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Abstract: In this paper, analytical stability and numerical stability are both studied for
stochastic differential equations with piecewise constant arguments of retarded type. First, the
condition under which the analytical solutions are mean-square stable is obtained by It6 formula.
Second, some new results on the numerical stability including the mean-square stability and T-
stability of the Euler-Maruyama method are established by using inequality technique and stochas-
tic analysis method. It is proved that the Euler-Maruyama method is both mean-square stable
and T-stable under some suitable conditions. Our results can be seen as the generalization of the
corresponding exist ones on the numerical stability of stochastic delay differential equations.
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1 Introduction

Stochastic differential equations with piecewise constant arguments (SEPCA) can be
regarded as generalizations of both stochastic delay differential equations (SDDEs) and dif-
ferential equations with piecewise constant arguments (EPCA). The general form of SEPCA
of retarded type is

dX(t) = f(t, X (¢), X([t —p)))dt + g(t, X (¢), X ([t — p]))dW (t),t > 0

with the initial function X(—1) = X_; and X(0) = X,. Where [-] signifies the great-
est integer function, p € R*. One-dimensional standard Wiener process W (t) satisfies
E(W(t)) = 0,E(W(t)W(s)) = min{t, s} and the initial value X_;, X are random variables.
In addition, we assume that f(¢,0,0) =0 and g¢(¢,0,0) = 0.

EPCA describe hybrid dynamical systems and combine properties of both differential
and difference equations. They are appeared in modeling of various problems in real life

such as biology, mechanics and electronics. Several important properties of the analytical
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solution of EPCA as well as numerical methods have been studied by many authors [1-4].
For more details of EPCA, the reader can see Wiener’s book [5].

In many scientific and applied areas, including finance, ecology, computational biology
and population dynamics, SDDEs are often used to model the corresponding systems. In
recent years, there has been increasingly interesting in studying such equations, and their
numerical treatments have also received considerable attention. Tudor and Tudor [6] and
Tudor [7] first studied numerical solutions of SDDEs. Cao [8] derived some stability prop-
erties of Euler-Maruyama method for linear SDDEs. Buckwar and Shardlow [9] considered
weak approximation methods for SDDEs. Rathinasamy and Balachandran [10] analyzed
the mean-square stability of the semi-implicit Euler method for linear stochastic differential
equations with multiple delays and Markovian switching. Hu and Huang [11] studied mean-
square stability of stochastic 8-methods for stochastic delay integro-differential equations.
Xiao et al. [12] analyzed convergence and stability of semi-implicit Euler methods for a linear
stochastic pantograph equations. Recently, Wang and Chen [13] have given results of mean-
square stability of semi-implicit Euler methods for nonlinear neutral SDDEs. We note that
most of the above numerical stability results are focused on the mean-square stability, few
results have been found in the references that involve T (Trajectory)-stability of numerical
method for SDDEs. The definition of T-stability of numerical schemes for stochastic differ-
ential equations was introduced by Saito and Mitsui [14]. Burrage et al. [15] extended this
concept from weak approximation to strong approximation. Burrage and Tian [16] discussed
the T-stability of the composite Euler method for stochastic ordinary differential equations
(SODEs). Cao [17] studied the T-stability of the semi-implicit Euler method for delay dif-
ferential equations with multiplicative noise. For linear stochastic delay integro-differential
equations, Rathinasamy and Balachandran [18] considered the T-stability of the split-step
f-methods. Motivated by the work of Cao [17] and Rathinasamy and Balachandran [18],
the present paper will focus on both the mean-square stability and the T-stability of the
Euler-Maruyama method for SEPCA.

In this paper, we consider the following scalar SEPCA of retarded type

{ AX(t) = (a1 X (t) + aa X ([t — 1]))dt + (a5 X (£) + as X ([t — 1]))dW (£), £ > 0,

(1.1)
X(~1) = X_1, X(0) = X,

where a1, as,as3,a4 € R. The major objective of this paper is to illustrate that the Euler-
Maruyama method applied to (1.1) is both mean-square stable and T-stable under the
condition which guarantees the stability of the analytical solution.

