\) is computable. Let \(S(e_U M) = N\), we have

\[
\text{soc}^0 N \subseteq \text{soc}^1 N \subseteq \cdots \subseteq \text{soc}^m N \subseteq \cdots \subseteq N.
\]

Since \(M\) is an essential subcomodule of \(N\), we obtain the inclusions

\[
\text{soc}^0 N \cap M \subseteq \text{soc}^1 N \cap M \subseteq \cdots \subseteq \text{soc}^m N \cap M \subseteq \cdots \subseteq N \cap M = M.
\]

We consider the socle filtration of \(M\)

\[
\text{soc}^0 M \subseteq \text{soc}^1 M \subseteq \cdots \subseteq \text{soc}^m M \subseteq \cdots \subseteq M.
\]

From [12], we have \(\text{soc}^m N \cap M \subseteq \text{soc}^m M\), because the socle filtration of \(M\) is the “largest” series in \(M\).

Let

\[
M_m = \frac{\text{soc}^m M}{\text{soc}^{m-1} M} = \text{soc}(M/\text{soc}^{m-1} M),
\]

\[
M/\text{soc}^{m-1} M \subseteq M/\text{soc}^{m-1} M \cap M \cong (M + \text{soc}^{m-1} N)/\text{soc}^{m-1} N \subseteq N/\text{soc}^{m-1} N.
\]

Thus \(l_j(M_m) \leq l_j(N_m)\), and if \(N\) is computable right \(eCe\)-comodule, then \(M\) is a computable right \(C\)-comodule.

By Theorem 3.7 and the definition of Hom-computable coalgebras, we obtain the following corollary.

Corollary 3.8 Let \(C\) be a basic \(K\)-coalgebra. \(C\) is a Hom-computable coalgebra if and only if \(e_U Ce_U\) is a Hom-computable coalgebra for each finite set \(U \subseteq I_C\).
References

Hom - 可计算余代数的局部化

张素娟1,2，姚海楼1
(1.北京工业大学应用数理学院, 北京 100124)
(2.石家庄铁道大学数理系, 河北 石家庄 050043)

摘要：本文研究了可计算余模和Hom-可计算余代数的局部化问题. 利用局部化方法, 得到了可计算余模和Hom-可计算余代数的等价条件, 推广了余代数上局部化理论的发展.

关键词: 余代数; 余模; Hom-可计算余代数; 局部化