Vol. 35 ( 2015)
No. 2 J. of Math. (PRC)

A NEW FAMILY OF ELEMENTS IN THE STABLE
HOMOTOPY GROUPS OF SPHERES

WANG Yu-yu, WANG Jun-li
(College of Math. Science, Tianjin Normal University, Tiangjin 300387, Chma)
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1 Introduction

To determine the stable homotopy groups of spheres 7..(.S) is one of the central problems
in homotopy theory. One of the main tools to reach it is the Adams spectral sequence(ASS).

Let A be the mod p Steenrod algebra, and S be the sphere spectrum localized at an
odd prime p. For connected finite type spectra X, Y, there exists the ASS {E5* d,} such
that

(1) d, : ESt — Estrt+r=1 ig the differential;

(2) Ey' = Bxty'(H*(X),H*(Y)) = [2*Y, X],, where E5' is the cohomology of
A. When X is sphere spectrum S, Toda-Smith spectrum V(n)(n = 1,2,3), respectively,
(m¢—s(X)), is the stable homotopy groups of S, V(n). So, for computing the stable homotopy
groups of spheres with the ASS, we must compute the Er-term of the ASS, Ext"(Z,,Z,).

From [1], Ext;*(Z,,Z,) has the Z,-base consisting of

ao € Bxt}(Z,,2,), h; € Ext\P (Z,,Z,)

for all # > 0 and Exti’*(Zp,Zp) has the Z,-base consisting of s, a3, aghi(i > 0), g;(i >
0), ki(i = 0), bj(¢ > 0) and h;h;j(j > i+ 2,9 > 0) whose internal degrees are 2¢q + 1,
2, plq + 1, p'tlq + 2piq, 2p'Tlq + piq, p'Tlq and piq + p’q, respectively. From [2, P.110,
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Table 8.1], the Z,-base of Ext® “(Z,,Z,) has been completely listed and there is a generator
Y€ Ext’ D=2 *(Zy, Z,) which is described in [3].

Our main theorems of this paper are as follows.

Theorem 1.1 Let p > 11,3 <t < p— 5, then

% h0b5 c Extt+11 L(t+5)p2 g+ (t—1) (p+1)q+t— 3(Z z,)

is a permanent cycle in the ASS and converges to a non-trivial element in 7, (S).

Based on a new homotopy element in 7, (V'(2)), the above homotopy element in 7, (.5)
will be constructed .

For the reader’s convenience, let us firstly give some preliminaries on Toda-Smith spec-
trum V' (n).

The Z,, cohomology group of Toda-Smith spectrum V(n) is H*V (n) = E[Qq, Q1. - - , Qn]
~ Q(2"*), where Q;(i > 0) is the Milnor’s elements of Steenrod algebra A, and E[ | is the
exterior algebra. From [4], when n = 1,2,3 and p > 2n, we know that V(n) is realized, and

there exists a cofibre sequence (V(—1) = 5):

$20" DY (n — 1) 2 V(n — 1) == V(n) —= £2" 1V (n — 1),

where a,(n =0,1,2,3) are p, a, 3, 7, respectively. The cofibre sequence can induce a short
exact sequence of Z, cohomology groups. Thus, we get the following long exact sequence of
Ext groups:

UL Bt D ey (- 1, 7,) s Bt (HV (0 — 1), Z,)

U Bt (HV (n), Zy) 2 B 5=V (n - 1),2,) —

(in )

n)* ...

The following theorem is a key step to prove Theorem 1.1.

Theorem 1.2 Let p > 11, then hob} € Ext’" o U H*V(2),Z,) is a permanent cycle
in the ASS and converges to a non-trivial element in 7,V (2).

It is very difficult to determine the stable homotopy groups of spheres. So far, not so
many nontrivial elements in the stable homotopy groups of spheres were detected. See, for
example [1, 5, 6].

The detection of the element 7; hob? is parallel to that of the element v; hob? given in
[7]. Actually, our results are more complicated, especially to Proposition 3.3 and Proposition
3.4.

This paper is organized as follows: after giving some preliminaries on the May spectral
sequence (MSS) in Section 2, the proofs of the main theorems will be given in Section 3.

2 Some Preliminaries on the May Spectral Sequence

The most successful tool for computing Ext’;"(Z,,Z,) is the MSS. From [8, Theorem
3.2.5], there exists the MSS {E®"*, d,.} which converges to Ext%'(Z,,Z,). The E;-term and
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differential of the MSS are
E7T"" =E(h; i > 0,7 >0)® P(b;;li >0,j >0)® P(a;|i >0),

dr . E:,t,u N E:+17t5u77‘77, 2 1’
where F is the exterior algebra, P is the polynomial algebra and

hi € Ell,z(p'i—l)pj,21‘—17 sz c Ef,z(pi—1)][)1*1,]0(21‘—1)7 a; € E11,2p7:71,2i+1.