The structure of this paper is organized as follows. In Section 2 we will introduce
some necessary notations and hypotheses of (1.1) and discuss the stability properties of its
analytical solution. In Section 3, the Euler-Maruyama method will be used to produce the
numerical solutions. Moreover, our main results will be shown and proved in this section.

Conclusion is provided in Section 4.

2 The Stability of the Analytical Solution
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Let (Q,F,P) be a complete probability space with a filtration F;>o satisfying the
usual conditions. The Wiener process W (¢) in (1.1) be F;-adapted and independent of Fyp,
L'([0,00),R) and L?([0,00),R) denote the family of all real valued measurable F;-adapted

T T
process f(t);>o such that for every T' > O,/ |f(t)|dt < oo w.p.1 and / |f(t)]2dt < oo

w.p.1, respectively. Moreover, assume that thoe initial value X_; and X, are Fy-measurable
and E(X()? < oo.

Definition 2.1 A stochastic process X (¢) is called a solution of (1.1) on [0, c0) if it has
the following properties:

(i) X (t) is continuous and F;>o-adapted;

(ii) f(t7 X(t)) X([t_ 1]))t20 € Ll([oa OO)’ R) and g(tv X(t)v X([t_ 1}))1&20 € L2([07 OO)) R)§

(iii) (1.1) is satisfied on every interval [n,n+1) C [0, c0) with integral end-points almost
surely.

Definition 2.2 If any solution X (¢) of (1.1) satisfies

Jim E(X(t)* =0,

then the zero solution of the (1.1) is called mean-square stable.

Lemma 2.3 [19] The solution x = 0 of equation
2'(t) = az(t) + aox([t]) + a1z([t — 1]) (2.1)

is asymptotically stable (the solution z(t) — 0 as t — oo) if and only if the inequalities

ar] <
1 40
et —1
a(e® +1) (22)
alfﬁ<ao<fafa1

hold.
From Lemma 2.3, we can easily obtain the following result.

Corollary 2.4 The solution x = 0 of equation
' (t) = ax(t) + ayz([t — 1))
is asymptotically stable if and only if the inequality

<ap < —a
er —1 !

holds.
According to Corollary 2.4 and Lemma 2.1 in [20], we have the following Result.
Theorem 2.5 If Ay >0 and A; + Ay < 0, then any continuous and positive solution
z(t) of system

{ 2'(t) < Ayz(t) + A ([t — 1]), (2.3)

x(—=1) =x_1,2(0) = xg
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is asymptotically stable.
Hence, the result on the stability of analytical solution is obtained.
Theorem 2.6 If condition

2a; + a3 + aj + 2|as + azas| < 0 (2.4)

holds, then the solution of (1.1) is mean-square stable.

Proof By It6 formula, we have
dX2(t) =2X (1) (a1 X (t) + as X ([t — 1]) + (a3 X () + ax X ([t — 1]))*)dt
+2X (1) (as X () + as X ([t — 1]))dW (t)
<((2a1 + a3 + |as + azaq]) X2(t) + (a3 + |az + azaq|) X>([t — 1]))dt
+2X (1) (as X () + as X ([t — 1)))dW (1),

(2.5)

let
Y (t) = E(X*(t)),
then
dY (t) < {(2a; + a3 + |ag + azas))Y (t) + (a3 + |as + azas])Y ([t — 1]) }dt,
that is

Y'(t) < (201 + a3 + |az + azaa])Y (8) + (ai + |az + azaa)Y ([t — 1]).
By using Theorem 2.5 and condition (2.4), we have
Jim E(X(#))* = lim Y (t) =0,
which completes the proof.

3 Numerical Stability Analysis

Let h = 1/m be a given stepsize with integer m > 1, and the gridpoints ¢,, be defined
by t, =nh. Let n=km+1 (Il =0,1,--- ;m — 1), applying the Euler-Maruyama method to
(1.1), we have

X1 = X + (a1 Xy, + a2 Xp—1ym) b + (a3 Xy, + as X p—1ym ) AW, (3.1)

where X,, = X(t,), the increments AW,, :== W (t,,41)—W (t,,) are independent N (0, h)—distributed
Gaussian random variables. We assume X,, to be F; -measurable at the mesh-points ¢,,. For
the convergence of the Euler-Maruyama method, we refer the interested reader to [21-23].

