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1 Introduction

To determine the stable homotopy groups of spheres π∗(S) is one of the central problems
in homotopy theory. One of the main tools to reach it is the Adams spectral sequence(ASS).

Let A be the mod p Steenrod algebra, and S be the sphere spectrum localized at an
odd prime p. For connected finite type spectra X, Y , there exists the ASS {Es,t

r , dr} such
that

(1) dr : Es,t
r → Es+r,t+r−1

r is the differential;
(2) Es,t

2
∼= Exts,t

A (H∗(X),H∗(Y )) ⇒ [Σt−sY, X]p, where Es,t
2 is the cohomology of

A. When X is sphere spectrum S, Toda-Smith spectrum V (n)(n = 1, 2, 3), respectively,
(πt−s(X))p is the stable homotopy groups of S, V (n). So, for computing the stable homotopy
groups of spheres with the ASS, we must compute the E2-term of the ASS, Ext∗,∗A (Zp,Zp).

From [1], Ext1,∗
A (Zp,Zp) has the Zp-base consisting of

a0 ∈ Ext1,1
A (Zp,Zp), hi ∈ Ext1,piq

A (Zp,Zp)

for all i > 0 and Ext2,∗
A (Zp,Zp) has the Zp-base consisting of α2, a2

0, a0hi(i > 0), gi(i >
0), ki(i > 0), bi(i > 0) and hihj(j > i + 2, i > 0) whose internal degrees are 2q + 1,
2, piq + 1, pi+1q + 2piq, 2pi+1q + piq, pi+1q and piq + pjq, respectively. From [2, P.110,
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Table 8.1], the Zp-base of Ext3,∗
A (Zp,Zp) has been completely listed and there is a generator

∼
γt∈ Extt,tp2q+(t−1)pq+(t−2)q+t−3

A (Zp,Zp) which is described in [3].
Our main theorems of this paper are as follows.
Theorem 1.1 Let p > 11, 3 6 t < p− 5, then

∼
γt h0b

5
1 ∈ Extt+11,(t+5)p2q+(t−1)(p+1)q+t−3

A (Zp,Zp)

is a permanent cycle in the ASS and converges to a non-trivial element in π∗(S).
Based on a new homotopy element in π∗(V (2)), the above homotopy element in π∗(S)

will be constructed .
For the reader’s convenience, let us firstly give some preliminaries on Toda-Smith spec-

trum V (n).
The Zp cohomology group of Toda-Smith spectrum V (n) is H∗V (n) ∼= E[Q0, Q1,· · · , Qn]

∼= Q(2n+1), where Qi(i > 0) is the Milnor’s elements of Steenrod algebra A, and E[ ] is the
exterior algebra. From [4], when n = 1, 2, 3 and p > 2n, we know that V (n) is realized, and
there exists a cofibre sequence (V (−1) = S):

Σ2(pn−1)V (n− 1)
αn // V (n− 1)

in // V (n)
jn // Σ2pn−1V (n− 1),

where αn(n = 0, 1, 2, 3) are p, α, β, γ, respectively. The cofibre sequence can induce a short
exact sequence of Zp cohomology groups. Thus, we get the following long exact sequence of
Ext groups:

· · · (jn)∗ // Exts−1,t−(2pn−1)
A (H∗V (n− 1),Zp)

(αn)∗ // Exts,t
A (H∗V (n− 1),Zp)

(in)∗ // Exts,t
A (H∗V (n),Zp)

(jn)∗ // Exts,t−(2pn−1)
A (H∗V (n− 1),Zp)

(αn)∗ // · · · .

The following theorem is a key step to prove Theorem 1.1.
Theorem 1.2 Let p > 11, then h0b

5
1 ∈ Ext11,5p2q+q

A (H∗V (2),Zp) is a permanent cycle
in the ASS and converges to a non-trivial element in π∗V (2).

It is very difficult to determine the stable homotopy groups of spheres. So far, not so
many nontrivial elements in the stable homotopy groups of spheres were detected. See, for
example [1, 5, 6].

The detection of the element
∼
γt h0b

5
1 is parallel to that of the element

∼
γt h0b

2
1 given in

[7]. Actually, our results are more complicated, especially to Proposition 3.3 and Proposition
3.4.

This paper is organized as follows: after giving some preliminaries on the May spectral
sequence (MSS) in Section 2, the proofs of the main theorems will be given in Section 3.

2 Some Preliminaries on the May Spectral Sequence

The most successful tool for computing Ext∗,∗A (Zp,Zp) is the MSS. From [8, Theorem
3.2.5], there exists the MSS {Es,t,∗

r , dr} which converges to Exts,t
A (Zp,Zp). The E1-term and
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differential of the MSS are

E∗,∗,∗
1 = E(hi,j |i > 0, j > 0)⊗ P (bi,j |i > 0, j > 0)⊗ P (ai|i > 0),

dr : Es,t,u
r → Es+1,t,u−r

r , r > 1,

where E is the exterior algebra, P is the polynomial algebra and

hi,j ∈ E
1,2(pi−1)pj ,2i−1
1 , bi,j ∈ E

2,2(pi−1)pj+1,p(2i−1)
1 , ai ∈ E1,2pi−1,2i+1

1 .

