A NEW FAMILY OF ELEMENTS IN THE STABLE HOMOTOPY GROUPS OF SPHERES

WANG Yu－yu，WANG Jun－li
（College of Math．Science，Tianjin Normal University，Tianjin 300387，China）

Abstract

In this paper，we study the non－triviality of the elements in the stable homotopy groups of spheres．Using the May spectral sequence，the authors show that there exists a new product in the E_{2}－term of the Adams spectral sequence，which converges to a family of homotopy elements with order p and higher filtration in the stable homotopy groups of spheres．

Keywords：stable homotopy groups of spheres；Toda－Smith spectrum；sphere spectrum； Adams spectral sequence；May spectral sequence

2010 MR Subject Classification：55Q45；55T15；55S10
Document code：A Article ID：0255－7797（2015）02－0294－13

1 Introduction

To determine the stable homotopy groups of spheres $\pi_{*}(S)$ is one of the central problems in homotopy theory．One of the main tools to reach it is the Adams spectral sequence（ASS）．

Let A be the $\bmod p$ Steenrod algebra，and S be the sphere spectrum localized at an odd prime p ．For connected finite type spectra X, Y ，there exists the ASS $\left\{E_{r}^{s, t}, d_{r}\right\}$ such that
（1）$d_{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t+r-1}$ is the differential；
（2）$E_{2}^{s, t} \cong \operatorname{Ext}_{A}^{s, t}\left(H^{*}(X), H^{*}(Y)\right) \Rightarrow\left[\Sigma^{t-s} Y, X\right]_{p}$ ，where $E_{2}^{s, t}$ is the cohomology of A．When X is sphere spectrum S ，Toda－Smith spectrum $V(n)(n=1,2,3)$ ，respectively， $\left(\pi_{t-s}(X)\right)_{p}$ is the stable homotopy groups of $S, V(n)$ ．So，for computing the stable homotopy groups of spheres with the ASS，we must compute the E_{2}－term of the ASS， $\operatorname{Ext}_{A}^{*, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ ．

From［1］， $\operatorname{Ext}_{A}^{1, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ has the \mathbb{Z}_{p}－base consisting of

$$
a_{0} \in \operatorname{Ext}_{A}^{1,1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right), h_{i} \in \operatorname{Ext}_{A}^{1, p^{i} q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

for all $i \geqslant 0$ and $\operatorname{Ext}_{A}^{2, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ has the \mathbb{Z}_{p}－base consisting of $\alpha_{2}, a_{0}^{2}, a_{0} h_{i}(i>0), g_{i}(i \geqslant$ $0), k_{i}(i \geqslant 0), b_{i}(i \geqslant 0)$ and $h_{i} h_{j}(j \geqslant i+2, i \geqslant 0)$ whose internal degrees are $2 q+1$ ， $2, p^{i} q+1, p^{i+1} q+2 p^{i} q, 2 p^{i+1} q+p^{i} q, p^{i+1} q$ and $p^{i} q+p^{j} q$ ，respectively．From［2，P．110，

[^0]Table 8.1], the \mathbb{Z}_{p}-base of $\operatorname{Ext}_{A}^{3, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ has been completely listed and there is a generator $\tilde{\gamma}_{t} \in \operatorname{Ext}_{A}^{t, t p^{2} q+(t-1) p q+(t-2) q+t-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ which is described in [3].

Our main theorems of this paper are as follows.
Theorem 1.1 Let $p \geqslant 11,3 \leqslant t<p-5$, then

$$
\tilde{\gamma}_{t} h_{0} b_{1}^{5} \in \operatorname{Ext}_{A}^{t+11,(t+5) p^{2} q+(t-1)(p+1) q+t-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

is a permanent cycle in the ASS and converges to a non-trivial element in $\pi_{*}(S)$.
Based on a new homotopy element in $\pi_{*}(V(2))$, the above homotopy element in $\pi_{*}(S)$ will be constructed.

For the reader's convenience, let us firstly give some preliminaries on Toda-Smith spectrum $V(n)$.

