A NEW FAMILY OF ELEMENTS IN THE STABLE HOMOTOPY GROUPS OF SPHERES

WANG Yu-yu, WANG Jun-li

(College of Math. Science, Tianjin Normal University, Tianjin 300387, China)

Abstract: In this paper, we study the non-triviality of the elements in the stable homotopy groups of spheres. Using the May spectral sequence, the authors show that there exists a new product in the E_2 -term of the Adams spectral sequence, which converges to a family of homotopy elements with order p and higher filtration in the stable homotopy groups of spheres.

Keywords: stable homotopy groups of spheres; Toda-Smith spectrum; sphere spectrum; Adams spectral sequence; May spectral sequence

 2010 MR Subject Classification:
 55Q45; 55T15; 55S10

 Document code:
 A
 Article ID:
 0255-7797(2015)02-0294-13

1 Introduction

To determine the stable homotopy groups of spheres $\pi_*(S)$ is one of the central problems in homotopy theory. One of the main tools to reach it is the Adams spectral sequence(ASS).

Let A be the mod p Steenrod algebra, and S be the sphere spectrum localized at an odd prime p. For connected finite type spectra X, Y, there exists the ASS $\{E_r^{s,t}, d_r\}$ such that

(1) $d_r: E_r^{s,t} \to E_r^{s+r,t+r-1}$ is the differential;

(2) $E_2^{s,t} \cong \operatorname{Ext}_A^{s,t}(H^*(X), H^*(Y)) \Rightarrow [\Sigma^{t-s}Y, X]_p$, where $E_2^{s,t}$ is the cohomology of *A*. When *X* is sphere spectrum *S*, Toda-Smith spectrum V(n)(n = 1, 2, 3), respectively, $(\pi_{t-s}(X))_p$ is the stable homotopy groups of *S*, V(n). So, for computing the stable homotopy groups of spheres with the ASS, we must compute the E_2 -term of the ASS, $\operatorname{Ext}_A^{*,*}(\mathbb{Z}_p, \mathbb{Z}_p)$.

From [1], $\operatorname{Ext}_{A}^{1,*}(\mathbb{Z}_{p},\mathbb{Z}_{p})$ has the \mathbb{Z}_{p} -base consisting of

$$a_0 \in \operatorname{Ext}_A^{1,1}(\mathbb{Z}_p, \mathbb{Z}_p), h_i \in \operatorname{Ext}_A^{1,p^iq}(\mathbb{Z}_p, \mathbb{Z}_p)$$

for all $i \ge 0$ and $\operatorname{Ext}_{A}^{2,*}(\mathbb{Z}_{p},\mathbb{Z}_{p})$ has the \mathbb{Z}_{p} -base consisting of α_{2} , a_{0}^{2} , $a_{0}h_{i}(i > 0)$, $g_{i}(i \ge 0)$, $k_{i}(i \ge 0)$, $b_{i}(i \ge 0)$ and $h_{i}h_{j}(j \ge i + 2, i \ge 0)$ whose internal degrees are 2q + 1, 2, $p^{i}q + 1$, $p^{i+1}q + 2p^{i}q$, $2p^{i+1}q + p^{i}q$, $p^{i+1}q$ and $p^{i}q + p^{j}q$, respectively. From [2, P.110,

^{*} Received date: 2013-06-04 Accepted date: 2014-02-10

Foundation item: Supported by the National Natural Science Foundation of China (11301386; 11026197; 11226080); the Outstanding Youth Teacher Foundation of Tianjin (ZX110QN044) and the Doctor Foundation of Tianjin Normal University (52XB1011).

Biography: Wang Yuyu(1979–), female, born at Handan, Hebei, associate professor, major in stable homotopy theory. E-mail:wdoubleyu@aliyun.com.

Table 8.1], the \mathbb{Z}_p -base of $\operatorname{Ext}_A^{3,*}(\mathbb{Z}_p, \mathbb{Z}_p)$ has been completely listed and there is a generator $\widetilde{\gamma_t} \in \operatorname{Ext}_A^{t,tp^2q+(t-1)pq+(t-2)q+t-3}(\mathbb{Z}_p, \mathbb{Z}_p)$ which is described in [3].

Our main theorems of this paper are as follows.

Theorem 1.1 Let $p \ge 11$, $3 \le t , then$

$$\widetilde{\gamma_t} \ h_0 b_1^5 \in \operatorname{Ext}_A^{t+11,(t+5)p^2q+(t-1)(p+1)q+t-3}(\mathbb{Z}_p,\mathbb{Z}_p)$$

is a permanent cycle in the ASS and converges to a non-trivial element in $\pi_*(S)$.

Based on a new homotopy element in $\pi_*(V(2))$, the above homotopy element in $\pi_*(S)$ will be constructed.

For the reader's convenience, let us firstly give some preliminaries on Toda-Smith spectrum V(n).

The \mathbb{Z}_p cohomology group of Toda-Smith spectrum V(n) is $H^*V(n) \cong E[Q_0, Q_1, \cdots, Q_n]$ $\cong Q(2^{n+1})$, where $Q_i (i \ge 0)$ is the Milnor's elements of Steenrod algebra A, and E[] is the exterior algebra. From [4], when n = 1, 2, 3 and p > 2n, we know that V(n) is realized, and there exists a cofibre sequence (V(-1) = S):

$$\Sigma^{2(p^n-1)}V(n-1) \xrightarrow{\alpha_n} V(n-1) \xrightarrow{i_n} V(n) \xrightarrow{j_n} \Sigma^{2p^n-1}V(n-1),$$

where $\alpha_n (n = 0, 1, 2, 3)$ are p, α, β, γ , respectively. The cofibre sequence can induce a short exact sequence of \mathbb{Z}_p cohomology groups. Thus, we get the following long exact sequence of Ext groups:

$$\xrightarrow{(j_n)_*} \operatorname{Ext}_A^{s-1,t-(2p^n-1)}(H^*V(n-1),\mathbb{Z}_p) \xrightarrow{(\alpha_n)_*} \operatorname{Ext}_A^{s,t}(H^*V(n-1),\mathbb{Z}_p)$$
$$\xrightarrow{(i_n)_*} \operatorname{Ext}_A^{s,t}(H^*V(n),\mathbb{Z}_p) \xrightarrow{(j_n)_*} \operatorname{Ext}_A^{s,t-(2p^n-1)}(H^*V(n-1),\mathbb{Z}_p) \xrightarrow{(\alpha_n)_*} \cdots .$$

The following theorem is a key step to prove Theorem 1.1.

Theorem 1.2 Let $p \ge 11$, then $h_0 b_1^5 \in \operatorname{Ext}_A^{11,5p^2q+q}(H^*V(2),\mathbb{Z}_p)$ is a permanent cycle in the ASS and converges to a non-trivial element in $\pi_*V(2)$.

It is very difficult to determine the stable homotopy groups of spheres. So far, not so many nontrivial elements in the stable homotopy groups of spheres were detected. See, for example [1, 5, 6].

The detection of the element $\tilde{\gamma}_t h_0 b_1^5$ is parallel to that of the element $\tilde{\gamma}_t h_0 b_1^2$ given in [7]. Actually, our results are more complicated, especially to Proposition 3.3 and Proposition 3.4.

This paper is organized as follows: after giving some preliminaries on the May spectral sequence (MSS) in Section 2, the proofs of the main theorems will be given in Section 3.

