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Abstract: In this paper, we study the weak solutions to stationary bipolar quantum drift-
diffusion model for semiconductors in one space dimension. The model is reformulated as two
coupled fourth-order elliptic equations by using exponential variable transformations. The exis-
tence of weak solutions to the reformulated equations is proved by using Schauder fixed-point
theorem. Furthermore, the uniqueness of solutions and the semiclassical limit to the equations are
obtained.
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1 Introduction and Main Results

Recently, the quantum drift-diffusion equations attracted many scientists’ interest since
they are capable to describe quantum confinement and tunneling effects in metal-oxide-
semiconductor structures and to simulate ultra-small semiconductor devices [1, 2]. Quantum
drift-diffusion models were derived from a Wigner-Boltzmann equation by a moment method

[3]. This paper is concerned with the bipolar quantum drift-diffusion model [4]:

n; = div [—san (%}?) +Vn — nVV] : (1.1)

VAN
pe = div [—§€2pv < ﬁ) +Vp +pVV] , (1.2)
VP
NAV =n—p—C(x), (1.3)
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where the particle density n, the hole density p and the electrostatic potential V are unknown
variables; the scaled Planck constant € > 0, the scaled Debye length A > 0 and the ratio of
the effective masses of electrons and holes & > 0 are physical parameters; the doping profile
C(x) representing the distribution of charged background ions. This type of transient model
consists of one or two fourth-order parabolic equations (unipolar or bipolar) coupled to a
Poisson equation and has been studied in many works [4-14]. Abdallah and Unterreiter
[15] showed the existence of solutions to the stationary model of (1.1)—(1.3) over the multi-
dimension bounded domain and carried out the semiclassical limit.

The objective of this paper is to analyze the one-dimensional stationary version of (1.1)—

(1.3):

o (W0

o (P )
P( N >m+px+me—J1, (1.5)
V. — _

C(z) in (0,1), (1.6)

) +n, —nVy, = Jy, (1.4)

n—p

where we have let A = & = 1 for convenience as in [4], the electron current density J, and

the hole current density J; are two constants. We choose the physically motivated boundary

conditions:
n(0) =n(l) =1, n,(0) =n,(1) =0, (1.7)
p(0) =p(1) =1, p,(0)=p.(1)=0, (1.8)
V(0) = Vh. (1.9)

Dividing (1.4) by n and taking the derivative gives

() ) een=(2) o

where we have used the Poisson equation (1.6). Similarly, dividing (1.5) by p and taking the

derivative leads to

(), 3) o) o

After two exponential transformations n = e*, p = e, we obtain

g2 u2

—2<%f%5> gy — (" — " — C(x)) = Jole ™) (1.12)
g2 v2

—20W+5> +Vas + (" — ¢ = C() = Ju(e ™), (1.13)

with the boundary conditions

w(0) =u(l) =0, wu,(0)=wu,(1)=0, (1.14)
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v(0) =v(1) =0, v,(0)=uv,(1)=0. (1.15)

As usual, we call (u,v) € H2(0,1) x H2(0,1) a weak solution of the problem (1.12)-(1.15),
if for all 1 € HZ(0,1) it holds

2 1 2 1 1 1
62/ <um + u;) Qﬂmdaﬁ—i—/ uwwmda:—i—/ (e"—e"—C(z))pdr = JO/ e "dx, (1.16)
0 0 0 0

1 1 1 1
e / <vm + UE) Yypda —|—/ VY dx —/ (e —e"—C(x))de = J; / e "dr. (1.17)
2 Jo 2 0 0 0

Our main results are stated as follows:

Theorem 1.1 (Existence) Let C(z) € L?(0,1), then there exists a weak solution (u,v) €
HZ2(0,1) x H2(0,1) of the problem (1.12)—(1.15) for any Jy, J; € R.