Lemma 2.1 (see [9]) Let t = (c,p™ + cp1p" '+ - +c1p+co)g+c_1, ¢; € Z, and
p—1>=c¢,=2ch1 2 2c 2co = c_q =0, then the number of h,y1_;; in the generator
of BE{™"* will be (¢; —¢;1) (0 < i < n).

Corollary 2.2 (see [9]) If p>a>b>c>d > 0, then the number of hy 5, he; and
hs,o in the generator of Ef’“p2q+bpq+cq+d * will be (a —b), (b—c) and (¢ — d), respectively.

Corollary 2.3 (see [9]) Let ¢ > 3, then E}'"” fat(t-Dpat(t-2att=3 Zp{ho1hiohs a2}

Lemma 2.4 (see [9]) Let

t=(cap" +cnap" '+ +aptc)gte,
¢ €Z,(—1<i<n) fore <c1,0<i<n—1,then Ef"’t’* =0.

Lemma 2.5 (see [9]) Let u > 0, P > ¢9,C1,¢0,c_1 = 0 and ¢y — c_; > 4, there don’t

+ +cogq+c—
exist u factors in the generator of E}” 2P’ arepteoqteny

3 The Convergence of 7; hob} in the Adams Spectral Sequence

Let P be the subalgebra of A generated by the reduced power operations Pi(i > 0),
then we have the following results.

Proposition 3.1 (see [9]) Ext%'(H*V(3),Z,) = Ext}3(Zy, Z,), t — s < 2p* — 1.

Corollary 3.2 Let s > 2, then

EXt2+11’5pZQ+q+s_1(H*V<3), Zp) ~ Ext;‘)+11,5p2q+q+s—1(Zp’ Zp)
Proposition 3.3 Let 3 <t <p—5,p > 11, then
0 #9, hob? € Ex tt+11 L(E45)p* g+ (t—1) (p+1) g+t — 3(Z Z,).

The generators of E{""" and their first, second degrees satisfying t < p3q are listed in
Table 1.
Table 1: The generators and degrees

hio hia hao ha 1 hia hs.0 b1,0
(1,q9) (L,pg) (L,(p+1)q) Lpp+1q) 1,p°¢9) 1@ +p+1)q) (2,p9)

bi1 bz,o ap ay as as

)

(2,p’¢) (2,(0*+plg) (1,1) (Lg+1) (L (p+Lg+1) (I,(p*+p+1g+1)
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To compare the degrees, hg, by € Ext%,*(Z,,Z,) are represented by hio € E1 b€
) g A \&p; &p ;
E>P"%* in the MSS. From Corollary 2.3, we conclude that 4,€ Exti‘tp oH(t= 1)pq+(t 213
2
(Zp, Z,) is represented by ho1hy ohsal ™ € ERP aTUmDpat(=2ati=8= 4 5 3y i) the MSS.
~ 2 — — —3.%
Thus, ; hob? is represented by hl,ob?lhz,lhl,gh&oagﬁ‘?’ € Ef“l’(t%)p oH(t=Dpat(t=1)g+t=3,
~ 2 _ —
in the MSS. If we want to prove that 0 £3; hob? € Ext’, (P at(t=Dtati=s7 7 )

t4+10,(t45)p? g+ (t—1) (p+1) g+t —3,% — 0. For any o € Et+10 J(t+5)p* g+ (t— 1)(p+1)q+t 3,%

must prove that F;
we have the following discussions.

Case 1 When t > 6, from Lemma 2.5, the number of the factors in o will be ¢t 4+ 9,
t+8,t+7,t+60rt+5.

Subcase 1.1 If ¢ has t + 9 factors, there exists a factor b; ;(b1,0,b1,1,b2,0). Due to the

commutativity, the possible forms will be 0 = 04.1b1,9, 0 = 01.2b11, 0 = 01.3b2, Where

t+8,(t4+5)p? g+ (t—2)pa-+(t—1) g+t —3,x 48, (t+4)p2 g+ (t—1)pg+(t—1)g+t—3

O'11€E O'QEE 5

t+8,(t+4)p? g+ (t—2)pg+(t—1)g+t—3,*
;€ E (t+4)p”q+(t—2)pg+(t—1)q .

By Lemma 2.5, the number of the factors in 017 is t + 7,t + 6 or ¢t + 5, thus the number
of the factors in o will be t + 8,t + 7 or ¢t + 6. It is in contradiction with that ¢ has ¢t +9
factors, so 017 = 0. Similarly, we conclude that ;5 =0, 013 =0, so 0 = 0.