2 Some Preliminaries on the May Spectral Sequence

The most successful tool for computing $\operatorname{Ext}_{A}^{*,*}(\mathbb{Z}_{p},\mathbb{Z}_{p})$ is the MSS. From [8, Theorem 3.2.5], there exists the MSS $\{E_{r}^{s,t,*}, d_{r}\}$ which converges to $\operatorname{Ext}_{A}^{s,t}(\mathbb{Z}_{p},\mathbb{Z}_{p})$. The E_{1} -term and

differential of the MSS are

$$E_1^{*,*,*} = E(h_{i,j} | i > 0, j \ge 0) \otimes P(b_{i,j} | i > 0, j \ge 0) \otimes P(a_i | i \ge 0),$$
$$d_r : E_r^{s,t,u} \to E_r^{s+1,t,u-r}, r \ge 1,$$

where E is the exterior algebra, P is the polynomial algebra and

$$h_{i,j} \in E_1^{1,2(p^i-1)p^j,2i-1}, \ b_{i,j} \in E_1^{2,2(p^i-1)p^{j+1},p(2i-1)}, \ a_i \in E_1^{1,2p^i-1,2i+1},$$

Lemma 2.1 (see [9]) Let $t = (c_n p^n + c_{n-1} p^{n-1} + \dots + c_1 p + c_0)q + c_{-1}, c_i \in \mathbb{Z}$, and $p-1 \ge c_n \ge c_{n-1} \ge \dots \ge c_1 \ge c_0 \ge c_{-1} \ge 0$, then the number of $h_{n+1-i,i}$ in the generator of $E_1^{c_n,t,*}$ will be $(c_i - c_{i-1})$ $(0 \le i \le n)$.

Corollary 2.2 (see [9]) If $p > a \ge b \ge c \ge d \ge 0$, then the number of $h_{1,2}$, $h_{2,1}$ and $h_{3,0}$ in the generator of $E_1^{a,ap^2q+bpq+cq+d,*}$ will be (a-b), (b-c) and (c-d), respectively.

Corollary 2.3 (see [9]) Let $t \ge 3$, then $E_1^{t,tp^2q+(t-1)pq+(t-2)q+t-3} = \mathbb{Z}_p\{h_{2,1}h_{1,2}h_{3,0}a_3^{t-3}\}.$ Lemma 2.4 (see [9]) Let

$$t = (c_n p^n + c_{n-1} p^{n-1} + \dots + c_1 p + c_0) q + c_{-1},$$

 $c_i \in \mathbb{Z}_p(-1 \leq i \leq n)$, for $c_i < c_{i-1}$, $0 \leq i \leq n-1$, then $E_1^{c_n,t,*} = 0$.

Lemma 2.5 (see [9]) Let u > 0, $p > c_2, c_1, c_0, c_{-1} \ge 0$ and $c_2 - c_{-1} \ge 4$, there don't exist u factors in the generator of $E_1^{u,c_2p^2q+c_1pq+c_0q+c_{-1}}$.

3 The Convergence of $\widetilde{\gamma_t} \ h_0 b_1^5$ in the Adams Spectral Sequence

Let P be the subalgebra of A generated by the reduced power operations $P^{i}(i > 0)$, then we have the following results.

Proposition 3.1 (see [9]) $\operatorname{Ext}_{A}^{s,t}(H^*V(3), \mathbb{Z}_p) \cong \operatorname{Ext}_{P}^{s,t}(\mathbb{Z}_p, \mathbb{Z}_p), t - s < 2p^4 - 1.$ **Corollary 3.2** Let $s \ge 2$, then

$$\operatorname{Ext}_{A}^{s+11,5p^{2}q+q+s-1}(H^{*}V(3),\mathbb{Z}_{p}) \cong \operatorname{Ext}_{P}^{s+11,5p^{2}q+q+s-1}(\mathbb{Z}_{p},\mathbb{Z}_{p}).$$

Proposition 3.3 Let $3 \leq t , then$

$$0 \neq \widetilde{\gamma_t} h_0 b_1^5 \in \operatorname{Ext}_A^{t+11,(t+5)p^2q+(t-1)(p+1)q+t-3}(\mathbb{Z}_p, \mathbb{Z}_p).$$

The generators of $E_1^{s,t,u}$ and their first, second degrees satisfying $t < p^3 q$ are listed in Table 1.

$h_{1,0}$	$h_{1,1}$	$h_{2,0}$		$h_{2,1}$	$h_{1,2}$	$h_{3,0}$	$b_{1,0}$
(1,q)	(1, pq)	(1, (p +	(-1)q)	(1, p(p+1)q)	$q) (1, p^2 q)$	$(1, (p^2 + p + 1)q)$	(2, pq)
$b_{1,1}$	$b_{2,0}$		a_0	a_1	a_2	<i>a</i> ₃	
$(2, p^2q)$	$(2, (p^2$	(+ p)q)	(1, 1)	(1, q + 1)	(1, (p+1)q)	$(+1)$ $(1, (p^2 + p +$	(1)q + 1)

Table 1: The generators and degrees

To compare the degrees, $h_0, b_1 \in \text{Ext}_A^{*,*}(\mathbb{Z}_p, \mathbb{Z}_p)$ are represented by $h_{1,0} \in E_1^{1,q,*}, b_{1,1} \in E_1^{2,p^2q,*}$ in the MSS. From Corollary 2.3, we conclude that $\widetilde{\gamma}_t \in \text{Ext}_A^{t,tp^2q+(t-1)pq+(t-2)q+t-3}$ $(\mathbb{Z}_p, \mathbb{Z}_p)$ is represented by $h_{2,1}h_{1,2}h_{3,0}a_3^{t-3} \in E_1^{t,tp^2q+(t-1)pq+(t-2)q+t-3,*}(t \ge 3)$ in the MSS. Thus, $\widetilde{\gamma}_t h_0 b_1^5$ is represented by $h_{1,0}b_{1,1}^5h_{2,1}h_{1,2}h_{3,0}a_3^{t-3} \in E_1^{t+11,(t+5)p^2q+(t-1)pq+(t-1)q+(t-2)q+t-3,*}$

Thus, $\tilde{\gamma_t} h_0 b_1^5$ is represented by $h_{1,0} b_{1,1}^5 h_{2,1} h_{1,2} h_{3,0} a_3^{t-3} \in E_1^{t+11,(t+5)p^*q+(t-1)pq+(t-1)q+t-3,*}$ in the MSS. If we want to prove that $0 \neq \tilde{\gamma_t} h_0 b_1^5 \in \operatorname{Ext}_A^{t+11,(t+5)p^2q+(t-1)(p+1)q+t-3}(\mathbb{Z}_p, \mathbb{Z}_p)$, we must prove that $E_1^{t+10,(t+5)p^2q+(t-1)(p+1)q+t-3,*} = 0$. For any $\sigma \in E_1^{t+10,(t+5)p^2q+(t-1)(p+1)q+t-3,*}$, we have the following discussions.

Case 1 When $t \ge 6$, from Lemma 2.5, the number of the factors in σ will be t + 9, t + 8, t + 7, t + 6 or t + 5.