Lemma 2.1 (see [9]) Let t = (cnpn + cn−1p
n−1 + · · · + c1p + c0)q + c−1, ci ∈ Z, and

p − 1 > cn > cn−1 > · · · > c1 > c0 > c−1 > 0, then the number of hn+1−i,i in the generator
of Ecn,t,∗

1 will be (ci − ci−1) (0 6 i 6 n).
Corollary 2.2 (see [9]) If p > a > b > c > d > 0, then the number of h1,2, h2,1 and

h3,0 in the generator of Ea,ap2q+bpq+cq+d,∗
1 will be (a− b), (b− c) and (c− d), respectively.

Corollary 2.3 (see [9]) Let t > 3, then E
t,tp2q+(t−1)pq+(t−2)q+t−3
1 = Zp{h2,1h1,2h3,0a

t−3
3 }.

Lemma 2.4 (see [9]) Let

t = (cnpn + cn−1p
n−1 + · · ·+ c1p + c0)q + c−1,

ci ∈ Zp(−1 6 i 6 n), for ci < ci−1, 0 6 i 6 n− 1, then Ecn,t,∗
1 = 0.

Lemma 2.5 (see [9]) Let u > 0, p > c2, c1, c0, c−1 > 0 and c2 − c−1 > 4, there don’t
exist u factors in the generator of E

u,c2p2q+c1pq+c0q+c−1
1 .

3 The Convergence of
∼
γt h0b

5
1 in the Adams Spectral Sequence

Let P be the subalgebra of A generated by the reduced power operations P i(i > 0),
then we have the following results.

Proposition 3.1 (see [9]) Exts,t
A (H∗V (3),Zp) ∼= Exts,t

P (Zp,Zp), t− s < 2p4 − 1.
Corollary 3.2 Let s > 2, then

Exts+11,5p2q+q+s−1
A (H∗V (3),Zp) ∼= Exts+11,5p2q+q+s−1

P (Zp,Zp).

Proposition 3.3 Let 3 6 t < p− 5, p > 11, then

0 6=∼
γt h0b

5
1 ∈ Extt+11,(t+5)p2q+(t−1)(p+1)q+t−3

A (Zp,Zp).

The generators of Es,t,u
1 and their first, second degrees satisfying t < p3q are listed in

Table 1.
Table 1: The generators and degrees

h1,0 h1,1 h2,0 h2,1 h1,2 h3,0 b1,0

(1, q) (1, pq) (1, (p + 1)q) (1, p(p + 1)q) (1, p2q) (1, (p2 + p + 1)q) (2, pq)

b1,1 b2,0 a0 a1 a2 a3

(2, p2q) (2, (p2 + p)q) (1, 1) (1, q + 1) (1, (p + 1)q + 1) (1, (p2 + p + 1)q + 1)
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To compare the degrees, h0, b1 ∈ Ext∗,∗A (Zp,Zp) are represented by h1,0 ∈ E1,q,∗
1 , b1,1 ∈

E2,p2q,∗
1 in the MSS. From Corollary 2.3, we conclude that

∼
γt∈ Extt,tp2q+(t−1)pq+(t−2)q+t−3

A

(Zp,Zp) is represented by h2,1h1,2h3,0a
t−3
3 ∈ E

t,tp2q+(t−1)pq+(t−2)q+t−3,∗
1 (t > 3) in the MSS.

Thus,
∼
γt h0b

5
1 is represented by h1,0b

5
1,1h2,1h1,2h3,0a

t−3
3 ∈ E

t+11,(t+5)p2q+(t−1)pq+(t−1)q+t−3,∗
1

in the MSS. If we want to prove that 0 6=∼
γt h0b

5
1 ∈ Extt+11,(t+5)p2q+(t−1)(p+1)q+t−3

A (Zp,Zp), we
must prove that E

t+10,(t+5)p2q+(t−1)(p+1)q+t−3,∗
1 = 0. For any σ ∈ E

t+10,(t+5)p2q+(t−1)(p+1)q+t−3,∗
1 ,

we have the following discussions.
Case 1 When t > 6, from Lemma 2.5, the number of the factors in σ will be t + 9,

t + 8, t + 7, t + 6 or t + 5.
Subcase 1.1 If σ has t + 9 factors, there exists a factor bi,j(b1,0, b1,1, b2,0). Due to the

commutativity, the possible forms will be σ = σ1.1b1,0, σ = σ1.2b1,1, σ = σ1.3b2,0, where

σ1.1 ∈ E
t+8,(t+5)p2q+(t−2)pq+(t−1)q+t−3,∗
1 , σ1.2 ∈ E

t+8,(t+4)p2q+(t−1)pq+(t−1)q+t−3,∗
1 ,

σ1.3 ∈ E
t+8,(t+4)p2q+(t−2)pq+(t−1)q+t−3,∗
1 .

By Lemma 2.5, the number of the factors in σ1.1 is t + 7, t + 6 or t + 5, thus the number
of the factors in σ will be t + 8, t + 7 or t + 6. It is in contradiction with that σ has t + 9
factors, so σ1.1 = 0. Similarly, we conclude that σ1.2 = 0, σ1.3 = 0, so σ = 0.

Subcase 1.2 If σ has t + 8 factors, there exist two factors bi,j(b1,0, b1,1, b2,0). Due
to the commutativity, the possible forms will be σ = σ2.1b

2
1,0, σ = σ2.2b

2
1,1, σ = σ2.3b

2
2,0,

σ = σ2.4b1,0b1,1, σ = σ2.5b1,0b2,0, σ = σ2.6b1,1b2,0, where

σ2.1 ∈ E
t+6,(t+5)p2q+(t−3)pq+(t−1)q+t−3,∗
1 , σ2.2 ∈ E

t+6,(t+3)p2q+(t−1)pq+(t−1)q+t−3,∗
1 ,

σ2.3 ∈ E
t+6,(t+3)p2q+(t−3)pq+(t−1)q+t−3,∗
1 , σ2.4 ∈ E

t+6,(t+4)p2q+(t−2)pq+(t−1)q+t−3,∗
1 ,

σ2.5 ∈ E
t+6,(t+4)p2q+(t−3)pq+(t−1)q+t−3,∗
1 , σ2.6 ∈ E

t+6,(t+3)p2q+(t−2)pq+(t−1)q+t−3,∗
1 .