The \mathbb{Z}_{p} cohomology group of Toda-Smith spectrum $V(n)$ is $H^{*} V(n) \cong E\left[Q_{0}, Q_{1}, \cdots, Q_{n}\right]$ $\cong Q\left(2^{n+1}\right)$, where $Q_{i}(i \geqslant 0)$ is the Milnor's elements of Steenrod algebra A, and E[] is the exterior algebra. From [4], when $n=1,2,3$ and $p>2 n$, we know that $V(n)$ is realized, and there exists a cofibre sequence $(V(-1)=S)$:

$$
\Sigma^{2\left(p^{n}-1\right)} V(n-1) \xrightarrow{\alpha_{n}} V(n-1) \xrightarrow{i_{n}} V(n) \xrightarrow{j_{n}} \Sigma^{2 p^{n}-1} V(n-1)
$$

where $\alpha_{n}(n=0,1,2,3)$ are p, α, β, γ, respectively. The cofibre sequence can induce a short exact sequence of \mathbb{Z}_{p} cohomology groups. Thus, we get the following long exact sequence of Ext groups:

$$
\begin{aligned}
& \cdots \xrightarrow{\left(j_{n}\right)_{*}} \operatorname{Ext}_{A}^{s-1, t-\left(2 p^{n}-1\right)}\left(H^{*} V(n-1), \mathbb{Z}_{p}\right) \xrightarrow{\left(\alpha_{n}\right)_{*}} \operatorname{Ext}_{A}^{s, t}\left(H^{*} V(n-1), \mathbb{Z}_{p}\right) \\
& \xrightarrow{\left(i_{n}\right)_{*}} \operatorname{Ext}_{A}^{s, t}\left(H^{*} V(n), \mathbb{Z}_{p}\right) \xrightarrow{\left(j_{n}\right)_{*}} \operatorname{Ext}_{A}^{s, t-\left(2 p^{n}-1\right)}\left(H^{*} V(n-1), \mathbb{Z}_{p}\right) \xrightarrow{\left(\alpha_{n}\right)_{*}} \cdots
\end{aligned}
$$

The following theorem is a key step to prove Theorem 1.1.
Theorem 1.2 Let $p \geqslant 11$, then $h_{0} b_{1}^{5} \in \operatorname{Ext}_{A}^{11,5 p^{2} q+q}\left(H^{*} V(2), \mathbb{Z}_{p}\right)$ is a permanent cycle in the ASS and converges to a non-trivial element in $\pi_{*} V(2)$.

It is very difficult to determine the stable homotopy groups of spheres. So far, not so many nontrivial elements in the stable homotopy groups of spheres were detected. See, for example $[1,5,6]$.

The detection of the element $\tilde{\gamma_{t}} h_{0} b_{1}^{5}$ is parallel to that of the element $\tilde{\gamma}_{t} h_{0} b_{1}^{2}$ given in [7]. Actually, our results are more complicated, especially to Proposition 3.3 and Proposition 3.4.

This paper is organized as follows: after giving some preliminaries on the May spectral sequence (MSS) in Section 2, the proofs of the main theorems will be given in Section 3.

2 Some Preliminaries on the May Spectral Sequence

The most successful tool for computing $\operatorname{Ext}_{A}^{*, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is the MSS. From [8, Theorem 3.2.5], there exists the MSS $\left\{E_{r}^{s, t, *}, d_{r}\right\}$ which converges to $\operatorname{Ext}_{A}^{s, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. The E_{1}-term and
differential of the MSS are

$$
\begin{gathered}
E_{1}^{*, *, *}=E\left(h_{i, j} \mid i>0, j \geqslant 0\right) \otimes P\left(b_{i, j} \mid i>0, j \geqslant 0\right) \otimes P\left(a_{i} \mid i \geqslant 0\right) \\
d_{r}: E_{r}^{s, t, u} \rightarrow E_{r}^{s+1, t, u-r}, r \geqslant 1
\end{gathered}
$$

where E is the exterior algebra, P is the polynomial algebra and

$$
h_{i, j} \in E_{1}^{1,2\left(p^{i}-1\right) p^{j}, 2 i-1}, b_{i, j} \in E_{1}^{2,2\left(p^{i}-1\right) p^{j+1}, p(2 i-1)}, a_{i} \in E_{1}^{1,2 p^{i}-1,2 i+1}
$$

Lemma 2.1 (see [9]) Let $t=\left(c_{n} p^{n}+c_{n-1} p^{n-1}+\cdots+c_{1} p+c_{0}\right) q+c_{-1}, c_{i} \in \mathbb{Z}$, and $p-1 \geqslant c_{n} \geqslant c_{n-1} \geqslant \cdots \geqslant c_{1} \geqslant c_{0} \geqslant c_{-1} \geqslant 0$, then the number of $h_{n+1-i, i}$ in the generator of $E_{1}^{c_{n}, t, *}$ will be $\left(c_{i}-c_{i-1}\right)(0 \leqslant i \leqslant n)$.