Subcase 1.1 If σ has t + 9 factors, there exists a factor $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, the possible forms will be $\sigma = \sigma_{1.1}b_{1,0}$, $\sigma = \sigma_{1.2}b_{1,1}$, $\sigma = \sigma_{1.3}b_{2,0}$, where

$$\sigma_{1.1} \in E_1^{t+8,(t+5)p^2q+(t-2)pq+(t-1)q+t-3,*}, \sigma_{1.2} \in E_1^{t+8,(t+4)p^2q+(t-1)pq+(t-1)q+t-3,*}, \sigma_{1.3} \in E_1^{t+8,(t+4)p^2q+(t-2)pq+(t-1)q+t-3,*}.$$

By Lemma 2.5, the number of the factors in $\sigma_{1,1}$ is t + 7, t + 6 or t + 5, thus the number of the factors in σ will be t + 8, t + 7 or t + 6. It is in contradiction with that σ has t + 9factors, so $\sigma_{1,1} = 0$. Similarly, we conclude that $\sigma_{1,2} = 0, \sigma_{1,3} = 0$, so $\sigma = 0$.

Subcase 1.2 If σ has t + 8 factors, there exist two factors $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, the possible forms will be $\sigma = \sigma_{2.1}b_{1,0}^2$, $\sigma = \sigma_{2.2}b_{1,1}^2$, $\sigma = \sigma_{2.3}b_{2,0}^2$, $\sigma = \sigma_{2.4}b_{1,0}b_{1,1}$, $\sigma = \sigma_{2.5}b_{1,0}b_{2,0}$, $\sigma = \sigma_{2.6}b_{1,1}b_{2,0}$, where

$$\sigma_{2.1} \in E_1^{t+6,(t+3)p^2q+(t-3)pq+(t-1)q+t-3,*}, \sigma_{2.2} \in E_1^{t+6,(t+3)p^2q+(t-1)pq+(t-1)q+t-3,*}, \sigma_{2.3} \in E_1^{t+6,(t+3)p^2q+(t-3)pq+(t-1)q+t-3,*}, \sigma_{2.4} \in E_1^{t+6,(t+4)p^2q+(t-2)pq+(t-1)q+t-3,*}, \sigma_{2.5} \in E_1^{t+6,(t+4)p^2q+(t-3)pq+(t-1)q+t-3,*}, \sigma_{2.6} \in E_1^{t+6,(t+3)p^2q+(t-2)pq+(t-1)q+t-3,*}, \sigma_{2.6} \in E_1^{t+6,(t+3)p^2q+(t-2)pq$$

By the similar argument in Subcase1.1, we can get that $\sigma_{2,i} = 0(i = 1, 2 \cdots 6)$, thus $\sigma = 0$.

Subcase 1.3 If σ has t + 7 factors, there exist three factors $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, the possible forms will be $\sigma = \sigma_{3.1}b_{1,0}^3$, $\sigma = \sigma_{3.2}b_{1,0}^2b_{1,1}$, $\sigma = \sigma_{3.3}b_{1,0}^2b_{2,0}$, $\sigma = \sigma_{3.4}b_{1,1}^3$, $\sigma = \sigma_{3.5}b_{2,0}^3$, $\sigma = \sigma_{3.6}b_{1,1}^2b_{2,0}$, $\sigma = \sigma_{3.7}b_{1,1}^2b_{1,0}$, $\sigma = \sigma_{3.8}b_{2,0}^2b_{1,0}$, $\sigma = \sigma_{3.9}b_{2,0}^2b_{1,1}$, $\sigma = \sigma_{3.9}b_{2,0}^2b_{1,1}$, $\sigma = \sigma_{3.9}b_{2,0}^2b_{1,1}$, $\sigma = \sigma_{3.10}b_{1,0}b_{1,1}b_{2,0}$, where

$$\begin{split} \sigma_{3.1} &\in E_1^{t+4,(t+3)p^2q+(t-4)pq+(t-1)q+t-3,*}, \sigma_{3.2} \in E_1^{t+4,(t+4)p^2q+(t-3)pq+(t-1)q+t-3,*}, \\ \sigma_{3.3} &\in E_1^{t+4,(t+4)p^2q+(t-4)pq+(t-1)q+t-3,*}, \sigma_{3.4} \in E_1^{t+4,(t+2)p^2q+(t-1)pq+(t-1)q+t-3,*}, \\ \sigma_{3.5} &\in E_1^{t+4,(t+2)p^2q+(t-4)pq+(t-1)q+t-3,*}, \sigma_{3.6} \in E_1^{t+4,(t+2)p^2q+(t-2)pq+(t-1)q+t-3,*}, \\ \sigma_{3.7} &\in E_1^{t+4,(t+3)p^2q+(t-2)pq+(t-1)q+t-3,*}, \sigma_{3.8} \in E_1^{t+4,(t+3)p^2q+(t-4)pq+(t-1)q+t-3,*}, \\ \sigma_{3.9} &\in E_1^{t+4,(t+2)p^2q+(t-3)pq+(t-1)q+t-3,*}, \sigma_{3.10} \in E_1^{t+4,(t+3)p^2q+(t-3)pq+(t-1)q+t-3,*}, \end{split}$$

It is obvious that $\sigma_{3,1} = 0$. By the similar argument in Subcase1.1, we can get that $\sigma_{3,i} = 0$ $(i = 4, 5, \dots, 10)$. From Lemma 2.4, note that t - 3 < t - 1, t - 4 < t - 1, thus the remainder are all zero. Therefore, we can get $\sigma = 0$.

Subcase 1.4 If σ has t + 6 factors, there exist four factors $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, $\sigma = \sigma' b_{1,0}^x b_{1,1}^y b_{2,0}^z$, where $x + y + z = 4, x, y, z \ge 0$ and $\sigma' \in E_1^{t+2,T}$,

 $T = (t + 5 - y - z)p^2q + (t - 1 - x - z)pq + (t - 1)q + (t - 3)$. If $x \ge 2$, we have that y + z < 3 and t + 5 - y - z > t + 2. It is obvious that $\sigma' = 0$. Thus, the possible nontrivial forms will be $\sigma = \sigma_{4.1}b_{1,1}^4$, $\sigma = \sigma_{4.2}b_{2,0}^4$, $\sigma = \sigma_{4.3}b_{1,1}^3b_{1,0}$, $\sigma = \sigma_{4.4}b_{1,1}^3b_{2,0}$, $\sigma = \sigma_{4.5}b_{2,0}^3b_{1,0}$, $\sigma = \sigma_{4.6}b_{2.0}^3b_{1,1}, \ \sigma = \sigma_{4.7}b_{1.1}^2b_{2.0}^2, \ \sigma = \sigma_{4.8}b_{1,0}b_{1,1}^2b_{2,0}, \ \sigma = \sigma_{4.9}b_{1,0}b_{1,1}b_{2,0}^2, \text{ where the first}$ degrees of $\sigma_{4,i}$ $(i = 1, 2, 3, \dots, 9)$ are all t + 2 and the second degrees of them are listed in Table 2 (M = t - 1, and N = t - 3).

