
Vol. 35 ( 2015 )
No. 3

数 学 杂 志
J. of Math. (PRC)

CENTRO-SYMMETRIC MINIMAL RANK SOLUTIONS

AND ITS OPTIMAL APPROXIMATION OF THE

MATRIX EQUATION AX = B

XIAO Qing-feng1, HU Xi-yan2, ZHANG Lei2

(1.Department of Basic, Dongguan Polytechnic, Dongguan 523808, China)
(2.College of Mathematics and Econometrics, Hunan University, Changsha 410082, China)

Abstract: The centro-symmetric solutions of the matrix equation AX = B are considered.

By using the generalized singular value decompositions of matrix pairs and generalized inverses of

matrices, necessary and sufficient conditions for the existence of such solution and the expression

of the maximal and minimal rank solutions are derived. Also, the optimal approximation for the

minimal rand solution set to a given matrix is also discussed and the expression of the solution is

presented.
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1 Introduction

Throughout this paper, let Rn×m be the set of all n ×m real matrices, ORn×n be the
set of all n × n orthogonal matrices. Denote by In the identity matrix with order n. For
matrix A, AT , A+, ‖A‖ and r(A) represent its transpose, Moore-Penrose inverse, Frobenius
norm and rank, respectively.

Definition 1 A matrix A = (aij) ∈ Rn×n is said to be a centro-symmetric matrix
if aij = an+1−i,n+1−j , i, j = 1, 2, · · · , n. the set of all n × n centro-symmetric matrices is
denoted by CSRn×n.

Centro-symmetric matrices have practical applications in information theory, linear sys-
tem theory, linear estimate theory, and numerical analysis(see, e.g. [1–4]).

We know that investigating minimal ranks of matrix expressions has many immediate
motivations in matrix analysis and applications. For example, the classical matrix equation
AX = B is consistent if and only if

min
X

rank(B −AX) = 0.
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The two consistent matrix equations A1X1B1 = C1, A2X2B2 = C2 where X1 and X2 have
the same size, have a common solution if and only if

min
X1,X2

rank(X1 −X2) = 0.

In 1972, Mitra [5] considered solutions with fixed ranks for the matrix equations AX = B

and AXB = C. In 1984, Mitra [6] gave common solutions of minimal rank of the pair of
complex matrix equations AX = C, XB = D. In 1990, Mitra studied the minimal ranks of
common solutions to the pair of matrix equations A1X1B1 = C1 and A2X2B2 = C2 over a
general field in [7]. In 2003, Tian [8] investigated the extremal rank solutions to the complex
matrix equation AXB = C and gave some applications. Xiao et al. [9] in 2009 considered
the symmetric minimal rank solution to equation AX = B. Recently, the anti-reflexive
extremal rank solutions to the matrix equation AX = B was derived by Xiao et al. [10].

In this paper, we consider the centro-symmetric extremal rank solutions of the matrix
equation

AX = B, (1.1)

where A and B are given matrices in Rm×n.
We also consider the matrix nearness problem

min
X∈Sm

∥∥X − X̃
∥∥

F
, (1.2)

where X̃ is a given matrix in Rn×n and Sm is the minimal rank solution set of eq. (1.1).
We organize this paper as follows. In Section 2, we first establish a representation

for the centro-symmetric matrix. Then we give necessary and sufficient conditions for the
existence of centro-symmetric solution to (1.1). We also give the expressions of such solutions
when the solvability conditions are satisfied. We in Section 3 establish formulas of maximal
and minimal ranks of centro-symmetric solutions to (1.1), and present the centro-symmetric
extremal rank solutions to (1.1). We in Section 4 present the expression of the optimal
approximation solution to the set of the minimal rank solution.

2 Centro-Symmetric Solution to (1.1)

Denote by ei be the ith column of In and set Sn = (en, en−1, · · · , e1). It is easy to see
that

ST
n = Sn, ST

n Sn = I.