Subcase 1.2 If ¢ has ¢t + 8 factors, there exist two factors b; ;(b1,0,b1,1,b2,0). Due
to the commutativity, the possible forms will be 0 = 02,1675, 0 = 02.2b7 1, 0 = 02.3b3 ¢,

0 = 02.4b1,ob1,1, g = 02.551,052,07 g = 0'2.6b1,lb2,07 where

t+6,(t+5)p° q+(t—3)pg+ (t—1)g+t—3,% t+6,(t+3)p° g+ (t—1)pg+(t—1)g+t—3,%

091 € E ,022 € E )
2 _ _ _ 2 _ _ _
0g € Ellf+67(t+3)p q+(t—3)pg+(t—1)q+t 3,* L€ Et+6,(t+4)p q+(t—2)pg+(t—1)g+t—3,*

)

s € Et+6,(t+4)p2q+(t73)pq+(t71)q+t73* t+6,(t+3)p2q+(t—2)pg+(t—1) g+t — 3*
1

,O'g@EE

By the similar argument in Subcasel.l, we can get that oo; =0(i =1,2---6), thus o = 0.
Subcase 1.3 If o has ¢t 4 7 factors, there exist three factors b; ;(b1,0,b1,1,b2,0). Due to

the commutativity, the possible forms will be o = 031} o, 0 = 03207 ob11, 0 = 03.3b] obayo,

o = 03.45‘;’,1, g = Usesbg,o, o = 0'3.6bi1b2,07 g = 03.7bilb1,0, g = 03.853,0171,0, o = 03.953,051,17

g = 0'3,10b1’0b1,1b2’0, where

t+4,( t+5)p g+ (t—4)pg+(t—1)g+t—3,% t+4,( t+4)p g+ (t—3)pg+(t—1)g+t—3,x

J31 € E ,032 € E s
s € Et+4,(t+4)p2q+<t—4)pq+(t—1)q+t—3,* = Et+47<t+2)p2q+(t—1)pq+(t—1>q+t—3,*

)

t4+-4,(t+2)p% g+ (t—4) pg+(t—1) g+t —3,* t4+4,(t4+2)p% g+ (t—2) pg+(t—1) g+t — 3*

O-BQEE 0'36€E

t+4,(t+3 t—2 t—1)q+t—3, t+4,(t+3 t—4 t—1)g+t—3,
o3 € E +4,(t+3)p> g+ (t—2)pg+(t—1)q+ * = E1+ (t+3)p>q+(t—4)pq+(t—1)q+ *

)

t+4,(t+2)p° g+ (t—3)pg+(t—1)g+t— 3* t+4,(t+3)p° g+ (t—3)pg+(t—1)g+t—3,*
039 € E 0310 € El .

It is obvious that o351 = 0. By the similar argument in Subcasel.1, we can get that o3; =0
(i=4,5,---,10). From Lemma 2.4, note that t —3 < t—1, t—4 < t — 1, thus the remainder

are all zero. Therefore, we can get o = 0.
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Subcase 1.4 If o has t + 6 factors, there exist four factors b; ;(b1,0,b1,1,b20). Due
to the commutativity, o = o’'b ob{ 103 5, where x +y + 2 = 4,2,y,2 > 0 and o’ € BT
T=t+5—y—2)p*q+{t—-1—2—2)pg+ (t — 1)g+ (t — 3). If z > 2, we have that
y+z<3andt+5—y—z>t+2. Itisobvious that ¢/ = 0. Thus, the possible nontrivial
forms will be 0 = 04.1b1 |, 0 = 042b5 g, 0 = 0u3b} (b1, 0 = 044} 1b2o, 0 = 0453 ob1 o,
0 = 0463 gb1,1, 0 = 0uzbi (b3, 0 = 048b1 b} 1b20, 0 = Ougbi o103, Where the first
degrees of 04,;(i = 1,2,3,---,9) are all ¢ + 2 and the second degrees of them are listed in
Table 2 (M =t—1,and N =t — 3).

Table 2: The factors and second degrees

T4 the second degree T4 the second degree

os1 (t+Dp*q+(t—1pg+Mqg+N o045 (t+1)p*q+ (t—5)pg+ Mg+ N
o1z (t+2)p*q+ (t—2)pg+Mqg+ N o044 (t+1)p*q+ (t—2)pg+ Mg+ N
o15 (t+2)p*q+(t—5)pg+ Mg+ N o046 (t+1)p?q+(t—4)pg+ Mg+ N
osr (t+Dp*q+ (t—=3)pg+Mqg+ N o485 (t+2)p*q+ (t—3)pg+ Mg+ N

o019 (t+2)p*q+ (t—4)pg+ Mg+ N

By the argument similar to Subcase 1.3, we get that o4, = 0(i = 1,2---9), thus o = 0.
Subcase 1.5 If o has t + 5 factors, there exist five factors b; ;(b1,0,b1,1,b2,0). Due to
the commutativity, the possible nontrivial forms will be o = 0516} 103 o, 0 = 05207 103,
0 = 053030011, 0 = 054bl 1b2o, 0 = 05503, 0 = 056b7 ;, where the first degrees of
05.:(i =1,2,3,---,6) are all t and the second degrees of them are listed in Table 3 (M =t—1,
and N =t — 3).
Table 3: The factors and second degrees