Table 2: The factors and second degrees

$\sigma_{4.i}$	the second degree	$\sigma_{4.i}$	the second degree
$\sigma_{4.1}$	$(t+1)p^2q + (t-1)pq + Mq + N$	$\sigma_{4.2}$	$(t+1)p^2q + (t-5)pq + Mq + N$
$\sigma_{4.3}$	$(t+2)p^2q + (t-2)pq + Mq + N$	$\sigma_{4.4}$	$(t+1)p^2q + (t-2)pq + Mq + N$
$\sigma_{4.5}$	$(t+2)p^2q + (t-5)pq + Mq + N$	$\sigma_{4.6}$	$(t+1)p^2q + (t-4)pq + Mq + N$
$\sigma_{4.7}$	$(t+1)p^2q + (t-3)pq + Mq + N$	$\sigma_{4.8}$	$(t+2)p^2q + (t-3)pq + Mq + N$
$\sigma_{4.9}$	$(t+2)p^2q + (t-4)pq + Mq + N$		

By the argument similar to Subcase 1.3, we get that $\sigma_{4,i} = 0$ $(i = 1, 2 \cdots 9)$, thus $\sigma = 0$. **Subcase 1.5** If σ has t + 5 factors, there exist five factors $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma = \sigma_{5.1}b_{1.1}^3b_{2.0}^2$, $\sigma = \sigma_{5.2}b_{1.1}^2b_{2.0}^3$, $\sigma = \sigma_{5.3} b_{2,0}^4 b_{1,1}, \ \sigma = \sigma_{5.4} b_{1,1}^4 b_{2,0}, \ \sigma = \sigma_{5.5} b_{2,0}^5, \ \sigma = \sigma_{5.6} b_{1,1}^5, \ \text{where the first degrees of}$ $\sigma_{5,i}$ (i = 1, 2, 3, ..., 6) are all t and the second degrees of them are listed in Table 3 (M = t-1, and N = t - 3).

Table 3: The factors and second degrees

$\sigma_{5.i}$	the second degree	$\sigma_{5.i}$	the second degree
$\sigma_{5.1}$	$tp^2q + (t-3)pq + Mq + N$	$\sigma_{5.2}$	$tp^2q + (t-4)pq + Mq + N$
$\sigma_{5.3}$	$tp^2q + (t-5)pq + Mq + N$	$\sigma_{5.4}$	$tp^2q + (t-2)pq + Mq + N$
$\sigma_{5.5}$	$tp^2q + (t-6)pq + Mq + N$	$\sigma_{5.6}$	$tp^2q + (t-1)pq + Mq + N$

Similarly to $\sigma_{3.2}$, we can get that $\sigma_{5.i} = 0 (i = 1, 2 \cdots 5)$. As for $\sigma_{5.6}$, from the Corollary

2.2, there exist two factors $h_{3,0}$, so $\sigma_{5.6} = 0$. Thus, we can get $\sigma = 0$. Case 2 When t = 5, $E_1^{t+10,(t+5)p^2q+(t-1)(p+1)q+t-3,*} = E_1^{15,10p^2q+4pq+3q+q+2,*}$, the generator contains (q+2) factors a_i . Therefore, the first degree $\geq q+2 > 15$, it's a contradiction. So, we get $\sigma = 0$. When t = 4, t = 3, the proofs are the similar to t = 5. Summarize the above Case 1 and Case 2, $E_1^{t+10,(t+5)p^2q+(t-1)(p+1)q+t-3,*} = 0$. That is

$$0 \neq \widetilde{\gamma_t} h_0 b_1^5 \in \operatorname{Ext}_{A}^{t+11,(t+5)p^2q+(t-1)(p+1)q+t-3}(\mathbb{Z}_p, \mathbb{Z}_p) (3 \leq t < p-5).$$

Proposition 3.4 Let $r \ge 2, 3 \le t , then$

$$\operatorname{Ext}_{A}^{t+11-r,(t+5)p^{2}q+(t-1)pq+(t-1)q+t-r-2,*}(\mathbb{Z}_{p},\mathbb{Z}_{p})=0.$$

It is sufficient if we can show that $E_1^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,*} = 0.$

Case 1 If r > 6, t + 11 - r < t + 5, so we have

$$E_1^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,*} = 0.$$

Case 2 If r = 6, then

$$E_1^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,*} = E_1^{t+5,(t+5)p^2q+(t-1)pq+(t-1)q+t-8,*}$$

Subcase 2.1 When $t \ge 8$, from the Corollary 2.2, there exist six factors $h_{1,2}$, so $\sigma = 0$. Subcase 2.2 When t = 7, $E_1^{t+5,(t+5)p^2q+(t-1)pq+(t-1)q+t-8,*} = E_1^{12,12p^2q+6pq+5q+q-1,*}$. The generator contains (q-1) factors a_i . Therefore, the first degree $\ge q-1 > 12$, it's a contradiction. So, the generator is impossible to exist.

Subcase 2.3 When $3 \le t \le 6$, by the similar argument in Subcase 2.2, the generator is impossible to exist.

Case 3 If r = 5, then

$$E_1^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,\ast} = E_1^{t+6,(t+5)p^2q+(t-1)pq+(t-1)q+t-7,\ast} = E_1^{t+6,(t-1)pq+(t-1)pq+(t-1)q+t-7,\ast} = E_1^{t+6,(t-1)pq+(t-1)pq+(t-1)q+t-7,\ast} = E_1^{t+6,(t-1)pq+(t-1)pq+(t-1)pq+(t-1)q+t-7,\ast} = E_1^{t+6,(t-1)pq+(t-1)pq+(t-1)pq+(t-1)q+t-7,\ast} = E_1^{t+6,(t-1)pq+(t-1)p$$

Subcase 3.1 When $t \ge 7$, from the Lemma 2.5, we know that the generator contains t + 5 factors, one of which must be the factor $b_{i,j}$. Thus, the possible nontrivial forms will be $\sigma = \sigma_{3.1}b_{1,1}$, $\sigma = \sigma_{3.2}b_{2,0}$, where $\sigma_{3.1} \in E_1^{t+4,(t+4)p^2q+(t-1)pq+(t-1)q+t-7,*}$, $\sigma_{3.2} \in E_1^{t+4,(t+4)p^2q+(t-2)pq+(t-1)q+t-7,*}$. By the similar argument in Subcase2.1, we can get that $\sigma_{3.1} = 0$, $\sigma_{3.2} = 0$.

Subcase 3.2 When $3 \le t \le 6$, by the similar argument in Subcase 2.2, the generator is impossible to exist.

Case 4 If r = 4, then

$$E_{1}^{t+11-r,(t+5)p^{2}q+(t-1)pq+(t-1)q+t-r-2,*} = E_{1}^{t+7,(t+5)p^{2}q+(t-1)pq+(t-1)q+t-6,*}$$

Subcase 4.1 When $t \ge 6$, from Lemma 2.5, we know that the number of the factors in σ will be t + 5 or t + 6.

Subcase 4.1.1 If σ contains t + 6 factors, then there exists a factor $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma = \sigma_{4,1}b_{1,0}, \sigma = \sigma_{4,2}b_{1,1}, \sigma = \sigma_{4,3}b_{2,0}$, where

$$\sigma_{4.1} \in E_1^{t+5,(t+5)p^2q+(t-2)pq+(t-1)q+t-6,*}, \sigma_{4.2} \in E_1^{t+5,(t+4)p^2q+(t-1)pq+(t-1)q+t-6,*}, \sigma_{4.3} \in E_1^{t+5,(t+4)p^2q+(t-2)pq+(t-1)q+t-6,*}.$$

By the similar argument in Subcase 2.1, we know that $\sigma_{4,1} = 0$. As for $\sigma_{4,2}$, from Lemma 2.5, $\sigma_{4,2}$ must contain t + 4 factors, thus $\sigma = \sigma_{4,2}b_{1,1}$ contains t + 5 factors. It is a contradiction with that σ contains t + 6 factors, then $\sigma_{4,2} = 0$. Similarly, we can get $\sigma_{4,3} = 0$.