By the similar argument in Subcase1.1, we can get that σ2.i = 0(i = 1, 2 · · · 6), thus σ = 0.
Subcase 1.3 If σ has t + 7 factors, there exist three factors bi,j(b1,0, b1,1, b2,0). Due to

the commutativity, the possible forms will be σ = σ3.1b
3
1,0, σ = σ3.2b

2
1,0b1,1, σ = σ3.3b

2
1,0b2,0,

σ = σ3.4b
3
1,1, σ = σ3.5b

3
2,0, σ = σ3.6b

2
1,1b2,0, σ = σ3.7b

2
1,1b1,0, σ = σ3.8b

2
2,0b1,0, σ = σ3.9b

2
2,0b1,1,

σ = σ3.10b1,0b1,1b2,0, where

σ3.1 ∈ E
t+4,(t+5)p2q+(t−4)pq+(t−1)q+t−3,∗
1 , σ3.2 ∈ E

t+4,(t+4)p2q+(t−3)pq+(t−1)q+t−3,∗
1 ,

σ3.3 ∈ E
t+4,(t+4)p2q+(t−4)pq+(t−1)q+t−3,∗
1 , σ3.4 ∈ E

t+4,(t+2)p2q+(t−1)pq+(t−1)q+t−3,∗
1 ,

σ3.5 ∈ E
t+4,(t+2)p2q+(t−4)pq+(t−1)q+t−3,∗
1 , σ3.6 ∈ E

t+4,(t+2)p2q+(t−2)pq+(t−1)q+t−3,∗
1 ,

σ3.7 ∈ E
t+4,(t+3)p2q+(t−2)pq+(t−1)q+t−3,∗
1 , σ3.8 ∈ E

t+4,(t+3)p2q+(t−4)pq+(t−1)q+t−3,∗
1 ,

σ3.9 ∈ E
t+4,(t+2)p2q+(t−3)pq+(t−1)q+t−3,∗
1 , σ3.10 ∈ E

t+4,(t+3)p2q+(t−3)pq+(t−1)q+t−3,∗
1 .

It is obvious that σ3.1 = 0. By the similar argument in Subcase1.1, we can get that σ3.i = 0
(i = 4, 5, · · · , 10). From Lemma 2.4, note that t−3 < t−1, t−4 < t−1, thus the remainder
are all zero. Therefore, we can get σ = 0.
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Subcase 1.4 If σ has t + 6 factors, there exist four factors bi,j(b1,0, b1,1, b2,0). Due
to the commutativity, σ = σ′bx

1,0b
y
1,1b

z
2,0, where x + y + z = 4, x, y, z > 0 and σ′ ∈ Et+2,T

1 ,

T = (t + 5 − y − z)p2q + (t − 1 − x − z)pq + (t − 1)q + (t − 3). If x > 2, we have that
y + z < 3 and t + 5− y − z > t + 2. It is obvious that σ′ = 0. Thus, the possible nontrivial
forms will be σ = σ4.1b

4
1,1, σ = σ4.2b

4
2,0, σ = σ4.3b

3
1,1b1,0, σ = σ4.4b

3
1,1b2,0, σ = σ4.5b

3
2,0b1,0,

σ = σ4.6b
3
2,0b1,1, σ = σ4.7b

2
1,1b

2
2,0, σ = σ4.8b1,0b

2
1,1b2,0, σ = σ4.9b1,0b1,1b

2
2,0, where the first

degrees of σ4.i(i = 1, 2, 3, · · ·, 9) are all t + 2 and the second degrees of them are listed in
Table 2 (M = t− 1, and N = t− 3).

Table 2: The factors and second degrees

σ4.i the second degree σ4.i the second degree
σ4.1 (t + 1)p2q + (t− 1)pq + Mq + N σ4.2 (t + 1)p2q + (t− 5)pq + Mq + N

σ4.3 (t + 2)p2q + (t− 2)pq + Mq + N σ4.4 (t + 1)p2q + (t− 2)pq + Mq + N

σ4.5 (t + 2)p2q + (t− 5)pq + Mq + N σ4.6 (t + 1)p2q + (t− 4)pq + Mq + N

σ4.7 (t + 1)p2q + (t− 3)pq + Mq + N σ4.8 (t + 2)p2q + (t− 3)pq + Mq + N

σ4.9 (t + 2)p2q + (t− 4)pq + Mq + N

By the argument similar to Subcase 1.3, we get that σ4.i = 0(i = 1, 2 · · · 9), thus σ = 0.
Subcase 1.5 If σ has t + 5 factors, there exist five factors bi,j(b1,0, b1,1, b2,0). Due to

the commutativity, the possible nontrivial forms will be σ = σ5.1b
3
1,1b

2
2,0, σ = σ5.2b

2
1,1b

3
2,0,

σ = σ5.3b
4
2,0b1,1, σ = σ5.4b

4
1,1b2,0, σ = σ5.5b

5
2,0, σ = σ5.6b

5
1,1, where the first degrees of

σ5.i(i = 1, 2, 3, · · ·, 6) are all t and the second degrees of them are listed in Table 3 (M = t−1,
and N = t− 3).