Corollary 2.2 (see [9]) If $p>a \geqslant b \geqslant c \geqslant d \geqslant 0$, then the number of $h_{1,2}, h_{2,1}$ and $h_{3,0}$ in the generator of $E_{1}^{a, a p^{2} q+b p q+c q+d, *}$ will be $(a-b),(b-c)$ and $(c-d)$, respectively.

Corollary 2.3 (see [9]) Let $t \geqslant 3$, then $E_{1}^{t, t p^{2} q+(t-1) p q+(t-2) q+t-3}=\mathbb{Z}_{p}\left\{h_{2,1} h_{1,2} h_{3,0} a_{3}^{t-3}\right\}$.
Lemma 2.4 (see [9]) Let

$$
t=\left(c_{n} p^{n}+c_{n-1} p^{n-1}+\cdots+c_{1} p+c_{0}\right) q+c_{-1}
$$

$c_{i} \in \mathbb{Z}_{p}(-1 \leqslant i \leqslant n)$, for $c_{i}<c_{i-1}, 0 \leqslant i \leqslant n-1$, then $E_{1}^{c_{n}, t, *}=0$.
Lemma 2.5 (see [9]) Let $u>0, p>c_{2}, c_{1}, c_{0}, c_{-1} \geqslant 0$ and $c_{2}-c_{-1} \geqslant 4$, there don't exist u factors in the generator of $E_{1}^{u, c_{2} p^{2} q+c_{1} p q+c_{0} q+c_{-1}}$.

3 The Convergence of $\tilde{\gamma}_{t} h_{0} b_{1}^{5}$ in the Adams Spectral Sequence

Let P be the subalgebra of A generated by the reduced power operations $P^{i}(i>0)$, then we have the following results.

Proposition 3.1 (see [9]) $\operatorname{Ext}_{A}^{s, t}\left(H^{*} V(3), \mathbb{Z}_{p}\right) \cong \operatorname{Ext}_{P}^{s, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right), t-s<2 p^{4}-1$.
Corollary 3.2 Let $s \geqslant 2$, then

$$
\operatorname{Ext}_{A}^{s+11,5 p^{2} q+q+s-1}\left(H^{*} V(3), \mathbb{Z}_{p}\right) \cong \operatorname{Ext}_{P}^{s+11,5 p^{2} q+q+s-1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

Proposition 3.3 Let $3 \leqslant t<p-5, p \geqslant 11$, then

$$
0 \neq \tilde{\gamma}_{t} h_{0} b_{1}^{5} \in \operatorname{Ext}_{A}^{t+11,(t+5) p^{2} q+(t-1)(p+1) q+t-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

The generators of $E_{1}^{s, t, u}$ and their first, second degrees satisfying $t<p^{3} q$ are listed in Table 1.

Table 1: The generators and degrees

$h_{1,0}$	$h_{1,1}$	$h_{2,0}$	$h_{2,1}$	$h_{1,2}$	$h_{3,0}$	$b_{1,0}$
$(1, q)$	$(1, p q)$	$(1,(p+1) q)$	$(1, p(p+1) q)$	$\left(1, p^{2} q\right)$	$\left(1,\left(p^{2}+p+1\right) q\right)$	$(2, p q)$

$b_{1,1}$	$b_{2,0}$	a_{0}	a_{1}	a_{2}	a_{3}
$\left(2, p^{2} q\right)$	$\left(2,\left(p^{2}+p\right) q\right)$	$(1,1)$	$(1, q+1)$	$(1,(p+1) q+1)$	$\left(1,\left(p^{2}+p+1\right) q+1\right)$

To compare the degrees, $h_{0}, b_{1} \in \operatorname{Ext}_{A}^{* * *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ are represented by $h_{1,0} \in E_{1}^{1, q, *}, b_{1,1} \in$ $E_{1}^{2, p^{2} q, *}$ in the MSS. From Corollary 2.3, we conclude that $\tilde{\gamma}_{t} \in \operatorname{Ext}_{A}^{t, t p^{2} q+(t-1) p q+(t-2) q+t-3}$ $\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is represented by $h_{2,1} h_{1,2} h_{3,0} a_{3}^{t-3} \in E_{1}^{t, t p^{2} q+(t-1) p q+(t-2) q+t-3, *}(t \geqslant 3)$ in the MSS.