Subcase 4.1.2 If σ contains t+5 factors, then there exist two factors $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma = \sigma_{4.4}b_{1.1}^2$, $\sigma = \sigma_{4.5}b_{2.0}^2$, $\sigma = \sigma_{4.6} b_{1,1} b_{2,0}$, where

$$\begin{aligned} \sigma_{4.4} &\in E_1^{t+3,(t+3)p^2q+(t-1)pq+(t-1)q+t-6,*}, \sigma_{4.5} \in E_1^{t+3,(t+3)p^2q+(t-3)pq+(t-1)q+t-6,*}, \\ \sigma_{4.6} &\in E_1^{t+3,(t+3)p^2q+(t-2)pq+(t-1)q+t-6,*}. \end{aligned}$$

By the similar argument in Subcase 2.1, we can get $\sigma_{4.4} = 0$. As for $\sigma_{4.5}$, from the Lemma 2.4 and t - 3 < t - 1, so $\sigma_{4.5} = 0$. Similarly, we can get $\sigma_{4.6} = 0$.

Subcase 4.2 When $3 \le t \le 5$, by the similar argument in Subcase 2.2, we know that the generator is impossible to exist. Thus, we have $\sigma = 0$.

Case 5 If r = 3, then

$$E_1^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,*} = E_1^{t+8,(t+5)p^2q+(t-1)pq+(t-1)q+t-5,*}.$$

Subcase 5.1 When $t \ge 5$, from Lemma 2.5, the number of the factors in σ will be t+5, t+6 or t+7.

Subcase 5.1.1 If σ contains t + 7 factors, then there exists a factor $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma = \sigma_{5.1}b_{1,0}, \sigma = \sigma_{5.2}b_{1,1}, \sigma = \sigma_{5.3}b_{2,0}$, where

$$\begin{split} \sigma_{5.1} &\in E_1^{t+6,(t+5)p^2q+(t-2)pq+(t-1)q+t-5,*}, \sigma_{5.2} \in E_1^{t+6,(t+4)p^2q+(t-1)pq+(t-1)q+t-5,*}, \\ \sigma_{5.3} &\in E_1^{t+6,(t+4)p^2q+(t-2)pq+(t-1)q+t-5,*}. \end{split}$$

Similarly to $\sigma_{4.2}$, we can get $\sigma_{5.i} = 0(i = 1, 2, 3)$.

Subcase 5.1.2 If σ contains t+6 factors, then there exist two factors $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma = \sigma_{5.4}b_{1,1}^2$, $\sigma = \sigma_{5.5}b_{2,0}^2$, $\sigma = \sigma_{5.6}b_{1,0}b_{1,1}$, $\sigma = \sigma_{5.7}b_{1,0}b_{2,0}$, $\sigma = \sigma_{5.8}b_{1,1}b_{2,0}$, where

$$\begin{split} &\sigma_{5.4} \in E_1^{t+4,(t+3)p^2q+(t-1)pq+(t-1)q+t-5,*}, \sigma_{5.5} \in E_1^{t+4,(t+3)p^2q+(t-3)pq+(t-1)q+t-5,*}, \\ &\sigma_{5.6} \in E_1^{t+4,(t+4)p^2q+(t-2)pq+(t-1)q+t-5,*}, \sigma_{5.7} \in E_1^{t+4,(t+4)p^2q+(t-3)pq+(t-1)q+t-5,*}, \\ &\sigma_{5.8} \in E_1^{t+4,(t+3)p^2q+(t-2)pq+(t-1)q+t-5,*}. \end{split}$$

Similarly to $\sigma_{4.2}$, we can get that $\sigma_{5.4} = 0$, $\sigma_{5.5} = 0$, $\sigma_{5.8} = 0$. Similarly to $\sigma_{4.5}$, we can get that $\sigma_{5.6} = 0$, $\sigma_{5.7} = 0$.

Subcase 5.1.3 If σ contains t+5 factors, then there exist three factors $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma = \sigma_{5.9}b_{1,1}^3$, $\sigma = \sigma_{5.10}b_{2,0}^3$, $\sigma = \sigma_{5.11}b_{1,1}^2b_{2,0}$, $\sigma = \sigma_{5.12}b_{1,1}b_{2,0}^2$, where

$$\sigma_{5.9} \in E_1^{t+2,(t+2)p^2q+(t-1)pq+(t-1)q+t-5,*}, \sigma_{5.10} \in E_1^{t+2,(t+2)p^2q+(t-4)pq+(t-1)q+t-5,*}, \sigma_{5.11} \in E_1^{t+2,(t+2)p^2q+(t-2)pq+(t-1)q+t-5,*}, \sigma_{5.12} \in E_1^{t+2,(t+2)p^2q+(t-3)pq+(t-1)q+t-5,*}$$

By the similar argument in Subcase2.1, we can know that $\sigma_{5.9} = 0$. Similarly to $\sigma_{4.5}$, we can get that $\sigma_{5.10} = 0$, $\sigma_{5.11} = 0$, $\sigma_{5.12} = 0$.

Subcase 5.2 When t = 4 or t = 3, by the similar argument in Subcase2.2, we know that the generator is impossible to exist. Thus, in this case, we can get $\sigma = 0$.

Case 6 If r = 2, then

$$E_1^{t+11-r,(t+5)p^2q+(t-1)pq+(t-1)q+t-r-2,*} = E_1^{t+9,(t+5)p^2q+(t-1)pq+(t-1)q+t-4,*}$$

Subcase 6.1 When $t \ge 5$, from Lemma 2.5, the number of the factors in σ will be t+5, t+6, t+7 or t+8.

Subcase 6.1.1 If σ contains t + 8 factors, then there exists a factor $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma = \sigma_{6.1}b_{1,0}, \sigma = \sigma_{6.2}b_{1,1}, \sigma = \sigma_{6.3}b_{2,0}$, where

$$\sigma_{6.1} \in E_1^{t+7,(t+5)p^2q+(t-2)pq+(t-1)q+t-4,*}, \sigma_{6.2} \in E_1^{t+7,(t+4)p^2q+(t-1)pq+(t-1)q+t-4,*}, \sigma_{6.3} \in E_1^{t+7,(t+4)p^2q+(t-2)pq+(t-1)q+t-4,*}.$$

Similarly to $\sigma_{4.2}$, we can get $\sigma_{6.1} = 0$, $\sigma_{6.2} = 0$, $\sigma_{6.3} = 0$.

Subcase 6.1.2 If σ contains t+7 factors, then there exist two factors $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma = \sigma_{6.4}b_{1,0}^2$, $\sigma = \sigma_{6.5}b_{1,1}^2$, $\sigma = \sigma_{6.6}b_{2,0}^2$, $\sigma = \sigma_{6.7}b_{1,0}b_{1,1}$, $\sigma = \sigma_{6.8}b_{1,0}b_{2,0}$, $\sigma = \sigma_{6.9}b_{1,1}b_{2,0}$, where

$$\begin{aligned} &\sigma_{6.4} \in E_1^{t+5,(t+5)p^2q+(t-3)pq+(t-1)q+t-4,*}, \sigma_{6.5} \in E_1^{t+5,(t+3)p^2q+(t-1)pq+(t-1)q+t-4,*}, \\ &\sigma_{6.6} \in E_1^{t+5,(t+3)p^2q+(t-3)pq+(t-1)q+t-4,*}, \sigma_{6.7} \in E_1^{t+5,(t+4)p^2q+(t-2)pq+(t-1)q+t-4,*}, \\ &\sigma_{6.8} \in E_1^{t+5,(t+4)p^2q+(t-3)pq+(t-1)q+t-4,*}, \sigma_{6.9} \in E_1^{t+5,(t+3)p^2q+(t-2)pq+(t-1)q+t-4,*}. \end{aligned}$$

Similarly to $\sigma_{4.5}$, we can get that $\sigma_{6.4} = 0$. Similarly to $\sigma_{4.2}$, we can get that $\sigma_{6.i} = 0$ $(i = 5, 6 \cdots 9)$.