05 the second degree 05 the second degree

os1 g+ (t=3)pg+ Mg+ N o055 tp’q+(t—4)pg+ Mg+ N
053 t*q+ (t=5)pg+ Mg+ N o054 tp’q+(t—2)pg+ Mg+ N
055 tp°q+ (t—6)pg+ Mg+ N o056 tp*q+(t—1)pg+ Mg+ N

Similarly to 039, we can get that o5, =0(i = 1,2---5). As for 05, from the Corollary

2.2, there exist two factors hs o, so 056 = 0. Thus, we can get 0 = 0.
Case2 Whent =5 E§+107(t+5)p2q+(t—1)(p+1)q+t—37* _ E115,10p2q+4pq+3q+q+2,* the gener-

) )
ator contains (q+ 2) factors a;. Therefore, the first degree > ¢+ 2 > 15, it’s a contradiction.
So, we get 0 = 0. When t = 4, t = 3, the proofs are the similar to ¢t = 5. Summarize the

above Case 1 and Case 2, Ei+10’(t+5)p2q+(t71)(p+1)q+t737* = 0. That is
0 45, hobf € Bt MU0 D3 735 <y <)

Proposition 3.4 Let r > 2, 3 <t < p—>5, then

t+11—r,(t4+5)p2 g+ (t—1)pg+(t—1)g+t—r—2,%
Ext; (t4+5)p" g+ (t—1)pg+(t—1)g (Zp,Z,) = 0.

2
Tt is sufficient if we can show that Ef“lﬂ’(tﬁ)p g+ (t=Dpgt(t—1)gtt—r—2x _
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Casel Ifr>6,t+11—r <t+5, sowe have

E§+11—7'7(t+5)p2q+(t—1)pq+(t—1)q+t—r—27* —0.

Case 2 If r =6, then

Et+11—r7(t+5)pzq+(t—1)m+(t—1)tI+t—T—2,* _ Et+57(t+5)p2q+(t—l)pq+(t—1)q+t—&*
1 = £y .

Subcase 2.1 When ¢ > 8, from the Corollary 2.2, there exist six factors h; 2, so o = 0.

Subcase 2.2 When ¢ — 7, /5P e+ Dpat(t=Datt=8s _ pl212%t6p+5ata—Lix
The generator contains (¢ — 1) factors a;. Therefore, the first degree> g — 1 > 12, it’s a
contradiction. So, the generator is impossible to exist.

Subcase 2.3 When 3 < t < 6, by the similar argument in Subcase 2.2, the generator
is impossible to exist.

Case 3 If r =5, then

Et+117n(t+5)p2q+(t*1)pq+(t*1)Q+t7rf2,* _ Et+6,(t+5)p2q+(t*1)pq+(t*1)q+t77,*
1 =L .

Subcase 3.1 When t > 7, from the Lemma 2.5, we know that the generator contains
t 4+ 5 factors, one of which must be the factor b; ;. Thus, the possible nontrivial forms

. t+4,(t4+4)p2 g+ (t—1 t—1)q+t—7,
will be 0 = O'3V1b171, g = O‘3_2b2107 where 031 € E1+ (t+Dp7a+( Jpa+( Jat *, 032 €

E§+4’(t+4)p2q+(t_2)pq+(t_1)q+t_7’*. By the similar argument in Subcase2.1, we can get that
031 =0,032=0.

Subcase 3.2 When 3 <t < 6, by the similar argument in Subcase 2.2, the generator
is impossible to exist.

Case 4 If r =4, then

Et+114,(t+5)p2q+(t71)pq+(t71)q+tfr72,* _ Et+7,(t+5)p2q+(t71)pq+(t71)q+t76,*
1 - 1 .

Subcase 4.1 When t > 6, from Lemma 2.5, we know that the number of the factors
in o will be t +5 or t + 6.