Theorem 1.2 (Uniqueness) Let C(x) € L?(0,1). If

1| C(@) [ao) +(1+ V2l €@z <o, (118)

e | C(@) 220y +(1 + V2| Ii])e? 1@ zon < 2, (1.19)

then the problem (1.12)—(1.15) has a unique solution.
Theorem 1.3 (Semiclassical limit) Let (u.,v.) be a solution to the problem (1.12)-

(1.15) obtained in Theorem 1.1. Then as ¢ — 0, maybe for a subsequence,
u. — u, v.— v weakly in H'(0,1) and strongly in L>(0,1) (1.20)
and (u,v) is a weak solution of
Upe — (€% — €’ = C(z)) = Jo(e™")y, (1.21)

Ver + (¥ — e’ = C(x)) = Ji(e™"), (1.22)

subject to the boundary condition
u(0) =u(1) =0, (1.23)

v(0) = v(1) = 0. (1.24)

Remark 1.1 Although Abdallah and Unterreiter obtained the stationary bipolar quan-
tum drift-diffusion model in [15], but they did not show the uniqueness. In this paper, we
give such a result. In addition, the proof of [15] was based on a Schauder fixed point iteration
combined with a minimization procedure, whereas in this paper, we reformulate the model
as two coupled fourth-order elliptic equations by using exponential variable transformations
and employ the Schauder fixed-point theorem.

This article is organized as follows. In Section 2, we will show the existence of solutions

to the problem (1.12)—(1.15) by using the techniques of a priori estimates and Schauder
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fixed-point theorem. Then we will prove the uniqueness and the semiclassical limit of the

solutions in Section 3 and Section 4, respectively.

2 Existence of Weak Solutions

In order to use the Schauder fixed-point theorem to prove the existence, we need the
following lemma:

Lemma 2.1 Let C(z) € L?(0,1) and let (u,v) € HZ(0,1) x H2(0,1) be a solution of
(1.12)~(1.15). Then

e | tea ||2L2(0,1) +e° | Vew ||%2(0,1) + | ue Hi?(o;) + || ve ||2L2(0,1)§ 2| C(z) ||2L2(0,1) - (21

Proof We use ) = u as a test function in the weak formulation of (1.12) to obtain

1 1 1
/ < m+ u um> dx—i—/ uide = —/ (e“—e”—C(:c))udx—l—Jo/ e “uydr. (2.2)
0 0 0

The boundary condition (1.14) gives

1
[ s = 512 -0 =0
0

1 1
/ e tuydr = —/ (e™%)pdx = e~ — g7u) =,
0 0

Consequently, equation (2.2) is equivalent to

/ u? dx+/ wldz = —/Ol(e“—e”—C(x))udz. (2.3)

Similarly, using ) = v as a test function in the weak formulation of (1.13) and using the

and

boundary condition (1.15) we get

2 ol 1 1
E/ v dax —i—/ v2dr = —/ (" —e”" — C(z))vdx. (2.4)
2 Jo 0 0

Summing up (2.3) and (2.4), we have

2 1 2 rl 1 1 1
8/ ufmdm—l—s/ vigﬂdm—&—/ uidw—i—/ vidr = —/ (e —e"—C(z))(u—v)dz. (2.5)
2 Jo 2 Jo 0 0 0

The monotonicity of x — e* implies

—/Ol(eu — ") (u—v)dz < 0.

From the Young inequality and the Poincaré inequality,

1 1

/C(x)(u—v)dzz; < ;/ udr + = / 2d:1:+/ C(x

0 1 o
2/uda:+/2dx+/C dz.