Subcase 6.1.3 If σ contains t+6 factors, then there exist three factors $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma = \sigma_{6.10}b_{1,1}^3$, $\sigma = \sigma_{6.11}b_{2,0}^3$, $\sigma = \sigma_{6.12}b_{1,1}^2b_{1,0}$, $\sigma = \sigma_{6.13}b_{1,1}^2b_{2,0}$, $\sigma = \sigma_{6.14}b_{1,0}b_{2,0}^2$, $\sigma = \sigma_{6.15}b_{1,1}b_{2,0}^2$, $\sigma = \sigma_{6.16}b_{1,0}b_{1,1}b_{2,0}$, where the first degrees of $\sigma_{6.i}(i = 10, 11, \dots, 16)$ are all t+3 and the second degrees of them are listed in Table 4 (M = t - 1, and N = t - 4).

Table 4: The factors and second degrees

$\sigma_{6.i}$	the second degree	$\sigma_{6.i}$	the second degree
$\sigma_{6.10}$	$(t+2)p^2q + (t-1)pq + Mq + N$	$\sigma_{6.11}$	$(t+2)p^2q + (t-4)pq + Mq + N$
$\sigma_{6.12}$	$(t+3)p^2q + (t-2)pq + Mq + N$	$\sigma_{6.13}$	$(t+2)p^2q + (t-2)pq + Mq + N$
$\sigma_{6.14}$	$(t+3)p^2q + (t-4)pq + Mq + N$	$\sigma_{6.15}$	$(t+2)p^2q + (t-3)pq + Mq + N$
$\sigma_{6.16}$	$(t+3)p^2q + (t-3)pq + Mq + N$		

Similarly to $\sigma_{4.2}$, we can get that $\sigma_{6.10} = 0$, $\sigma_{6.11} = 0$, $\sigma_{6.13} = 0$. Similarly to $\sigma_{4.5}$, we can get that $\sigma_{6.12} = 0$, $\sigma_{6.14} = 0$, $\sigma_{6.15} = 0$, $\sigma_{6.16} = 0$.

Subcase 6.1.4 If σ contains t+5 factors, then there exist four factors $b_{i,j}(b_{1,0}, b_{1,1}, b_{2,0})$. Due to the commutativity, the possible nontrivial forms will be $\sigma = \sigma_{6.17}b_{1,1}^4$, $\sigma = \sigma_{6.18}b_{2,0}^4$, $\sigma = \sigma_{6.19}b_{1,1}^3b_{2,0}, \ \sigma = \sigma_{6.20}b_{1,1}b_{2,0}^3, \ \sigma = \sigma_{6.21}b_{1,2}^2b_{2,0}^2$, where the first degrees of $\sigma_{6,i}(i = 17, 18, \dots, 21)$ are all t + 1 and the second degrees of them are listed in Table 5 (M = t - 1, and N = t - 4).

Table 5: The factors and second degrees

$\sigma_{6.i}$	the second degree	$\sigma_{6.i}$	the second degree
$\sigma_{6.17}$	$(t+1)p^2q + (t-1)pq + Mq + N$	$\sigma_{6.18}$	$(t+1)p^2q + (t-5)pq + Mq + N$
$\sigma_{6.19}$	$(t+1)p^2q + (t-2)pq + Mq + N$	$\sigma_{6.20}$	$(t+1)p^2q + (t-4)pq + Mq + N$
$\sigma_{6.21}$	$(t+1)p^2q + (t-3)pq + Mq + N$		

Similarly to Subcase2.1, we can get that $\sigma_{6.17} = 0$. Similarly to $\sigma_{3.2}$, we can get that $\sigma_{6.i} = 0$ (i = 18, 19, 20, 21).

Subcase 6.2 When t = 3, t = 4, by the similar argument in Subcase 2.2, we know that the generator is impossible to exist. Thus, we have $\sigma = 0$.

Therefore, we can get that $E_1^{t+11-r,(5+t)p^2q+(t-1)pq+(t-1)q+t-r-2,*} = 0.$ That is $\operatorname{Ext}_A^{t+11-r,(5+t)p^2q+(t-1)pq+(t-1)q+t-r-2,*}(\mathbb{Z}_p,\mathbb{Z}_p) = 0.$ **Proposition 3.5** Let $s \ge 2, p \ge 11$, then $\operatorname{Ext}_A^{s+11,5p^2q+q+s-1}(H^*V(2),\mathbb{Z}_p) = 0.$ From Corollary 3.2, we have

$$\operatorname{Ext}_{A}^{s+11,5p^{2}q+q+s-1}(H^{*}V(3),\mathbb{Z}_{p}) \cong \operatorname{Ext}_{P}^{s+11,5p^{2}q+q+s-1}(\mathbb{Z}_{p},\mathbb{Z}_{p}).$$

From [4, Lemma 2.2], we know that the rank of $\operatorname{Ext}_{P}^{s+11,5p^{2}q+q+s-1}(\mathbb{Z}_{p},\mathbb{Z}_{p})$ is less than or equal to that of $[P(b_{j}^{i}) \otimes H^{*,*}(U(L))]^{s+11,5p^{2}q+q+s-1}$, and $[P(b_{j}^{i}) \otimes H^{*,*}(U(L))]^{s,t}$ is the E_{2} -term of the MSS, where P() is the polynomial algebra. Up to the total degree $t-s < (p^{3}+3p^{2}+2p+1)q-4, H^{s,t}(U(L))$ is multiplicative by the following cohomology classes

$$\begin{split} h_i &= \{R_1^i\}, \qquad g_i = \{R_2^i R_1^i\}, \qquad k_i = \{R_2^i R_1^{i+1}\} (i \ge 0), \\ l_1 &= \{R_3^0 R_2^0 R_1^0\}, \qquad l_2 = \{R_2^1 R_2^0 R_1^1\}, \qquad l_3 = \{R_3^0 R_1^2 R_1^0\}, \\ l_4 &= \{R_3^0 R_2^1 R_1^2\}, \qquad l_5 = \{R_3^1 R_2^1 R_1^1\}, \qquad l_6 = \{R_2^2 R_2^1 R_1^2\}, \\ m_1 &= \{R_3^0 R_2^1 R_2^0 R_1^1\}, m_2 = \{R_4^0 R_3^0 R_2^0 R_1^0\}, \\ m_3 &= \{R_3^1 R_2^1 R_2^0 R_1^1\}, m_4 = \{R_2^2 R_3^0 R_1^2 R_1^0\}. \end{split}$$

Moreover, we have additively

$$\begin{split} H^{*,*}(U(L)) &\cong \{1, l_4, h_3\} \otimes \{1, h_0, h_1, g_0, k_0, k_0 h_0\} \\ &+ \{h_2, h_2 h_0, g_1, l_1, l_2, l_1 h_1, k_1, l_3, k_1 h_1, l_1 h_2, m_1, m_1 h_0, g_2, g_2 h_0, l_5, m_2, m_3, l_6, m_4\}, \end{split}$$

and the bidegrees of R_j^i, b_j^i are $(1, 2(p^{i+j} - p^i)), (2, 2(p^{i+j-1} - p^{i+1})),$ respectively. In the MSS, b_1^0 converges to $b_0 \in \operatorname{Ext}_P^{2,pq}(\mathbb{Z}_p, \mathbb{Z}_p)$, and the total degree of b_1^0 is $|b_1^0| = pq - 2$. The generators whose total degrees are less than or equal to $5p^2q + q - 12$ in $[P(b_j^i) \otimes H^{*,*}(U(L))]^{s,t}$ and the total degrees $|\lambda| \mod pq - 2$ are listed in Table 6 (t = 1, 2, 3, 4, 5, t' = 1, 2, 3, 4).