Table 3: The factors and second degrees

σ5.i the second degree σ5.i the second degree
σ5.1 tp2q + (t− 3)pq + Mq + N σ5.2 tp2q + (t− 4)pq + Mq + N

σ5.3 tp2q + (t− 5)pq + Mq + N σ5.4 tp2q + (t− 2)pq + Mq + N

σ5.5 tp2q + (t− 6)pq + Mq + N σ5.6 tp2q + (t− 1)pq + Mq + N

Similarly to σ3.2, we can get that σ5.i = 0(i = 1, 2 · · · 5). As for σ5.6, from the Corollary
2.2, there exist two factors h3,0, so σ5.6 = 0. Thus, we can get σ = 0.

Case 2 When t = 5, E
t+10,(t+5)p2q+(t−1)(p+1)q+t−3,∗
1 = E15,10p2q+4pq+3q+q+2,∗

1 , the gener-
ator contains (q +2) factors ai. Therefore, the first degree > q +2 > 15, it’s a contradiction.
So, we get σ = 0. When t = 4, t = 3, the proofs are the similar to t = 5. Summarize the
above Case 1 and Case 2, E

t+10,(t+5)p2q+(t−1)(p+1)q+t−3,∗
1 = 0. That is

0 6=∼
γt h0b

5
1 ∈ Extt+11,(t+5)p2q+(t−1)(p+1)q+t−3

A (Zp,Zp)(3 6 t < p− 5).

Proposition 3.4 Let r > 2, 3 6 t < p− 5, then

Extt+11−r,(t+5)p2q+(t−1)pq+(t−1)q+t−r−2,∗
A (Zp,Zp) = 0.

It is sufficient if we can show that E
t+11−r,(t+5)p2q+(t−1)pq+(t−1)q+t−r−2,∗
1 = 0.
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Case 1 If r > 6, t + 11− r < t + 5, so we have

E
t+11−r,(t+5)p2q+(t−1)pq+(t−1)q+t−r−2,∗
1 = 0.

Case 2 If r = 6, then

E
t+11−r,(t+5)p2q+(t−1)pq+(t−1)q+t−r−2,∗
1 = E

t+5,(t+5)p2q+(t−1)pq+(t−1)q+t−8,∗
1 .

Subcase 2.1 When t > 8, from the Corollary 2.2, there exist six factors h1,2, so σ = 0.
Subcase 2.2 When t = 7, E

t+5,(t+5)p2q+(t−1)pq+(t−1)q+t−8,∗
1 = E12,12p2q+6pq+5q+q−1,∗

1 .
The generator contains (q − 1) factors ai. Therefore, the first degree> q − 1 > 12, it’s a
contradiction. So, the generator is impossible to exist.

Subcase 2.3 When 3 6 t 6 6, by the similar argument in Subcase 2.2, the generator
is impossible to exist.

Case 3 If r = 5, then

E
t+11−r,(t+5)p2q+(t−1)pq+(t−1)q+t−r−2,∗
1 = E

t+6,(t+5)p2q+(t−1)pq+(t−1)q+t−7,∗
1 .

Subcase 3.1 When t > 7, from the Lemma 2.5, we know that the generator contains
t + 5 factors, one of which must be the factor bi,j . Thus, the possible nontrivial forms
will be σ = σ3.1b1,1, σ = σ3.2b2,0, where σ3.1 ∈ E

t+4,(t+4)p2q+(t−1)pq+(t−1)q+t−7,∗
1 , σ3.2 ∈

E
t+4,(t+4)p2q+(t−2)pq+(t−1)q+t−7,∗
1 . By the similar argument in Subcase2.1, we can get that

σ3.1 = 0, σ3.2 = 0.
Subcase 3.2 When 3 6 t 6 6, by the similar argument in Subcase 2.2, the generator

is impossible to exist.
Case 4 If r = 4, then

E
t+11−r,(t+5)p2q+(t−1)pq+(t−1)q+t−r−2,∗
1 = E

t+7,(t+5)p2q+(t−1)pq+(t−1)q+t−6,∗
1 .

Subcase 4.1 When t > 6, from Lemma 2.5, we know that the number of the factors
in σ will be t + 5 or t + 6.

Subcase 4.1.1 If σ contains t+6 factors, then there exists a factor bi,j(b1,0, b1,1, b2,0).
Due to the commutativity, the possible nontrivial forms will be σ = σ4.1b1,0, σ = σ4.2b1,1,

σ = σ4.3b2,0, where

σ4.1 ∈ E
t+5,(t+5)p2q+(t−2)pq+(t−1)q+t−6,∗
1 , σ4.2 ∈ E

t+5,(t+4)p2q+(t−1)pq+(t−1)q+t−6,∗
1 ,

σ4.3 ∈ E
t+5,(t+4)p2q+(t−2)pq+(t−1)q+t−6,∗
1 .

By the similar argument in Subcase 2.1, we know that σ4.1 = 0. As for σ4.2, from Lemma 2.5,
σ4.2 must contain t + 4 factors, thus σ = σ4.2b1,1 contains t + 5 factors. It is a contradiction
with that σ contains t + 6 factors, then σ4.2 = 0. Similarly, we can get σ4.3 = 0.