IN



534 Journal of Mathematics Vol. 35

So (2.5) can be estimated as

62 1 62 1 1 1 1 1 1
/ u?, dx + / v2 dr + = / udr + / vidr < / C(z)*dz.
2 Jo 2 Jo 2 Jo 2 Jo 0

This proves the lemma.
Proof of Theorem 1.1 Consider the following linear problems for given (p,n) €
Wy *(0,1) x W, *(0,1) with test functions v € H2(0,1):

1 1 1
/ umz/)mdxjt/ wmdm—l—/ uzwmdx—ka/ (ep—e”—C(:U))z/)dxzaJo/ e P, dx,
0

0

(2.6)
52 1 062 1 1 1 1
/ Umwmdx—f—/ niwmdaj—}—/ vxiﬂzdaz—a/ (e —e"—C(z))dx = O'Jl/ e~ M dx,
2 Jo 4 Jy 0 0 0
(2.7)
where o € [0,1]. We define the bilinear form
62 1 1
a(u,v) = 2/ Ugr Ve dT +/ Ug W dT, (2.8)
0 0
and the linear functional
ge2 [ 1 1
F(y) = - P2 ppdr — a/ (ef —e" = C(x))pdr + O'Jo/ e ",de. (2.9)
0 0 0

Since the bilinear form a(u,) is continuous and coercive on HZ(0,1) x HZ(0,1) and the
linear functional F(v) is continuous on HZ(0,1), we can apply the Lax-Milgram theorem
to obtain the existence of a solution u € HZ(0,1) of (2.6). Similarly there exists a solution
v € HZ(0,1) to (2.7). Thus, the operator

S Wyt (0,1) x Wy (0,1) x [0,1] — Wy *(0,1) x Wy*(0,1),  (p,n,0) +— (u,v)

is well defined. Moreover, it is continuous and compact since the embedding HZ(0,1) —
Wy*(0,1) is compact. Furthermore, S(p,7,0) = (0,0). Following the steps of the proof
of Lemma 2.1, we can show that || u [lgz@,1) + | v [[#2(01)< const. for all (u,v,0) €
Wy*(0,1) x W3 *(0,1) x [0,1] satisfying S(u,v,0) = (u,v). Therefore, the existence of a
fixed point (u,v) with S(u,v,1) = (u,v) follows from the Schauder fixed-point theorem.
This fixed point is a solution of (1.12)—(1.15).

3 Uniqueness of Solutions

To prove the uniqueness, we need the following lemma:
Lemma 3.1 Let (u,v) be a solution of (1.12)—(1.15) obtained in Theorem 1.1. Then

I |y, |0 o< V2 I Cl@) 20, (3.1)
2 || C() [l 2201
3

| wz |zo0,1)s || vz [[2(0,1)< (3.2)
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Proof For simplicity, we only treat with the case of u. (3.1) can be concluded directly

from (2.1) and the Poincaré-Sobolev inequality:
I ooy < e |20y < V2 || C(@) l2201) -
We observe that, due to the boundary conditions for u,,

0@ =2 [ (s (95 < 2 s 120 s oy
0

and thus by the Young inequality and (2.1)

I e Nz V2 el e 2200

V2 V2e
< 2
= 2f || Uy ||L 2(0,1) +— 2 || Ugg ||L (0,1)

o 2C@) Il
= \/g .
Proof of Theorem 1.2 Let (u1,v1), (ug,v2) € HZ(0,1)x H2(0,1) be two weak solutions
of (1.12)—(1.15). The weak formulations of the difference of the equations satisfied by (u1,v1)

and (ug,vs), with the test functions u; — up and vy — ve, respectively, read as follows:

1
/ dﬂf + / ulw Ugw - U2)a::vdl‘ +/ (U1 - Ug)idl'
0

- / (" — e — &% 4 e")(uy — up)d — Jy / e = e (g — wg)ada, (3.3)

1
/ V] — Vg)5 dx+/ v, —va,) (v — )mdac—k/ (v1 — vp)2dx
0

1
= / (et — e —e" +€") (v — va)dr — Jl/ (e —e ) (v —wva)zdx.  (3.4)
0 0

Using (3.2) and the Young inequality, we can estimate the second integral on the left-hand
side of (3.3) as

2 [t
4 0
52
= 4/ (Ury + U2y ) (U1 — Ug) (U1 — U2)prde
30 1
> et | C@) s / (s — ta)e] - |(tr — ) lde
0