Table 6: The generators λ and total degrees $ \lambda \mbox{ mod } pq-2$

λ	$(b_1^1)^t, (b_2^0)^{t'}$	\otimes	$h_0,$	$h_1,$	$g_0,$	$k_0,$	$k_0h_0,$	$h_2,$	$h_2h_0,$	$g_1,$
$ \lambda $	tq, t'(q+2)	+	q-1,	1,	2q,	q+2,	2q + 1	q + 1,	2q,	q+4,
$l_1,$	$l_2,$	l_1h	$n_1,$	k_1 ,	l_3	$_{3}, k$	$c_1h_1,$	$l_1h_2,$	$m_1,$	m_1h_0
4q +	3, 2q+5,	4q +	+4, 2a	q + 4,	4q -	+3, 2q	q + 5, 5	q + 4,	4q + 8,	5q + 7

Let x be a generator of $\operatorname{Ext}_A^{s+11,5p^2q+q+s-1}(H^*V(2),\mathbb{Z}_p),$ then we have

$$(i_3)_*(x) \in \operatorname{Ext}_A^{s+11,5p^2q+q+s-1}(H^*V(3),\mathbb{Z}_p).$$

The total degree of $(i_3)_*(x)$ is $5p^2q + q + s - 1 - (s + 11) = 5p^2q + q - 12 \equiv 6q - 2 \pmod{pq-2}$. From the above Table, we know that the generator λ with total degree mod pq - 2 being equal to 6q - 2 in $[P(b_j^i) \otimes H^{*,*}(U(L))]^{s,t}$ doesn't exist. So, we can get that $(i_3)_*(x) = 0$. Consider the following exact sequence:

$$\cdots \xrightarrow{(j_3)_*} \operatorname{Ext}_A^{s+10,5p^2q+q+s-1-(2p^3-1)}(H^*V(2),\mathbb{Z}_p) \xrightarrow{(\alpha_3)_*} \operatorname{Ext}_A^{s+11,5p^2q+q+s-1}(H^*V(2),\mathbb{Z}_p)$$

$$\xrightarrow{(i_3)_*} \operatorname{Ext}_A^{s+11,5p^2q+q+s-1}(H^*V(3),\mathbb{Z}_p) \xrightarrow{(j_3)_*} \cdots,$$

there exists an element $x_1 \in \operatorname{Ext}_A^{s+10,5p^2q+q+s-1-(2p^3-1)}(H^*V(2),\mathbb{Z}_p)$ satisfying $(\alpha_3)_*(x_1) = x$. The total degree of $(i_3)_*(x_1)$ is $5p^2q+q+s-1-(2p^3-1)-(s+10) \equiv 4q-6$ (mod pq-2). From the above Table, we know that

$$0 = (i_3)_*(x_1) \in \operatorname{Ext}_A^{s+10,5p^2q+q+s-1-(2p^3-1)}(H^*V(3),\mathbb{Z}_p).$$

Using the exactness repeatedly, there exists an element $x_k \in \operatorname{Ext}_A^{s+11-k,5p^2q+q+s-1-k(2p^3-1)}(H^*V(2),\mathbb{Z}_p)$ satisfying $(\alpha_3)_*(x_k) = x_{k-1}$. But the total degree of $(i_3)_*(x_k) \mod pq-2$ is different from that in the above table, so we know that

$$0 = (i_3)_*(x_k) \in \operatorname{Ext}_A^{s+11-k,5p^2q+q+s-1-k(2p^3-1)}(H^*V(3),\mathbb{Z}_p).$$

Let k = 5, then

$$x_5 \in \operatorname{Ext}_A^{s+6,5p^2q+q+s-1-5(2p^3-1)}(H^*V(2),\mathbb{Z}_p) = \operatorname{Ext}_A^{s+6,-10p^2+q+s+4}(H^*V(2),\mathbb{Z}_p) = 0.$$

Therefore, we have $x = \underbrace{(\alpha_3)_* \cdots (\alpha_3)_*}_{5}(x_5) = 0$, that is

$$\operatorname{Ext}_{A}^{s+11,5p^{2}q+q+s-1}(H^{*}V(2),\mathbb{Z}_{p}) = 0 (s \ge 2, p \ge 11).$$

Proposition 3.6 Let $r \ge 2$, $p \ge 11$, then

$$\operatorname{Ext}_{A}^{11-r,5p^{2}q+q-r+1}(H^{*}V(2),\mathbb{Z}_{p}) = 0.$$

The proposition is evident for $r \ge 11$. Thus, we need only to consider the case of $2 \leqslant r < 11.$

For any $y \in \text{Ext}_{A}^{11-r,5p^{2}q+q-r+1}(H^{*}V(2),\mathbb{Z}_{p})$, we can know 0 < q-r+1 < q from $2 \leq r < 11$. Since $Sdim((i_3)_*(y)) = 5p^2q + q - r + 1 = q - r + 1 \neq 0 \pmod{q}$ and $\operatorname{Ext}_{P}^{s,t}(\mathbb{Z}_{p},\mathbb{Z}_{p})=0 \ (t\neq 0 \mod q), \text{ from Proposition 3.1, we can get that}$

 $0 = (i_3)_*(y) \in \operatorname{Ext}_A^{11-r,5p^2q+q-r+1}(H^*V(3), \mathbb{Z}_p).$

According to the exactness, there exists an element

$$y_1 \in \operatorname{Ext}_A^{10-r,5p^2q+q-r+1-(2p^3-1)}(H^*V(2),\mathbb{Z}_p)$$

such that $(\alpha_3)_*(y_1) = y$, and

$$Sdim((i_3)_*(y_1)) = 5p^2q + q - r + 1 - (2p^3 - 1) = 4p^2q - pq - r = q - r \neq 0 \pmod{q},$$

so $0 = (i_3)_*(y_1) \in \operatorname{Ext}_A^{10-r,5p^2q+q-r+1-(2p^3-1)}(H^*V(3),\mathbb{Z}_p).$ Similarly, there exists an element $y_k \in \operatorname{Ext}_A^{11-k-r,5p^2q+q-r+1-k(2p^3-1)}(H^*V(2),\mathbb{Z}_p)$ satisfying $(\alpha_3)_*(y_k) = y_{k-1}$, and $Sdim((i_3)_*(y_k)) \neq 0 \pmod{q}$. Let k = 5, then

$$y_5 \in \operatorname{Ext}_A^{6-r, 5p^2q+q-r+1-5(2p^3-1)}(H^*V(2), \mathbb{Z}_p) = \operatorname{Ext}_A^{6-r, -10p^2+q-r+6}(H^*V(2), \mathbb{Z}_p) = 0.$$

Thus, we get that $y = \underbrace{(\alpha_3)_* \cdots (\alpha_3)_*}_{5}(y_5) = 0$, that is

$$\operatorname{Ext}_{A}^{11-r,5p^{2}q+q-r+1}(H^{*}V(2),\mathbb{Z}_{p}) = 0 \ (r \ge 2, p \ge 11).$$

The Proof of Theorem 1.2 First, we consider the ASS with E_2 -term:

$$\operatorname{Ext}_{A}^{s,t}(H^{*}V(2),\mathbb{Z}_{p}) \Rightarrow \pi_{t-s}V(2),$$

and its differential is $d_r: E_r^{s,t} \to E_r^{s+r,t+r-1}$.