Subcase 4.1.1 If o contains t 4 6 factors, then there exists a factor b; ;(b1,0,b1,1, ba2o)-
Due to the commutativity, the possible nontrivial forms will be 0 = 041b10,0 = 04.2b11,

g = O'4_3b2,0, where

t+5,(t45)p° g+ (t—2)pg+(t—1)g+t—6,% t+5,(t+4)p® g+(t—1)pg+(t—1)g+t—6,*
o041 € E; 042 € B )

t+5,(t+4)p2 g+ (t—2 t—1)g+t—6,
= E1+ (t+4)p~q+(t—2)pg+(t—1)g+ *

By the similar argument in Subcase 2.1, we know that 047 = 0. As for 049, from Lemma 2.5,
042 must contain ¢ 4 4 factors, thus o = 04201 1 contains ¢ + 5 factors. It is a contradiction
with that o contains ¢ + 6 factors, then 045 = 0. Similarly, we can get o435 = 0.

Subcase 4.1.2 If o contains t+5 factors, then there exist two factors b; ;(b1,0, 01,1, b2,0)-

Due to the commutativity, the possible nontrivial forms will be ¢ = 04,4bil, o= 04,51)3’0,
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g = 0'4_6b171b2’0, where

t+3,(t4+3)p2 g+ (t—3) pg+(t—1) g+t—6,*

t+3,(t+3)p° g+ (t—1)pg+(t—1)q-+t—6,x
4.4 € El ,04.5 S E N

t+3,(t+3)p° g+ (t—2)pg+ (t—1)g+t—6,%
1.6 € El .

By the similar argument in Subcase 2.1, we can get o454 = 0. As for 045, from the Lemma
24 and t —3 <t—1, so 045 =0. Similarly, we can get 46 = 0.

Subcase 4.2 When 3 < t < 5, by the similar argument in Subcase 2.2, we know that
the generator is impossible to exist. Thus, we have ¢ = 0.

Case 5 If r =3, then

Et-l-ll—n(t-&-5)p2 q+(t—1)pg+(t—1)g+t—r—2,% _ Et-l-87(t+5)p2 q+(t—1)pg+(t—1)g+t—5,%
1 — L .

Subcase 5.1 When t > 5, from Lemma 2.5, the number of the factors in ¢ will be
t+5,t+6o0rt—+7.

Subcase 5.1.1 If o contains ¢ + 7 factors, then there exists a factor b; ;(b1,0, 1.1, b2,0).
Due to the commutativity, the possible nontrivial forms will be 0 = 05.1b10,0 = 05.2b11,

g = 0'5_3b270, where

t+6,(t+5 t—2 t—1)g+t—>5, t+6,(t+4)p2 g+ (t—1 t—1)g+t—5,
051€E+(+)pq+( )pg+(t—1)g+ * 5.2€E1+(+)pq+( )pg+(t—1)g+ *

t46,(t+4)p2 g+ (t—2)pg+(t—1 +t75,*
55 € E! (t+4)p* g+ (t—2)pg+(t—1)q _

)

Similarly to 042, we can get o5,; = 0(i = 1,2, 3).
Subcase 5.1.2 If o contains t+6 factors, then there exist two factors b; ; (b1 0, b1,1,b2,0).
Due to the commutativity, the possible nontrivial forms will be ¢ = U5.4bi17 o= 05_565,0,

o= 05.6b1,0b1,1, o= 05.751,052,07 0= 05.8b1,1b2,07 where

t+4,(t43)p2 g+ (t—1)pg-+(t—1) g+t —5 % t+4,(t4+3)p? g+ (t—3)pg-+(t—1) g+t —5 %

0'54€E 55€E )

t+4,(t+4)p2 g+ (t—2 t—1)g+t—5, t+4,(t+4)p>q+(t—3 t—1)g+t—5,
s 6 € E1+ (t+4)p~q+(t—2)pg+(t—1)g+ *705.7 c E1+ +4)p~q+(t—3)pg+(t—1)g+ *’

t+4,(t4+3)p2 g+ (t—2)pg+(t—1)g+t—5,
s €E (t+3)p*g+(t—2)pg+(t—1)q *

Similarly to 042, we can get that o54 = 0, 055 = 0, 058 = 0. Similarly to g45, we can get
that 056 =0, 057 = 0.

Subcase 5.1.3 If o contains t+5 factors, then there exist three factors b; ;(b1,0, b1,1,b2,0)-
Due to the commutativity, the possible nontrivial forms will be o = 05.9b7 ,, 0 = 751003 1,
o= 05_111)%1132,0, o= 05_12b171b§’0, where

t+2,(t4+2)p2q+(t—1 t—1)qg+t—>5 t+2,(t42)p2 g+ (t—4 t—1)g+t—>5
o€ B +2,(t+2)p”q+(t—1)pg+(t—1)g+ ,* o€ E! +2,(¢t+2)p~q+(t—4)pg+(t—1)g+t—5,x

)

t4+2,(t4+2)p% g+ (t—2) pg+(t—1) g+t —5,% t42,(t4+2)p? g+ (t—3) pg+(t—1) g+t — 5*

o511 € B} ,05.12 € E]

By the similar argument in Subcase2.1, we can know that 059 = 0. Similarly to 045, we can
get that 0510 = O, 0511 = 0, 0512 = 0.
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Subcase 5.2 When t = 4 or t = 3, by the similar argument in Subcase2.2, we know
that the generator is impossible to exist. Thus, in this case, we can get ¢ = 0.
Case 6 If r =2, then

Et+11—r,(t+5)p2q+(t—1)pq+(t—l)q+t—r—2,* - Et+9,(t+5)p2q+(t—1)pq+(t—l)q+t—4,*
1 - 1 .