In the next two subsections, we will focus on its stability property.
3.1 Mean-square Stability

Definition 3.1 Under the condition (2.4), a numerical method applied to (1.1) is said
to be mean-square stable, if there exists a hg(ay, az,as,as) > 0, such that the numerical
solution sequence X,, produced by this numerical scheme satisfies

lim E(X,)* =0 (3.2)

n—oo
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for every stepsize h € (0, ho(aq, as, as,as)) with h = 1/m for an integer m.
Let
P = (1+aih)* + a3h +|(1 + arh)ash + azashl,
Q = a3h® + ajh + |(1 4 a1h)azh + azash),
_a§ + ai + 2a; + 2|az + azaq|
(lax| + lazl)?

ho(a1,a2,a3,a4) = )

we have the following Lemma.

Lemma 3.2 If condition (2.4) is satisfied, then inequality P + @ < 1 holds for any
h € (0,ho(a1,as,as,as)).

Proof It is obvious that hg(ai,as,as,as) > 0 from condition (2.4), and

P+ Q= (1+a1h)®+a3h+a3h® + ajh + 2|(1 + a1h)ash + azash|
< (a3 + a3)h® + (a3 + 2a; + a3)h + 1 + 2hlag + azas| + 2h*|a;as| (3.3)
= (|a1| + |az|)?*h® + (a3 + a3 + 2a; + 2|as + azas|)h + 1,

therefore P + @ < 1 if and only if

a3 + a3 + 2a1 + 2|az + azaq|

O<h<-—
(lai] + |az])?

ho(a’17 a2, as, CL4),

the proof is completed.

Then the first main Theorem of this paper is obtained.

Theorem 3.3 Assume the condition (2.4) holds, then the Euler-Maruyama method
applied to (1.1) is mean-square stable with h € (0, ho(ay, az,as,a4))).

Proof Tt follows from (3.1) that

Xn+1 = (1 + alh + a3AWn)Xn + (agh + a4AWn)X(k_1)m. (34)

Squaring both sides of the above equality, yields

X2 =1+ aih+asAW,)* X2 + (ash + a4AWn)2X(2k_1)m

+2(1 + arth + azAW,,) (ash + asAW,) X X (5 1ym- (35)
Using the elementary inequality 2zyab < |zy|(a® + b%) we have
X2 <+ arh +as AW, )2 X7 + (agh + as AW, )2 XG5, (3.6)
+ (1 + arh + asAW,) (agh + as AW, (X2 4+ XG_1y,0),
that is
X2 {4+ arh+ asAW,)? + [(1+ ath + asAW,) (azh + as AW,) [} X 3.7)

+ {(agh + CL4AWn)2 + |(1 + alh + CL3AWn>(agh + (Z4AWR)|}X(2k_1)m.

Denote
Y, = E(XZ)
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Note that E(AW,,) = 0 and E(AW,,)? = h, the inequality (3.7) reduces to

Yn—i—l S[(l + alh)2 + agh + |(1 + alh)agh + CL3(I4h|]Yn

(3.8)
+ [aghQ + aih + ‘(1 + alh)agh + a3a4h|]Y(k_1)m,
which is equivalent to
Yn+1 < PYn + QYV(k—l)m' (39)
Namely
Vo1 < (P + Q)max { Yy, Yis—1ym } - (3.10)

By virtue of Lemma 3.2, the iteration of inequality (3.10) implies

lim Y, = lim E(X,)* = 0.

n—oo n—oo
It is shown that the method is mean-square stable.
3.2 T-stability

The mean-square stability may still cause difficulty from the point of view of computer
implementation. In order to learn more about the nature of numerical scheme, we often
need to evaluate the value of the expectation E|X,|* where X,, is an approximating se-
quence of the solution sample path. In a certain probability, X,, may happen to overflow in
computer simulations. This actually interferes with the evaluation of X,,. To overcome this
difficulty, T-stability is introduced with respect to the approximate sequence of sample path
(trajectory) by Saito and Mitsui [14].

Definition 3.4 [15] Under the condition (2.4), the numerical scheme equipped with a
specified driving process is said to be T-stable if

lim |X,| =0 (3.11)

holding for the driving process.