62 1 e 1
> =5 [ =S 100 gy [ -wlde 39
0 0
The mean value theorem and estimate (3.1) for v yields

|ev1 o 6”2‘ < 6\/§HC(I)HL2(0,1)|U1 — Val. (36)
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The monotonicity of x — e*, inequality (3.6), the Young inequality and the Poincaré in-
equality leads to

1 1

—/ (e — e’ —e" +e)(ug — ug)dr < / (e’ —e”)(uy — ug)dx

0 0
1
S eﬁ\lc(r)uﬁ(o,n / |'U1 — /UQ‘ . |u1 - U2|d$
0

1 1 1

< §eﬁ‘|0(m)|‘L2(o,1) [/ (ur — ug)?da +/ (v1 — U2)2d3:]
0 0

1 1 1
< Ze\/iuc'(ﬂc)ﬂm(o,l) |:/ (Ul — uQ)idx +/ (Ul — vQ)idx:| . (37)
0 0

For the estimate of the second integral on the right-hand side of (3.3), we obtain similarly
as above

1
—Jo/ (e7 —e™2)(ug — ug)dx
0

1
S |J0|e\/§HC(I)”L2(0,1) / |’LL1 _ u2| . |(U1 — u2)z|dx
0
1 3ol 3
< | JoleV?IC@ 0 {/ (w1 — Uz)QdCE} {/ (w1 — U2)id$]
0 0
1
< ol vaicwia,, / (ur — up)2d, (3.8)
0

V2

where we have used the Holder inequality in the second inequality of (3.8). By (3.3), (3.5),
(3.7) and (3.8), we get

£ 14 2v/2]J, . !
15 1€ e~ 22| [ )z
0

1
S ieﬁl‘c(ﬂc)‘hﬂ(o,l) / ('Ul — /UQ)ide. (39)
0

Employing the same techniques as above, we can estimate (3.4) as

e 1+2V2|J . !
[1 5 | C(z) ||%2(o,1) —%eﬁw( )le("’”] / (v1 — vo)2da
0

1
< leeﬁﬂc(z)hﬂ(o,n/ (ul_u2)idx. (3_10)
0

It follows from (3.9) and (3.10) that
€ 14+ V2|J - !
[1 ~ 35 | C(x) ||2L2(0,1) _%eﬁ”c( HLQ”’”} / (ug — u2)id:r
0

€ 1+V2]J log !
# 1= 5160 Ban -2 e | [0 - viae
0

< 0. (3.11)
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This inequality and (1.18), (1.19) implies u; = u2, v1 = v in (0, 1).
4 Semiclassical Limit

Proof of Theorem 1.3 From Lemma 2.1 and the Poincaré inequality we obtain a
uniform H'(0,1) bound for u. and v.. Then there exists a subsequence of (u.,v.) (not
relabeled) such that (1.20) holds. The weak formulations of (1.12) and (1.13) read, for any
1 € C§°(0,1), after integration by parts,

g2 ! g2 [
2
_2/ uewa::rxwdx - 4/ Ug,mlpzxdl‘
0 0
1

1 1
= / Ue z P dx +/ (e — e’ — C(x))Ydx — Jo/ e Y ,dr, (4.1)
0 0

0
2 1 2 1
82/0 Usqumxmdx - 2/(; Ug,x¢mzdx
1 1 1
= / Ve z Yz de —/ (e"s —e¥ — C(z))dr — Jl/ e = dx. (4.2)
0 0 0

Convergences (1.20) allow us to pass to the limit ¢ — 0 in the above equations, observing
that the left-hand sides of (4.1) and (4.2) vanish in the limit:

1 1 1
0= / Up P dr + / (" —e" = C(z))pdx — JO/ e " de, (4.3)
0 0 0

1 1 1
0= / V) dx — / (e —e' — C(x))pdx — Jl/ e Yy dr. (4.4)
0 0 0

This shows the weak forms of (1.21) and (1.22) hold.
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