Subcase 6.1 When ¢t > 5, from Lemma 2.5, the number of the factors in o will be
t+5,t+6,t+7ort+8.

Subcase 6.1.1 If o contains t + 8 factors, then there exists a factor b; ;(b1,0,b1,1,b2,0).
Due to the commutativity, the possible nontrivial forms will be o = 0¢.1b1,0,0 = 06.201 1,

0 = 06.3b2,0, where

t+7,(t4+5)p° g+ (t—2)pg+(t—1)g+t—4,% t+7,(t+4)p* g+ (t—1)pg+(t—1)g+t—4,x
06.1 S E1 ,06.2 S E1 9

t+7,(t4+4)p? g+t —2)pg+(t—1) g+t —4,*
065 € E (t+4)p~q+(t—2)pg+(t—1)q )

Similarly to o429, we can get g1 =0, 062 =0, 063 = 0.
Subcase 6.1.2 If o contains t+7 factors, then there exist two factors b; ;(b1,0,b1,1,b2,0)-
Due to the commutativity, the possible nontrivial forms will be o = g4.4b7 o, 0 = 0g.5b7 1,

_ 2 _ _ _
o= 06.652,07 o= 06.71)1,051,1, o= U6A8b170b2705 o= 06.9b1,1b2,09 where

t+5,(t+5)p° g+ (t—3)pg+(t—1)g+t—4,% t+5,(t+3)p° g+ (t—1)pg+(t—1)g+t—4,x
064 € B ,065 € B ;

t+5,(t+4)p° g+ (t—2)pg+(t—1)g+t—4,%
, 067 € B )

t+5,(t+4)p° g+ (t—3)pg+(t—1)g+t—4,% t+5,(t+3)p° g+ (t—2)pg+(t—1)g+t—4,%
06.8 & El ,06.9 S El .

t+5,(t+3)p2 g+ (t—3)pg+(t—1)g+t—4,*
066 € E (t+3)p”°q+(t—3)pg+(t—1)q

Similarly to g45, we can get that g4 = 0. Similarly to g4, we can get that gg; = 0
(i=5,6---9).

Subcase 6.1.3 If o contains t+6 factors, then there exist three factors b; ;(b1,0, 01,1, b2,0)-
Due to the commutativity, the possible nontrivial forms will be ¢ = Jg_lob‘il, o= oﬁ.ubgjo,
o = 06.12631[)1,07 0 = Uﬁ.lsbilbzo, o = 06.1451,053,07 0 = 0—6.15b1,1b§70; g = 06.16b1,obl,1b2,07
where the first degrees of 06;(i = 10,11, ---,16) are all ¢t + 3 and the second degrees of them
are listed in Table 4 (M =t —1,and N =t — 4).

Table 4: The factors and second degrees

06.i the second degree 06.i the second degree

o610 (E+2)p2q+(E—Vpg+ Mg+ N o611 (t+2)p*q+ (t —4)pg+ Mg+ N
o612 (E+3)p2q+({E—2pg+ Mg+ N o615 (t+2)p*q+ (t —2)pg + Mg+ N
o61a  (t+3)p°q+ (t—4pg+ Mg+ N o615 (t+2)p*q+ (t —3)pg+ Mg+ N
o616 (t+3)p°q+ (t—3)pg+ Mg+ N

Similarly to 042, we can get that .10 = 0, 06.11 = 0, 06.13 = 0. Similarly to o45, we
can get that Jg.12 — 0, 06.14 = 0, J6.15 — 0, 06.16 — 0.
Subcase 6.1.4 If o contains t+5 factors, then there exist four factors b; ;(b1,0,b1,1,b2,0)-

Due to the commutativity, the possible nontrivial forms will be ¢ = 06,17b‘1{1, o= 06.181)%’0,
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0 = 061903 1020, 0 = 06201105, 0 = 062107 503 5, where the first degrees of g6.i(i =
17,18, -+,21) are all £+ 1 and the second degrees of them are listed in Table 5 (M =1t — 1,
and N =t —4).