Subcase 4.1.2 If σ contains t+5 factors, then there exist two factors bi,j(b1,0, b1,1, b2,0).
Due to the commutativity, the possible nontrivial forms will be σ = σ4.4b

2
1,1, σ = σ4.5b

2
2,0,
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σ = σ4.6b1,1b2,0, where

σ4.4 ∈ E
t+3,(t+3)p2q+(t−1)pq+(t−1)q+t−6,∗
1 , σ4.5 ∈ E

t+3,(t+3)p2q+(t−3)pq+(t−1)q+t−6,∗
1 ,

σ4.6 ∈ E
t+3,(t+3)p2q+(t−2)pq+(t−1)q+t−6,∗
1 .

By the similar argument in Subcase 2.1, we can get σ4.4 = 0. As for σ4.5, from the Lemma
2.4 and t− 3 < t− 1, so σ4.5 = 0. Similarly, we can get σ4.6 = 0.

Subcase 4.2 When 3 6 t 6 5, by the similar argument in Subcase 2.2, we know that
the generator is impossible to exist. Thus, we have σ = 0.

Case 5 If r = 3, then

E
t+11−r,(t+5)p2q+(t−1)pq+(t−1)q+t−r−2,∗
1 = E

t+8,(t+5)p2q+(t−1)pq+(t−1)q+t−5,∗
1 .

Subcase 5.1 When t > 5, from Lemma 2.5, the number of the factors in σ will be
t + 5, t + 6 or t + 7.

Subcase 5.1.1 If σ contains t+7 factors, then there exists a factor bi,j(b1,0, b1,1, b2,0).
Due to the commutativity, the possible nontrivial forms will be σ = σ5.1b1,0, σ = σ5.2b1,1,

σ = σ5.3b2,0, where

σ5.1 ∈ E
t+6,(t+5)p2q+(t−2)pq+(t−1)q+t−5,∗
1 , σ5.2 ∈ E

t+6,(t+4)p2q+(t−1)pq+(t−1)q+t−5,∗
1 ,

σ5.3 ∈ E
t+6,(t+4)p2q+(t−2)pq+(t−1)q+t−5,∗
1 .

Similarly to σ4.2, we can get σ5.i = 0(i = 1, 2, 3).
Subcase 5.1.2 If σ contains t+6 factors, then there exist two factors bi,j(b1,0, b1,1, b2,0).

Due to the commutativity, the possible nontrivial forms will be σ = σ5.4b
2
1,1, σ = σ5.5b

2
2,0,

σ = σ5.6b1,0b1,1, σ = σ5.7b1,0b2,0, σ = σ5.8b1,1b2,0, where

σ5.4 ∈ E
t+4,(t+3)p2q+(t−1)pq+(t−1)q+t−5,∗
1 , σ5.5 ∈ E

t+4,(t+3)p2q+(t−3)pq+(t−1)q+t−5,∗
1 ,

σ5.6 ∈ E
t+4,(t+4)p2q+(t−2)pq+(t−1)q+t−5,∗
1 , σ5.7 ∈ E

t+4,(t+4)p2q+(t−3)pq+(t−1)q+t−5,∗
1 ,

σ5.8 ∈ E
t+4,(t+3)p2q+(t−2)pq+(t−1)q+t−5,∗
1 .

Similarly to σ4.2, we can get that σ5.4 = 0, σ5.5 = 0, σ5.8 = 0. Similarly to σ4.5, we can get
that σ5.6 = 0, σ5.7 = 0.

Subcase 5.1.3 If σ contains t+5 factors, then there exist three factors bi,j(b1,0, b1,1, b2,0).
Due to the commutativity, the possible nontrivial forms will be σ = σ5.9b

3
1,1, σ = σ5.10b

3
2,0,

σ = σ5.11b
2
1,1b2,0, σ = σ5.12b1,1b

2
2,0, where

σ5.9 ∈ E
t+2,(t+2)p2q+(t−1)pq+(t−1)q+t−5,∗
1 , σ5.10 ∈ E

t+2,(t+2)p2q+(t−4)pq+(t−1)q+t−5,∗
1 ,

σ5.11 ∈ E
t+2,(t+2)p2q+(t−2)pq+(t−1)q+t−5,∗
1 , σ5.12 ∈ E

t+2,(t+2)p2q+(t−3)pq+(t−1)q+t−5,∗
1 ,

By the similar argument in Subcase2.1, we can know that σ5.9 = 0. Similarly to σ4.5, we can
get that σ5.10 = 0, σ5.11 = 0, σ5.12 = 0.
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Subcase 5.2 When t = 4 or t = 3, by the similar argument in Subcase2.2, we know
that the generator is impossible to exist. Thus, in this case, we can get σ = 0.

Case 6 If r = 2, then

E
t+11−r,(t+5)p2q+(t−1)pq+(t−1)q+t−r−2,∗
1 = E

t+9,(t+5)p2q+(t−1)pq+(t−1)q+t−4,∗
1 .

Subcase 6.1 When t > 5, from Lemma 2.5, the number of the factors in σ will be
t + 5, t + 6, t + 7 or t + 8.

Subcase 6.1.1 If σ contains t + 8 factors, then there exists a factor bi,j(b1,0, b1,1, b2,0).
Due to the commutativity, the possible nontrivial forms will be σ = σ6.1b1,0, σ = σ6.2b1,1,

σ = σ6.3b2,0, where

σ6.1 ∈ E
t+7,(t+5)p2q+(t−2)pq+(t−1)q+t−4,∗
1 , σ6.2 ∈ E

t+7,(t+4)p2q+(t−1)pq+(t−1)q+t−4,∗
1 ,

σ6.3 ∈ E
t+7,(t+4)p2q+(t−2)pq+(t−1)q+t−4,∗
1 .