Thus, $\tilde{\gamma}_{t} h_{0} b_{1}^{5}$ is represented by $h_{1,0} b_{1,1}^{5} h_{2,1} h_{1,2} h_{3,0} a_{3}^{t-3} \in E_{1}^{t+11,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-3, *}$ in the MSS. If we want to prove that $0 \neq \tilde{\gamma}_{t} h_{0} b_{1}^{5} \in \operatorname{Ext}_{A}^{t+11,(t+5) p^{2} q+(t-1)(p+1) q+t-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, we must prove that $E_{1}^{t+10,(t+5) p^{2} q+(t-1)(p+1) q+t-3, *}=0$. For any $\sigma \in E_{1}^{t+10,(t+5) p^{2} q+(t-1)(p+1) q+t-3, *}$, we have the following discussions.

Case 1 When $t \geqslant 6$, from Lemma 2.5, the number of the factors in σ will be $t+9$, $t+8, t+7, t+6$ or $t+5$.

Subcase 1.1 If σ has $t+9$ factors, there exists a factor $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, the possible forms will be $\sigma=\sigma_{1.1} b_{1,0}, \sigma=\sigma_{1.2} b_{1,1}, \sigma=\sigma_{1.3} b_{2,0}$, where

$$
\begin{aligned}
& \sigma_{1.1} \in E_{1}^{t+8,(t+5) p^{2} q+(t-2) p q+(t-1) q+t-3, *}, \sigma_{1.2} \in E_{1}^{t+8,(t+4) p^{2} q+(t-1) p q+(t-1) q+t-3, *}, \\
& \sigma_{1.3} \in E_{1}^{t+8,(t+4) p^{2} q+(t-2) p q+(t-1) q+t-3, *} .
\end{aligned}
$$

By Lemma 2.5, the number of the factors in $\sigma_{1.1}$ is $t+7, t+6$ or $t+5$, thus the number of the factors in σ will be $t+8, t+7$ or $t+6$. It is in contradiction with that σ has $t+9$ factors, so $\sigma_{1.1}=0$. Similarly, we conclude that $\sigma_{1.2}=0, \sigma_{1.3}=0$, so $\sigma=0$.

Subcase 1.2 If σ has $t+8$ factors, there exist two factors $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, the possible forms will be $\sigma=\sigma_{2.1} b_{1,0}^{2}, \sigma=\sigma_{2.2} b_{1,1}^{2}, \sigma=\sigma_{2.3} b_{2,0}^{2}$, $\sigma=\sigma_{2.4} b_{1,0} b_{1,1}, \sigma=\sigma_{2.5} b_{1,0} b_{2,0}, \sigma=\sigma_{2.6} b_{1,1} b_{2,0}$, where

$$
\begin{aligned}
& \sigma_{2.1} \in E_{1}^{t+6,(t+5) p^{2} q+(t-3) p q+(t-1) q+t-3, *}, \sigma_{2.2} \in E_{1}^{t+6,(t+3) p^{2} q+(t-1) p q+(t-1) q+t-3, *}, \\
& \sigma_{2.3} \in E_{1}^{t+6,(t+3) p^{2} q+(t-3) p q+(t-1) q+t-3, *}, \sigma_{2.4} \in E_{1}^{t+6,(t+4) p^{2} q+(t-2) p q+(t-1) q+t-3, *}, \\
& \sigma_{2.5} \in E_{1}^{t+6,(t+4) p^{2} q+(t-3) p q+(t-1) q+t-3, *}, \sigma_{2.6} \in E_{1}^{t+6,(t+3) p^{2} q+(t-2) p q+(t-1) q+t-3, *} .
\end{aligned}
$$