Table 5: The factors and second degrees

06.i the second degree 06.i the second degree

o617 (t+1)p2q+(E—Dpg+ Mg+ N o615 (t+1)p*q+ (t —5)pg+ Mg+ N
o619 (t+1)p°q+ (t—2)pg+ Mg+ N 0620 (t+1)p*q+ (t—4)pg+ Mg+ N
o621 (t+1)p°q+ (t—3)pg+ Mg+ N

Similarly to Subcase2.1, we can get that g¢.17 = 0. Similarly to o35, we can get that
o6 = 0(1 = 18,19, 20, 21).
Subcase 6.2 When t = 3,¢t = 4, by the similar argument in Subcase 2.2, we know

that the generator is impossible to exist. Thus, we have ¢ = 0.
2
Therefore, we can get that E§+11_T’(5+t)p a+(t=Dpatt-—Datt—r=2x _
2
That is Ext!, @ H0p et -lpat(t-latt=r=2x7 Z,) = 0.
Proposition 3.5 Let s > 2, p > 11, then Ext’ Pt~ (g*V(2),Z,) = 0.

From Corollary 3.2, we have
Exti 11 el (Y (3), 7,) & Extl T (7, 7,).

From [4, Lemma 2.2], we know that the rank of Ext}“l’spzq*’q“_l(zp,Zp) is less than or
equal to that of [P(b}) ® H**(U(L))]s s atats=1  and [P(b}) @ H**(U(L))]** is the
Es;—term of the MSS, where P() is the polynomial algebra. Up to the total degree t — s <
(p® 4+ 3p* +2p+ 1)q — 4, H**(U(L)) is multiplicative by the following cohomology classes

hi = {R1}, gi={RiR}}, ki ={RyR{""}(i > 0),
h={R{RIR}, I ={RLRIR;}, Is={RyRIR}},
L={R3R3R:}, s ={R3R3R;}, ls = {RiRyRY},
my = {R§R3RIR}}, my = {R{RJRIR},

ms = {R3RyRIR;}, my = {R3RYRIR}.

Moreover, we have additively

H**(U(L)) = {1,14,h3} @ {1, ho, h1, go, ko, koho }
+{h2,h2h07917517527l1h17k17l37k‘1h1751h2,m17m1h0;92;92h07l57m2,m3716;7714}7

and the bidegrees of R, b} are (1,2(p'* — p')), (2,2(p"7~" — p'™')), respectively. In the
MSS, b9 converges to by € Ext3"!(Z,,Z,), and the total degree of b9 is [b9| = pg — 2. The
generators whose total degrees are less than or equal to 5p°q+¢—12in [P(b})@ H**(U(L))]*"

and the total degrees |A\| mod pg — 2 are listed in Table 6 (¢t = 1,2,3,4,5,t' =1,2,3,4).
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Table 6: The generators A and total degrees |A\| mod pg — 2

A (D)L O ®  he, hi, g0, ko, koho, ha,  haho, g1,
Al tq,t'(¢g+2) + q—1, 1, 2q, q+2, 2¢+1, q+1, 2q, q+4,

ll7 127 llhlv kl? l37 k1h17 l1h27 miy, mlhO
4943, 2q+5, 4q9+4, 2q+4, 4g9+3, 2¢+5, d5q9g+4, 49+8, 5¢+7

Let = be a generator of Extf4+11’5p2q+q+s_1(H*V(2),Zp), then we have
(i3)-(x) € Exty o a1 ey (3), 7).

The total degree of (i3).(x) is 5p*q+q+s—1—(s+11) = 5p*q+q—12 = 6g—2 (mod pq—2).
From the above Table, we know that the generator A with total degree mod pq — 2 being
equal to 6¢ — 2 in [P(b}) ® H**(U(L))]*" doesn’t exist. So, we can get that (is).(z) = 0.
Consider the following exact sequence:

(a3)

(43)«
e Bt 10 e O D (e (9), 7)) < Bt (1Y (2), 2,)

(i3)« EXt;+11’5p2q+q+S_1(H*V(g)aZp) (js)’; cee

there exists an element z; € Extffwﬁp%ﬂﬂ*l*(2]”371)(H*V(2),Zp) satisfying (as).(z1) =

x. The total degree of (i3).(x1) is 5p?q+q+s—1—(2p> —1) — (s +10) = 4g— 6
(mod pg — 2). From the above Table, we know that

0 = (i3),(21) € Bxt’ 0P atats— 1= =1 peyy(3y 7y

Using the exactness repeatedly, there exists an element z;, € Ext’ RSP atats—1-k(2p"—1)

(H*V(2),Z,) satistying (a3)«(zx) = xr_1. But the total degree of (i3).(zx) mod pg — 2 is
different from that in the above table, so we know that

0 = (i), (wx) € Extiy 1T hopiatats—1=h@" =0 (e (3) 7).
Let £k = 5, then
w5 € Bxt’ 007 aatsm 180D (ppeyr9) 7y — it SO 1P et (frey(2) 7)) = 0.