Similarly to σ4.2, we can get σ6.1 = 0, σ6.2 = 0, σ6.3 = 0.
Subcase 6.1.2 If σ contains t+7 factors, then there exist two factors bi,j(b1,0, b1,1, b2,0).

Due to the commutativity, the possible nontrivial forms will be σ = σ6.4b
2
1,0, σ = σ6.5b

2
1,1,

σ = σ6.6b
2
2,0, σ = σ6.7b1,0b1,1, σ = σ6.8b1,0b2,0, σ = σ6.9b1,1b2,0, where

σ6.4 ∈ E
t+5,(t+5)p2q+(t−3)pq+(t−1)q+t−4,∗
1 , σ6.5 ∈ E

t+5,(t+3)p2q+(t−1)pq+(t−1)q+t−4,∗
1 ,

σ6.6 ∈ E
t+5,(t+3)p2q+(t−3)pq+(t−1)q+t−4,∗
1 , σ6.7 ∈ E

t+5,(t+4)p2q+(t−2)pq+(t−1)q+t−4,∗
1 ,

σ6.8 ∈ E
t+5,(t+4)p2q+(t−3)pq+(t−1)q+t−4,∗
1 , σ6.9 ∈ E

t+5,(t+3)p2q+(t−2)pq+(t−1)q+t−4,∗
1 .

Similarly to σ4.5, we can get that σ6.4 = 0. Similarly to σ4.2, we can get that σ6.i = 0
(i = 5, 6 · · · 9).

Subcase 6.1.3 If σ contains t+6 factors, then there exist three factors bi,j(b1,0, b1,1, b2,0).
Due to the commutativity, the possible nontrivial forms will be σ = σ6.10b

3
1,1, σ = σ6.11b

3
2,0,

σ = σ6.12b
2
1,1b1,0, σ = σ6.13b

2
1,1b2,0, σ = σ6.14b1,0b

2
2,0, σ = σ6.15b1,1b

2
2,0, σ = σ6.16b1,0b1,1b2,0,

where the first degrees of σ6.i(i = 10, 11, · · ·, 16) are all t + 3 and the second degrees of them
are listed in Table 4 (M = t− 1, and N = t− 4).

Table 4: The factors and second degrees

σ6.i the second degree σ6.i the second degree
σ6.10 (t + 2)p2q + (t− 1)pq + Mq + N σ6.11 (t + 2)p2q + (t− 4)pq + Mq + N

σ6.12 (t + 3)p2q + (t− 2)pq + Mq + N σ6.13 (t + 2)p2q + (t− 2)pq + Mq + N

σ6.14 (t + 3)p2q + (t− 4)pq + Mq + N σ6.15 (t + 2)p2q + (t− 3)pq + Mq + N

σ6.16 (t + 3)p2q + (t− 3)pq + Mq + N

Similarly to σ4.2, we can get that σ6.10 = 0, σ6.11 = 0, σ6.13 = 0. Similarly to σ4.5, we
can get that σ6.12 = 0, σ6.14 = 0, σ6.15 = 0, σ6.16 = 0.

Subcase 6.1.4 If σ contains t+5 factors, then there exist four factors bi,j(b1,0, b1,1, b2,0).
Due to the commutativity, the possible nontrivial forms will be σ = σ6.17b

4
1,1, σ = σ6.18b

4
2,0,
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σ = σ6.19b
3
1,1b2,0, σ = σ6.20b1,1b

3
2,0, σ = σ6.21b

2
1,2b

2
2,0, where the first degrees of σ6.i(i =

17, 18, · · ·, 21) are all t + 1 and the second degrees of them are listed in Table 5 (M = t− 1,
and N = t− 4).

Table 5: The factors and second degrees

σ6.i the second degree σ6.i the second degree
σ6.17 (t + 1)p2q + (t− 1)pq + Mq + N σ6.18 (t + 1)p2q + (t− 5)pq + Mq + N

σ6.19 (t + 1)p2q + (t− 2)pq + Mq + N σ6.20 (t + 1)p2q + (t− 4)pq + Mq + N

σ6.21 (t + 1)p2q + (t− 3)pq + Mq + N

Similarly to Subcase2.1, we can get that σ6.17 = 0. Similarly to σ3.2, we can get that
σ6.i = 0(i = 18, 19, 20, 21).

Subcase 6.2 When t = 3, t = 4, by the similar argument in Subcase 2.2, we know
that the generator is impossible to exist. Thus, we have σ = 0.

Therefore, we can get that E
t+11−r,(5+t)p2q+(t−1)pq+(t−1)q+t−r−2,∗
1 = 0.

That is Extt+11−r,(5+t)p2q+(t−1)pq+(t−1)q+t−r−2,∗
A (Zp,Zp) = 0.

Proposition 3.5 Let s > 2, p > 11, then Exts+11,5p2q+q+s−1
A (H∗V (2),Zp) = 0.

From Corollary 3.2, we have

Exts+11,5p2q+q+s−1
A (H∗V (3),Zp) ∼= Exts+11,5p2q+q+s−1

P (Zp,Zp).