Let k = [n
2
], where [n

2
] is the maximum integer which is not greater than n

2
. Define Dn as

Dn =
1√
2

(
Ik Ik

Sk −Sk

)
(n = 2k), Dn =

1√
2




Ik 0 Ik

0
√

2 0
Sk 0 −Sk


 (n = 2k + 1), (2.1)
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then it is easy verified that the above matrices Dn are orthogonal matrices.
Lemma 1 [11] Let X ∈ Rn×n and Dn with the forms of (2.1), then X is the centro-

symmetric matrix if and only if there exist X1 ∈ R(n−k)×(n−k) and X2 ∈ Rk×k, whether n is
odd or even, such that

X = Dn

(
X1 0
0 X2

)
DT

n . (2.2)

Here, we always assume k = [n
2
].

Given matrices A1 ∈ Rm×n, B1 ∈ Rm×p, by making generalized singular value decom-
position to [A1, B1], we have

A1 = M1ΣA1U1, B1 = M1ΣB1V1, (2.3)

where M1 is a m×m nonsingular matrix, U1 ∈ ORn×n, V1 ∈ ORp×p,

ΣA1 =




I 0 0
0 SA1 0
0 0 0
0 0 0




r1 − s1

s1

k1 − r1

m− k1

, ΣB1 =




0 0 0
0 SB1 0
0 0 I

0 0 0




r1 − s1

s1

k1 − r1

m− k1

,

k1 = r[A1, B1], r1 = r(A1), s1 = r(A1) + r(B1) − r[A1, B1], SA1 = diag(α1, · · · , αs1),
SB1 = diag(β1, · · · , βs1), 0 < αs1 ≤ · · · ≤ α1 < 1, 0 < β1 ≤ · · · ≤ βs1 < 1, α2

i + β2
i = 1,

i = 1, · · · , s1.
Lemma 2 [10] Given matrices A1 ∈ Rm×n, B1 ∈ Rm×p, the generalized singular

ecomposition of the matrix pair [A1, B1] is given by (2.3), then matrix equation A1X = B1

is consistent, if and only if

r[A1, B1] = r(A1), (2.4)

and the expression of its general solution is

X = UT
1




0 0
0 S−1

A1
SB1

Y31 Y32


V1, (2.5)

where Y31 ∈ R(n−r1)×(p−s1), Y32 ∈ R(n−r1)×s1 are arbitrary.
Assume Dn with the form of (2.1), and ADn and BDn have the following partition form

ADn = [A2, A3], BDn = [B2, B3], (2.6)

where A2 ∈ Rm×(n−k), A3 ∈ Rm×k, B2 ∈ Rm×(n−k), B3 ∈ Rm×k, and the generalized singular
value decomposition of the matrix pair [A2, B2], [A3, B3] are, respectively,

A2 = M2ΣA2U2, B2 = M2ΣB2V2, (2.7)

A3 = M3ΣA3U3, B3 = M3ΣB3V3, (2.8)
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where U2 ∈ OR(n−k)×(n−k), V2 ∈ OR(n−k)×(n−k), U3 ∈ ORk×k, V3 ∈ ORk×k, nonsingular
matrices M2,M3 ∈ Rm×m, k2 = r[A2, B2], r2 = r(A2), s2 = r(A2) + r(B2) − r[A2, B2], and
k3 = r[A3, B3], r3 = r(A3), s3 = r(A3) + r(B3)− r[A3, B3],

ΣA2 =




I 0 0
0 SA2 0
0 0 0
0 0 0




r2 − s2

s2

k2 − r2

m− k2

, ΣB2 =




0 0 0
0 SB2 0
0 0 I

0 0 0




r2 − s2

s2

k2 − r2

m− k2

,

ΣA3 =




I 0 0
0 SA3 0
0 0 0
0 0 0




r3 − s3

s3

k3 − r3

m− k3

, ΣB3 =




0 0 0
0 SB3 0
0 0 I

0 0 0




r3 − s3

s3

k3 − r3

m− k3

.