Therefore, we have z = (as). - - - (a3)«(x5) = 0, that is
~——— —

5
Bty P (Y (2), 2,) = 0(s > 2,p > 11).
Proposition 3.6 Let r > 2, p > 11, then

Ext!} ~ % tHmH (v (2),7,) = 0.
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The proposition is evident for » > 11. Thus, we need only to consider the case of
2<r<11.

For any y € Exti‘lepgqﬂ*rﬂ(H*V(Z),Zp), we can know 0 < ¢ —r + 1 < ¢ from
2 < r < 11. Since Sdim((i3).(y)) = dp’¢+q—r+1 = qg—r + 1 # 0(mod ¢) and
Ext%'(Z,,Z,) =0 (t # 0 mod q), from Proposition 3.1, we can get that

0 = (i3).(y) € Extl = Fy(3), 7,).
According to the exactness, there exists an element
y1 € Ext!)mrortar et i=Cr=n (grey(9) 7, )
such that (a3)«(y1) =y, and
Sdim((i3)«(y1)) = 5p°q +q—r+1—(2p° = 1) =4p’q — pg —r = ¢ — v # 0 (mod q),

50 0= (ig).(y1) € Extly "7 ot t1-Cr 0 ey (3) 7).
Similarly, there exists an element yj, € Ext! ~F~ 797 ata=rH=kC =1 (pry/(9) 7, ) satis-
fying (3).(yx) = yr—1, and Sdim((i3).(yx)) # 0 (mod q). Let k = 5, then

ys € ExtS o e H1=5@0 D) ey (9) 7y = Bxct S 1P et (1o (2), 7)) = 0.

Thus, we get that y = (a3). - (a3)«(y5) = 0, that is
—— ——

5
Ext! =P T Y (2),2,) = 0 (r > 2,p > 11).
The Proof of Theorem 1.2 First, we consider the ASS with Ey-term:
Ext (H*V(2),Z,) = m_.V(2),

and its differential is d,. : ES' — EsTritr=1,

From Proposition 3.5,
E;‘+1175p2q+q+r—1 _ EXt;+11,5p2q+q+r—1 (H*V(Q), Zp),

we can get that Er 115" atatr=1 — 0(r > 2). Let hob? be the image of hob? € Ext21’5p2q+q(Zp, Zy)

under the map
(i2)+(i1). (i0) : BxEY P 172, 2,) — Bxt ) T (HV (2),Z,),
then d,(hob?) € Ertitsr*atatr—1 — (r > 2). Furthermore, we can get that
hob? € EAVOP ata — Exgllort ety (2), 7,)
is a permanent cycle in the ASS. Moreover, from Proposition 3.6,

E211—r,5p2q+q—r+1 _ Ext1141—r,5p2q+q—r+1 (H*V(Q)) Zp) = 0(7‘ > 2),
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we have that E1=75 e+l — (r > 2). So, heb? is impossible to be the d,-boundary in
the ASS, and hob} € Exthl’5p2q+q(H*V(2), Z,) converges to a nontrivial element in 7,V (2).

The Proof of Theorem 1.1 From Theorem 1.2, we know that there exists a nontrivial
element f in 7,V (2), which is represented by hob? € Ext;1’5p2q+q(H*V(2),Zp), where hob3
denotes the image of hob? € Ext'"” 2quq(Zp, Z,) under the homomorphism

(i2)u(i1). (i0)s : Ext PP 497, 7)) — Ext' VP (Y (2), Z,).
Consider the following composition of maps

f: Yo’ gtq-11g A V(2) L> Et(p2+p+1)qv(2)

LNIZ S —t(p*+p+1)a+(p+1D)a+a+3 S,

the composed map f = jojijo7'f is represented by
2 — p—
(Jogr2)s (') (iziio). (hob}) € Bxct)y * O HOPr(mDwinet=sz, 7,),

From [3], we have known that v, = jojijo € m.(S) is represented by 4; in the ASS. By the
knowledge of Yoneda products, we know that the following composition:

(i24170) (")«

Ext(Zy, Z,) ——= Ext’(H*V (2), Z,) —> Bxt /02004 (r=y7(2) 7,

(.7 JiJj )* 2 _ _ _
L)Extiitp q+(t—1)pg+(t—2)q+t 3(ijzp)

is a homomorphism which is multiplied by 7;. Hence, f€ ,(S) is represented by
5 hob® € Ext}j“*“”ﬁﬁ(t—1)(”“)‘1“‘3(Zp,Zp)

in the ASS.
Moreover, from the Proposition 3.4 we know that 4, hob? can’t be hit by the differentials

in the ASS, then we get that 7; hob? converges to a nontrivial element f in 7, (S).
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