From Proposition 3.5,

$$E_2^{r+11,5p^2q+q+r-1} = \operatorname{Ext}_A^{r+11,5p^2q+q+r-1}(H^*V(2),\mathbb{Z}_p),$$

we can get that $E_r^{r+11,5p^2q+q+r-1} = 0 (r \ge 2)$. Let $h_0 b_1^5$ be the image of $h_0 b_1^5 \in \text{Ext}_A^{11,5p^2q+q}(\mathbb{Z}_p,\mathbb{Z}_p)$ under the map

$$(i_2)_*(i_1)_*(i_0)_* : \operatorname{Ext}_A^{11,5p^2q+q}(\mathbb{Z}_p,\mathbb{Z}_p) \to \operatorname{Ext}_A^{11,5p^2q+q}(H^*V(2),\mathbb{Z}_p),$$

then $d_r(h_0 b_1^5) \in E_r^{r+11,5p^2q+q+r-1} = 0 (r \ge 2)$. Furthermore, we can get that

$$h_0 b_1^5 \in E_2^{11,5p^2q+q} = \operatorname{Ext}_A^{11,5p^2q+q}(H^*V(2),\mathbb{Z}_p)$$

is a permanent cycle in the ASS. Moreover, from Proposition 3.6,

$$E_2^{11-r,5p^2q+q-r+1} = \operatorname{Ext}_A^{11-r,5p^2q+q-r+1}(H^*V(2), \mathbb{Z}_p) = 0 (r \ge 2),$$

we have that $E_r^{11-r,5p^2q+q-r+1} = 0 (r \ge 2)$. So, $h_0 b_1^5$ is impossible to be the d_r -boundary in the ASS, and $h_0 b_1^5 \in \operatorname{Ext}_{1,5p^2q+q}^{11,5p^2q+q}(H^*V(2),\mathbb{Z}_p)$ converges to a nontrivial element in $\pi_*V(2)$.

The Proof of Theorem 1.1 From Theorem 1.2, we know that there exists a nontrivial element f in $\pi_*V(2)$, which is represented by $h_0b_1^5 \in \operatorname{Ext}_A^{11,5p^2q+q}(H^*V(2),\mathbb{Z}_p)$, where $h_0b_1^5$ denotes the image of $h_0b_1^5 \in \operatorname{Ext}_A^{11,5p^2q+q}(\mathbb{Z}_p,\mathbb{Z}_p)$ under the homomorphism

$$(i_2)_*(i_1)_*(i_0)_* : \operatorname{Ext}_A^{11,5p^2q+q}(\mathbb{Z}_p,\mathbb{Z}_p) \to \operatorname{Ext}_A^{11,5p^2q+q}(H^*V(2),\mathbb{Z}_p).$$

Consider the following composition of maps

$$\tilde{f}: \Sigma^{5p^2q+q-11}S \xrightarrow{f} V(2) \xrightarrow{\gamma^t} \Sigma^{t(p^2+p+1)q}V(2) \xrightarrow{j_0j_1j_2} \Sigma^{-t(p^2+p+1)q+(p+1)q+q+3}S,$$

the composed map $\tilde{f} = j_0 j_1 j_2 \gamma^t f$ is represented by

$$(j_0j_1j_2)_*(\gamma^t)_*(i_2i_1i_0)_*(h_0b_1^5) \in \operatorname{Ext}_A^{11+t,(5+t)p^2q+(t-1)(p+1)q+t-3}(\mathbb{Z}_p,\mathbb{Z}_p).$$

From [3], we have known that $\gamma_t = j_0 j_1 j_2 \in \pi_*(S)$ is represented by $\widetilde{\gamma_t}$ in the ASS. By the knowledge of Yoneda products, we know that the following composition:

$$\operatorname{Ext}_{A}^{0,0}(\mathbb{Z}_{p},\mathbb{Z}_{p}) \xrightarrow{(i_{2}i_{1}i_{0})_{*}} \operatorname{Ext}_{A}^{0,0}(H^{*}V(2),\mathbb{Z}_{p}) \xrightarrow{(\gamma^{t})_{*}} \operatorname{Ext}_{A}^{t,t(p^{2}+p+1)q+t}(H^{*}V(2),\mathbb{Z}_{p})$$
$$\xrightarrow{(j_{0}j_{1}j_{2})_{*}} \operatorname{Ext}_{A}^{t,tp^{2}q+(t-1)pq+(t-2)q+t-3}(\mathbb{Z}_{p},\mathbb{Z}_{p})$$

is a homomorphism which is multiplied by $\widetilde{\gamma_t}$. Hence, $\widetilde{f} \in \pi_*(S)$ is represented by

$$\widetilde{\gamma_t} \ h_0 b_1^5 \in \operatorname{Ext}_A^{11+t,(5+t)p^2q+(t-1)(p+1)q+t-3}(\mathbb{Z}_p,\mathbb{Z}_p)$$

in the ASS.

Moreover, from the Proposition 3.4 we know that $\tilde{\gamma}_t h_0 b_1^5$ can't be hit by the differentials in the ASS, then we get that $\tilde{\gamma}_t h_0 b_1^5$ converges to a nontrivial element \tilde{f} in $\pi_*(S)$.

References

- Liulevicius A. The factorization of cyclic reduced powers by secondary cohomology operations[M]. Providence: AMS, 1962.
- [2] Aikawa T. 3-Dimensional cohomology of the mod p steenrod algebra[J]. Math. Scand., 1980, 1(47): 91–115.
- [3] Wang Xiangjun , Zheng Qibing. The convergence of $\alpha_s^{(n)} h_0 b_k$ [J]. Sci. China Math., 1998, 41(6): 622–628.
- [4] Toda H. On spectra realizing exterior part of the Steenrod algebra[J]. Topology, 1971, 2(10): 53-65.
- [5] Cohen R L. Odd primary infinite families in the stable homotopy theory [M]. Providence: AMS, 1981.

- [6] Lee C. Detection of some elements in the stable homotopy groups of spheres[J]. Math. Z., 1996, 1(222): 231-245.
- [7] Wang Jianbo, Hu Linmin. A new family elements in the stable homotopy group of spheres and the convergence of $h_0 b_1^2$ in $\pi_*(V(1))[J]$. Chinese Ann. Math. (Ser. A.), 2005, 5(26): 375–384.
- [8] Ravenel D C. Complex cobordism and stable homotopy groups of spheres[M]. Orlando: Academic Press, 1986.
- [9] Wang Yu Yu. The new family elements $\tilde{\gamma}_t \tilde{l}_1 g_0$ in the stable homotopy group of spheres[J]. Chinese Ann. Math. (Ser. A.), 2007, 6(28): 853–862.

球面稳定同伦群中的一族新元素

王玉玉,王俊丽

(天津师范大学数学科学学院, 天津 300387)

摘要:本文研究了球面稳定同伦群中元素的非平凡性.利用May谱序列,证明了在Adams谱序列*E*₂项 中存在乘积元素收敛到球面稳定同伦群的一族阶为*p*的非零元,此非零元具有更高维数的滤子. 关键词:稳定同伦群;Toda-Smith谱;球谱;Adams谱序列;May谱序列 MR(2010)主题分类号:55Q45;55T15;55S10 中图分类号:O189.23