Then we can establish the existence theorems as follows.
Theorem 1 Let A,B ∈ Rm×n and Dn with the form of (2.1), ADn, BDn have the

partition forms of (2.6), and the generalized singular value decompositions of the matrix
pair [A2, B2] and [A3, B3] are given by (2.7) and (2.8). Then equation (1.1) has a centro-
symmetric solution X if and only if

r[A2, B2] = r(A2), r[A3, B3] = r(A3), (2.9)

and its general solution can be expressed as

X = Dn




UT
2




0 0
0 S−1

A2
SB2

Z31 Z32


V2 0

0 UT
3




0 0
0 S−1

A3
SB3

W31 W32


V3




DT
n , (2.10)

where Z31 ∈ R(n−k−r2)×(n−k−s2), Z32 ∈ R(n−k−r2)×s2 , W31 ∈ R(k−r3)×(k−s3), W32 ∈ R(k−r3)×s3

are arbitrary.
Proof Suppose the matrix equation (1.1) has a solution X is centro-symmetric, then

it follows from Lemma 1 that there exist X1 ∈ R(n−k)×(n−k), X2 ∈ Rk×k satisfying

X = Dn

[
X1 0
0 X2

]
DT

n and AX = B. (2.11)

By (2.6), that is

[A2 A3]

[
X1 0
0 X2

]
= [B2 B3], (2.12)

i.e.,

A2X1 = B2, A3X2 = B3. (2.13)
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Therefore by Lemma 2, (2.9) hold, and

X1 = UT
2




0 0
0 S−1

A2
SB2

Z31 Z32


V2, X2 = UT

3




0 0
0 S−1

A3
SB3

W31 W32


V3, (2.14)

where Z31 ∈ R(n−k−r2)×(n−k−s2), Z32 ∈ R(n−k−r2)×s2 , W31 ∈ R(k−r3)×(k−s3), W32 ∈ R(k−r3)×s3

are arbitrary. Substituting (2.14) into (2.11) yields that the centro-symmetric solution X of
the matrix equation (1.1) can be represented by (2.10). The proof is completed.

3 Centro-Symmetric Extremal Rank Solutions to (1.1)

Theorem 2 Suppose that the matrix equation (1.1) has a centro-symmetric solution
X and Ω is the set of all centro-symmetric solutions of (1.1). Then the extreme ranks of X

are as follows:
(1) The maximal rank of X is

max
X∈Ω

r(X) = min{n− k, n− k − r(A2) + r(B2)}+ min{k, k − r(A3) + r(B3)}. (3.1)

The general expression of X satisfying (3.1) is

X = Dn




UT
2




0 0
0 S−1

A2
SB2

Z31 Z32


V2 0

0 UT
3




0 0
0 S−1

A3
SB3

W31 W32


V3




DT
n , (3.2)

where Z31 ∈ R(n−k−r2)×(n−k−s2), W31 ∈ R(k−r3)×(k−s3) are chosen such that r(Z31) = min(n−
k − r2, n− k − s2), r(W31) = min(k − r3, k − s3), Z32 ∈ R(n−k−r2)×s2 , W32 ∈ R(k−r3)×s3 are
arbitrary.

(2) The minimal rank of X is

min
X∈Ω

r(X) = r(B2) + r(B3). (3.3)

The general expression of X satisfying (3.3) is

X = Dn




UT
2




0 0
0 S−1

A2
SB2

0 Z32


V2 0

0 UT
3




0 0
0 S−1

A3
SB3

0 W32


V3




DT
n , (3.4)

where Z32 ∈ R(n−k−r2)×s2 , W32 ∈ R(k−r3)×s3 are arbitrary.
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Proof (1) By (2.10),

max
X∈Ω

r(X) = max
Z31

r




0 0
0 S−1

A2
SB2

Z31 Z32


 + max

W31

r




0 0
0 S−1

A3
SB3

W31 W32


 , (3.5)

max
Z31

r




0 0
0 S−1

A2
SB2

Z31 Z32




= s2 + min{n− k − r2, n− k − s2}
= min{n− k, n− k − r2 + s2} = min{n− k, n− k − r(A2) + r(B2)}, (3.6)

and

max
W31

r




0 0
0 S−1

A3
SB3

W31 W32


 = s3 + min{k − r3, k − s3}

= min{k, k − r3 + s3} = min{k, k − r(A3) + r(B3)}. (3.7)

Taking (3.6) and (3.7) into (3.5) yields (3.1).
According to the general expression of the solution in Theorem 1, it is easy to verify

the rest of part in (1).
(2) By (2.10),

min
X∈Ω

r(X) = min
Z31

r




0 0
0 S−1

A2
SB2

Z31 Z32


 + min

W31

r




0 0
0 S−1

A3
SB3

W31 W32


 , (3.8)

min
Z31

r




0 0
0 S−1

A2
SB2

Z31 Z32


 = s2 = r(B2), min

W31

r




0 0
0 S−1

A3
SB3

W31 W32


 = s3 = r(B3).