The so called specified driving process is to approximate AW, by random variable
with specified distribution. In this paper, we treat the Euler-Maruyama scheme with two-
point random variables. The wiener increment AW, is taken as U,vh whose probability
distribution is given by P(U,, = +1) = 1/2, where P indicates probability.

By formula (3.4) and AW,, = U, Vh, we have

|Xn+1| S (|1 + alh + agAW"| + ‘agh + G4AWH|) max{\Xn\, |X(k—1)m|}

(3.12)
= (‘1 + arh + azVhU, ash + ayVhU, ) max{|X,|, | Xk—1)m|}-

+

Considering the average of n+1 steps by recursiving (3.4), we call it average stability function
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with

(2)(h7 a17a27a37a4)
(‘1+a1h+a3\/ﬁ +
=|(1+ a1h)® — a3h| + |a3h® — a3h|

+ \ +arh)ash — agash] + [azashv/h — (1 + alh)amﬁ])

+ ‘ (14 aih)ash — agash] — [agagh\/ﬁ -1+ alh)a4\/ﬁ]) ,

ash + am/ﬁD (‘1 +arh — CL3\/E‘ +

@h—a;;\/ﬁ’)

(3.13)

if R®(h;a1,as,as,a4) < 1, then lim |X,| = 0, so the numerical method is T-stable. There-

fore, the second main theorem of this paper is given as follows.

Theorem 3.5 Assume condition (2.4) is satisfied, denote

_ ol — 2
By =mind &, 2 tlea) (|CL3|2 |as|) }’
|a:| (a1 + |azl)
_ 2 _
hy = min Lv ko + \/k 8(a? — a3)|ay] 7
|ai] 2((11 *az)
—ko — /K2 — 8(a} — a3)]au]
h3 = D) 2 y
2(ay — a3)
e — 2 _ _ 2
S R =i |
|ai 2(ay — |azl)
—ky + k2 — 8(ay — |as])?
h5 = D) )
2(ar — |as])
hg = min 1 : —ko — \/k2 al - a2)(1 ) :
|a1| 2(‘11 *GQ)
—koy + /K2 — 8(a% — a2)(1 — |ay))
h7 = D) D) ’
2(ai — a3)
a? a3 —2a; ++/a —4a1\a3| %—Qal Va2 — 4aqas|
Si=1<hlh>=5 (S h|h>
as 2a? 2a?
a? ai —2a; ++/a —4a1\a3| %—Qal—\/a§—4a1|a3|
Sy=3h|h< = t(\{h|h= 2
as 2a? 2a7
a? a3 — 2a; — /a3 — 4a;|as] a3 —2a; + /a3 — 4day|a]|
Ss=1<hlh<—=5 [ <h<
as 2a1 2a?
a? ai —2a; —\/a 4a1|a3| a3 —2a; + /a2 — 4day|a|
Si=13hlh>=[){h
as 2a1 2a?
where ko = 2a; + a3 — a3 + 2|azas| + 2a1|as|, k1 = 2a1 — 2|as] — (|az| + |aa|)?, ke = 2a; —

2|azas| — 2a1|as] — a% + a3, then

}
},
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(i) If h € Sy and satisfies h < hy, the Euler-Maruyama method for (1.1) is T-stable;

(ii) If h € Sy and satisfies h3 < h < hg, the Euler-Maruyama method for (1.1) is
T-stable;

(iii) If h € S3 and satisfies h < hy or h > hjy, the Euler-Maruyama method for (1.1) is
T-stable;

(iv) If h € Sy and satisfies h < hg or h > hy, the Euler-Maruyama method for (1.1) is
T-stable.

Proof By virtue of (3.13), if the inequality

|(14 a1h)® — a3h| + |a3h® — a3h|
+ ‘[(1 + alh)agh — a3a4h] + [agagh\/ﬁ — (1 + alh)a4\/ﬁ]) (314)

+ ‘[(1 + arh)azh — azash] — [agagh\/ﬁ —(1+ alh)a4\/ﬁ]) <1
holds for h < 1/|a;|, then R® (h;ay, as,as,as) < 1 means that |X,| — 0 (n — 0o). Hence,
the Euler-Maruyama method is T-stable. In addition, we notice that h; > 0,72 =1,2,---,7
and k; < 0,7 = 0,1, 2 under the condition (2.4) and Remark 3.6. The proof will be considered

in four cases as follows.
(i) If h € Sy, then a3h? — aZh > 0,(1+ a1h)? — a2h > 0. So we have