From [4, Lemma 2.2], we know that the rank of Exts+11,5p2q+q+s−1
P (Zp,Zp) is less than or

equal to that of [P (bi
j) ⊗ H∗,∗(U(L))]s+11,5p2q+q+s−1 , and [P (bi

j) ⊗ H∗,∗(U(L))]s,t is the
E2−term of the MSS, where P () is the polynomial algebra. Up to the total degree t − s <

(p3 + 3p2 + 2p + 1)q − 4, Hs,t(U(L)) is multiplicative by the following cohomology classes

hi = {Ri
1}, gi = {Ri

2R
i
1}, ki = {Ri

2R
i+1
1 }(i > 0),

l1 = {R0
3R

0
2R

0
1}, l2 = {R1

2R
0
2R

1
1}, l3 = {R0

3R
2
1R

0
1},

l4 = {R0
3R

1
2R

2
1}, l5 = {R1

3R
1
2R

1
1}, l6 = {R2

2R
1
2R

2
1},

m1 = {R0
3R

1
2R

0
2R

1
1}, m2 = {R0

4R
0
3R

0
2R

0
1},

m3 = {R1
3R

1
2R

0
2R

1
1}, m4 = {R2

2R
0
3R

2
1R

0
1}.

Moreover, we have additively

H∗,∗(U(L)) ∼= {1, l4, h3} ⊗ {1, h0, h1, g0, k0, k0h0}
+{h2, h2h0, g1, l1, l2, l1h1, k1, l3, k1h1, l1h2,m1,m1h0, g2, g2h0, l5,m2,m3, l6,m4},

and the bidegrees of Ri
j , b

i
j are (1, 2(pi+j − pi)), (2, 2(pi+j−1 − pi+1)), respectively. In the

MSS, b0
1 converges to b0 ∈ Ext2,pq

P (Zp,Zp), and the total degree of b0
1 is |b0

1| = pq − 2. The
generators whose total degrees are less than or equal to 5p2q+q−12 in [P (bi

j)⊗H∗,∗(U(L))]s,t

and the total degrees |λ| mod pq − 2 are listed in Table 6 (t = 1, 2, 3, 4, 5, t′ = 1, 2, 3, 4).
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Table 6: The generators λ and total degrees |λ| mod pq − 2

λ (b1
1)

t, (b0
2)

t′ ⊗ h0, h1, g0, k0, k0h0, h2, h2h0, g1,

|λ| tq, t′(q + 2) + q − 1, 1, 2q, q + 2, 2q + 1, q + 1, 2q, q + 4,

l1, l2, l1h1, k1, l3, k1h1, l1h2, m1, m1h0

4q + 3, 2q + 5, 4q + 4, 2q + 4, 4q + 3, 2q + 5, 5q + 4, 4q + 8, 5q + 7

Let x be a generator of Exts+11,5p2q+q+s−1
A (H∗V (2),Zp), then we have

(i3)∗(x) ∈ Exts+11,5p2q+q+s−1
A (H∗V (3),Zp).

The total degree of (i3)∗(x) is 5p2q+q+s−1−(s+11) = 5p2q+q−12 ≡ 6q−2 (mod pq−2).
From the above Table, we know that the generator λ with total degree mod pq − 2 being
equal to 6q − 2 in [P (bi

j) ⊗ H∗,∗(U(L))]s,t doesn’t exist. So, we can get that (i3)∗(x) = 0.
Consider the following exact sequence:

· · · (j3)∗ // Exts+10,5p2q+q+s−1−(2p3−1)
A (H∗V (2),Zp)

(α3)∗ // Exts+11,5p2q+q+s−1
A (H∗V (2),Zp)

(i3)∗ // Exts+11,5p2q+q+s−1
A (H∗V (3),Zp)

(j3)∗ // · · · ,

there exists an element x1 ∈ Exts+10,5p2q+q+s−1−(2p3−1)
A (H∗V (2),Zp) satisfying (α3)∗(x1) =

x. The total degree of (i3)∗(x1) is 5p2q + q + s− 1− (2p3 − 1)− (s + 10) ≡ 4q − 6
(mod pq − 2). From the above Table, we know that

0 = (i3)∗(x1) ∈ Exts+10,5p2q+q+s−1−(2p3−1)
A (H∗V (3),Zp).

Using the exactness repeatedly, there exists an element xk ∈ Exts+11−k,5p2q+q+s−1−k(2p3−1)
A

(H∗V (2),Zp) satisfying (α3)∗(xk) = xk−1. But the total degree of (i3)∗(xk) mod pq − 2 is
different from that in the above table, so we know that

0 = (i3)∗(xk) ∈ Exts+11−k,5p2q+q+s−1−k(2p3−1)
A (H∗V (3),Zp).

Let k = 5, then

x5 ∈ Exts+6,5p2q+q+s−1−5(2p3−1)
A (H∗V (2),Zp) = Exts+6,−10p2+q+s+4

A (H∗V (2),Zp) = 0.

Therefore, we have x = (α3)∗ · · · (α3)∗︸ ︷︷ ︸
5

(x5) = 0, that is

Exts+11,5p2q+q+s−1
A (H∗V (2),Zp) = 0(s > 2, p > 11).

Proposition 3.6 Let r > 2, p > 11, then

Ext11−r,5p2q+q−r+1
A (H∗V (2),Zp) = 0.
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The proposition is evident for r > 11. Thus, we need only to consider the case of
2 6 r < 11.

For any y ∈ Ext11−r,5p2q+q−r+1
A (H∗V (2),Zp), we can know 0 < q − r + 1 < q from

2 6 r < 11. Since Sdim((i3)∗(y)) = 5p2q + q − r + 1 = q − r + 1 6= 0(mod q) and
Exts,t

P (Zp,Zp) = 0 (t 6= 0 mod q), from Proposition 3.1, we can get that

0 = (i3)∗(y) ∈ Ext11−r,5p2q+q−r+1
A (H∗V (3),Zp).