(3.9)

Taking (3.9) into (3.8) yields (3.3).
According to the general expression of the solution in theorem 1, it is easy to verify the

rest of part in (2). The proof is completed.

4 The Expression of the Optimal Approximation Solution to the Set of

the Minimal Rank Solution

From (3.4), when Sm = {X | AX = B,X ∈ CSRn×n, r(X) = min
Y ∈Ω

r(Y )} is nonempty,

it is easy to verify that Sm is a closed convex set, therefore there exists a unique solution X̂

to the matrix nearness problem (1.2).
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Theorem 3 Given matrix X̃, and the other given notations and conditions are the
same as in Theorem 1. Let

DT
n X̃Dn =

[
X̃11 X̃12

X̃21 X̃22

]
, X̃11 ∈ C(n−k)×(n−k), X̃22 ∈ Ck×k, (4.1)

and we denote

U2X̃11V
T
2 =




Z̃11 Z̃12

Z̃21 Z̃22

Z̃31 Z̃32


 , U3X̃22V

T
3 =




W̃11 W̃12

W̃21 W̃22

W̃31 W̃32


 . (4.2)

If Sm is nonempty, then problem (1.2) has a unique X̂ which can be represented as

X̂ = Dn




UT
2




0 0
0 S−1

A2
SB2

0 Z̃32


V2 0

0 UT
3




0 0
0 S−1

A3
SB3

0 W̃32


V3




DT
n , (4.3)

where Z̃32, W̃32 are the same as in (4.2).
Proof When Sm is nonempty, it is easy to verify from (3.4) that Sm is a closed convex

set. Since Rn×n is a uniformly convex banach space under Frobenius norm, there exists a
unique solution for problem (1.2). By theorem 2, for any X ∈ Sm, X can be expressed as

X = Dn




UT
2




0 0
0 S−1

A2
SB2

0 Z32


V2 0

0 UT
3




0 0
0 S−1

A3
SB3

0 W32


V3




DT
n , (4.4)

where Z32 ∈ R(n−k−r2)×s2 , W32 ∈ R(k−r3)×s3 are arbitrary.
Using the invariance of the Frobenius norm under unitary transformations, we have

‖X − X̃‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥




UT
2




0 0
0 S−1

A2
SB2

0 Z32


V2 0

0 UT
3




0 0
0 S−1

A3
SB3

0 W32


V3




−DT
n X̃Dn

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=
∥∥Z32 − Z̃32

∥∥2
+

∥∥W32 − W̃32

∥∥2
+

∥∥S−1
A2

SB2 − Z̃22

∥∥2
+

∥∥S−1
A3

SB3 − W̃22

∥∥2

+
∥∥X̃12

∥∥2
+

∥∥X̃21

∥∥2
+

∥∥Z̃11

∥∥2
+

∥∥Z̃12

∥∥2
+

∥∥Z̃21

∥∥2
+

∥∥Z̃31

∥∥2

+
∥∥W̃11

∥∥2
+

∥∥W̃12

∥∥2
+

∥∥W̃21

∥∥2
+

∥∥W̃31

∥∥2
.
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Therefore, ‖X − X̃‖ reaches its minimum if and only if

Z32 = Z̃32, W32 = W̃32. (4.5)

Substituting (4.5) into (4.4) yields (4.3). The proof is completed.
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矩阵方程AX = B的中心对称定秩解及其最佳逼近

肖庆丰1 ,胡锡炎2 ,张 磊2

(1.东莞职业技术学院公共教学部,广东东莞 523808)

(2.湖南大学数学与计量经济学院,湖南长沙 410082)

摘要: 本文研究了矩阵方程AX = B 的中心对称解. 利用矩阵对的广义奇异值分解和广义逆矩阵, 获

得了该方程有中心对称解的充要条件以及有解时, 最大秩解、最小秩解的一般表达式, 并讨论了中心对称最

小秩解集合中与给定矩阵的最佳逼近解.
关键词: 矩阵方程; 中心对称矩阵; 最大秩解; 最小秩解; 最佳逼近解
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