‘[(1 + arh)ash — asagh] + [azashvVh — (1 + alh)a4\/ﬁ])
+ ‘[(1 + arh)ash — asagh] — [azashvVh — (1 + alh)a4\/ﬁ]‘ (3.15)
=2|(1 + arh)ash — azash|,
therefore, by inequality (3.14), we can obtain

(14 a1h)? — a3h + a3h* — ajh + 2|(1 + a1h)ash — azash|
<(1+ayh)? — azh + a3h® — a3h + 2(1 + a1 h)|as|h + 2|aszas|h

, - (3.16)
=1+ [2(a1 + |az|) — (|las| — |as|)"]h + (a1 + |az|)"h
<1,
namely
201 -+ Jaal) — (Jas] — las)?Jh + (e + laal) 22 < 0.
It is easy to find that the inequality (3.14) holds when h < hy.
(ii) If h € So, then a3h® — a3h < 0, (1 + a1h)? — a3h > 0. So we have
‘[(1 + ayh)ash — asaqsh] + [agashvVh — (1 + alh)a4\/ﬁ]’
+ ‘[(1 + arh)ash — agash] — [azashvVh — (1 + alh)a4\/ﬁ]‘ (3.17)

=2 |agazhV'h — (1+ alh)a4\/ﬁ .
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Hence, the inequality (3.14) can be written by

(14 a1h)? — a2h + a2h — a2h? + 2 |azashVh — (1 + a;h)asVh

<(14 a1h)? — a2h + a2h — a2h? + 2)azas|hVh + 2(1 + a1h)|as|VR

<(14 ay1h)? — a2h + a>h — a2h? + 2|azas|h + 2(1 + ay )|l (3.18)
=1+ 2|ay| + [2a; + a — a3 + 2|azas| + 2a;|aq|]h + (a] — a3)h?
<1,

consequently

(a7 — a3)h?® + koh + 2]a4| < 0.

We can easily derive that a? — a2 > 0, k2 — 8(a? — a3)|as| > 0. So the inequality (3.14) holds
when hz < h < ho.
(iii) If h € Ss, then a2h?® — a2h < 0,(1 4 a1h)? — a2h < 0. Hence (3.15) holds, (3.14)
can be written as
azh — (1 +a1h)? + aih — a3h* + 2|(1 + ayh)ash — asashl

<a3h — (1+a1h)® + ajh — a3h® + 2(1 + a,h)|az|h + 2|azaq|h

=—1- (a1 — |a2|)2h2 + [(|a3| + |CL4|)2 — 2aq + 2’&2“h

<1,

(3.19)

that is
(a1 — las|)*h* + kih +2 > 0,

so inequality (3.14) holds when h < hy or h > hs.
(iv) If h € Sy, then a2h? —a3h > 0,(1 + a1h)? — aZh < 0. Hence (3.17) holds, (3.14)
can be written as
aZh — (1 +arh)* + a§h2 —a2h+ 2 |asazhvh — (1 + aih)asvVh
<ash — (1 +a1h)?* + a3h® — ajh + 2|azaz|h + 2(1 + a h)|a4| (3.20)
=— 1+ (a3 — a3)*h* + [a3 — a3 — 2a; + 2|asas| + 2a1|as|]h + 2|a]
<1,
that is
(a? — a2)?h? 4 koh + 2 — 2]ay| > 0,

so inequality (3.14) holds when h < hg or h > hs.
Therefore, the proof is completed.
Remark 3.6 In Theorem 3.5, if anyone of the following inequalities holds

If% — 8((11 — |CL2|)2 < 0,]{73 — 8(&% — a%)(l — |CL4|) < 0,

we can let the corresponding stepsize h equals 1.
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4 Conclusion

In this paper, we discuss the mean-square stability and T-stability of Euler-Maruyama
method for linear SEPCA of retarded type. It may be worthwhile to remark that the paper
makes a meaningful exploratory for T-stability of numerical method. We believe that this
topic will be gained more and more attention by scientists and engineers. T-stability of
numerical methods for SEPCA of advanced type will be considered in the further work.
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