According to the exactness, there exists an element

y1 ∈ Ext10−r,5p2q+q−r+1−(2p3−1)
A (H∗V (2),Zp)

such that (α3)∗(y1) = y, and

Sdim((i3)∗(y1)) = 5p2q + q − r + 1− (2p3 − 1) = 4p2q − pq − r = q − r 6= 0 (mod q),

so 0 = (i3)∗(y1) ∈ Ext10−r,5p2q+q−r+1−(2p3−1)
A (H∗V (3),Zp).

Similarly, there exists an element yk ∈ Ext11−k−r,5p2q+q−r+1−k(2p3−1)
A (H∗V (2),Zp) satis-

fying (α3)∗(yk) = yk−1, and Sdim((i3)∗(yk)) 6= 0 (mod q). Let k = 5, then

y5 ∈ Ext6−r,5p2q+q−r+1−5(2p3−1)
A (H∗V (2),Zp) = Ext6−r,−10p2+q−r+6

A (H∗V (2),Zp) = 0.

Thus, we get that y = (α3)∗ · · · (α3)∗︸ ︷︷ ︸
5

(y5) = 0, that is

Ext11−r,5p2q+q−r+1
A (H∗V (2),Zp) = 0 (r > 2, p > 11).

The Proof of Theorem 1.2 First, we consider the ASS with E2-term:

Exts,t
A (H∗V (2),Zp) ⇒ πt−sV (2),

and its differential is dr : Es,t
r → Es+r,t+r−1

r .

From Proposition 3.5,

Er+11,5p2q+q+r−1
2 = Extr+11,5p2q+q+r−1

A (H∗V (2),Zp),

we can get that Er+11,5p2q+q+r−1
r = 0(r > 2). Let h0b

5
1 be the image of h0b

5
1 ∈ Ext11,5p2q+q

A (Zp,Zp)
under the map

(i2)∗(i1)∗(i0)∗ : Ext11,5p2q+q
A (Zp,Zp) → Ext11,5p2q+q

A (H∗V (2),Zp),

then dr(h0b
5
1) ∈ Er+11,5p2q+q+r−1

r = 0(r > 2). Furthermore, we can get that

h0b
5
1 ∈ E11,5p2q+q

2 = Ext11,5p2q+q
A (H∗V (2),Zp)

is a permanent cycle in the ASS. Moreover, from Proposition 3.6,

E11−r,5p2q+q−r+1
2 = Ext11−r,5p2q+q−r+1

A (H∗V (2),Zp) = 0(r > 2),
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we have that E11−r,5p2q+q−r+1
r = 0(r > 2). So, h0b

5
1 is impossible to be the dr-boundary in

the ASS, and h0b
5
1 ∈ Ext11,5p2q+q

A (H∗V (2),Zp) converges to a nontrivial element in π∗V (2).
The Proof of Theorem 1.1 From Theorem 1.2, we know that there exists a nontrivial

element f in π∗V (2), which is represented by h0b
5
1 ∈ Ext11,5p2q+q

A (H∗V (2),Zp), where h0b
5
1

denotes the image of h0b
5
1 ∈ Ext11,5p2q+q

A (Zp,Zp) under the homomorphism

(i2)∗(i1)∗(i0)∗ : Ext11,5p2q+q
A (Zp,Zp) → Ext11,5p2q+q

A (H∗V (2),Zp).

Consider the following composition of maps

f̃ : Σ5p2q+q−11S
f // V (2)

γt

// Σt(p2+p+1)qV (2)
j0j1j2 // Σ−t(p2+p+1)q+(p+1)q+q+3S,

the composed map f̃ = j0j1j2γ
tf is represented by

(j0j1j2)∗(γt)∗(i2i1i0)∗(h0b
5
1) ∈ Ext11+t,(5+t)p2q+(t−1)(p+1)q+t−3

A (Zp,Zp).

From [3], we have known that γt = j0j1j2 ∈ π∗(S) is represented by
∼
γt in the ASS. By the

knowledge of Yoneda products, we know that the following composition:

Ext0,0
A (Zp,Zp)

(i2i1i0)∗// Ext0,0
A (H∗V (2),Zp)

(γt)∗ // Extt,t(p2+p+1)q+t
A (H∗V (2),Zp)

(j0j1j2)∗ // Extt,tp2q+(t−1)pq+(t−2)q+t−3
A (Zp,Zp)

is a homomorphism which is multiplied by
∼
γt. Hence,

∼
f∈ π∗(S) is represented by

∼
γt h0b

5
1 ∈ Ext11+t,(5+t)p2q+(t−1)(p+1)q+t−3

A (Zp,Zp)

in the ASS.
Moreover, from the Proposition 3.4 we know that

∼
γt h0b

5
1 can’t be hit by the differentials

in the ASS, then we get that
∼
γt h0b

5
1 converges to a nontrivial element

∼
f in π∗(S).
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球面稳定同伦群中的一族新元素

王玉玉, 王俊丽

(天津师范大学数学科学学院, 天津 300387)

摘要: 本文研究了球面稳定同伦群中元素的非平凡性. 利用May谱序列, 证明了在Adams谱序列E2项

中存在乘积元素收敛到球面稳定同伦群的一族阶为p的非零元, 此非零元具有更高维数的滤子.
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