By the similar argument in Subcase1.1, we can get that $\sigma_{2 . i}=0(i=1,2 \cdots 6)$, thus $\sigma=0$.
Subcase 1.3 If σ has $t+7$ factors, there exist three factors $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, the possible forms will be $\sigma=\sigma_{3.1} b_{1,0}^{3}, \sigma=\sigma_{3.2} b_{1,0}^{2} b_{1,1}, \sigma=\sigma_{3.3} b_{1,0}^{2} b_{2,0}$, $\sigma=\sigma_{3.4} b_{1,1}^{3}, \sigma=\sigma_{3.5} b_{2,0}^{3}, \sigma=\sigma_{3.6} b_{1,1}^{2} b_{2,0}, \sigma=\sigma_{3.7} b_{1,1}^{2} b_{1,0}, \sigma=\sigma_{3.8} b_{2,0}^{2} b_{1,0}, \sigma=\sigma_{3.9} b_{2,0}^{2} b_{1,1}$, $\sigma=\sigma_{3.10} b_{1,0} b_{1,1} b_{2,0}$, where

$$
\begin{aligned}
& \sigma_{3.1} \in E_{1}^{t+4,(t+5) p^{2} q+(t-4) p q+(t-1) q+t-3, *}, \sigma_{3.2} \in E_{1}^{t+4,(t+4) p^{2} q+(t-3) p q+(t-1) q+t-3, *}, \\
& \sigma_{3.3} \in E_{1}^{t+4,(t+4) p^{2} q+(t-4) p q+(t-1) q+t-3, *}, \sigma_{3.4} \in E_{1}^{t+4,(t+2) p^{2} q+(t-1) p q+(t-1) q+t-3, *}, \\
& \sigma_{3.5} \in E_{1}^{t+4,(t+2) p^{2} q+(t-4) p q+(t-1) q+t-3, *}, \sigma_{3.6} \in E_{1}^{t+4,(t+2) p^{2} q+(t-2) p q+(t-1) q+t-3, *}, \\
& \sigma_{3.7} \in E_{1}^{t+4,(t+3) p^{2} q+(t-2) p q+(t-1) q+t-3, *}, \sigma_{3.8} \in E_{1}^{t+4,(t+3) p^{2} q+(t-4) p q+(t-1) q+t-3, *}, \\
& \sigma_{3.9} \in E_{1}^{t+4,(t+2) p^{2} q+(t-3) p q+(t-1) q+t-3, *}, \sigma_{3.10} \in E_{1}^{t+4,(t+3) p^{2} q+(t-3) p q+(t-1) q+t-3, *} .
\end{aligned}
$$

It is obvious that $\sigma_{3.1}=0$. By the similar argument in Subcase1.1, we can get that $\sigma_{3 . i}=0$ $(i=4,5, \cdots, 10)$. From Lemma 2.4, note that $t-3<t-1, t-4<t-1$, thus the remainder are all zero. Therefore, we can get $\sigma=0$.

Subcase 1.4 If σ has $t+6$ factors, there exist four factors $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, $\sigma=\sigma^{\prime} b_{1,0}^{x} b_{1,1}^{y} b_{2,0}^{z}$, where $x+y+z=4, x, y, z \geqslant 0$ and $\sigma^{\prime} \in E_{1}^{t+2, T}$, $T=(t+5-y-z) p^{2} q+(t-1-x-z) p q+(t-1) q+(t-3)$. If $x \geqslant 2$, we have that $y+z<3$ and $t+5-y-z>t+2$. It is obvious that $\sigma^{\prime}=0$. Thus, the possible nontrivial forms will be $\sigma=\sigma_{4.1} b_{1,1}^{4}, \sigma=\sigma_{4.2} b_{2,0}^{4}, \sigma=\sigma_{4.3} b_{1,1}^{3} b_{1,0}, \sigma=\sigma_{4.4} b_{1,1}^{3} b_{2,0}, \sigma=\sigma_{4.5} b_{2,0}^{3} b_{1,0}$, $\sigma=\sigma_{4.6} b_{2,0}^{3} b_{1,1}, \sigma=\sigma_{4.7} b_{1,1}^{2} b_{2,0}^{2}, \sigma=\sigma_{4.8} b_{1,0} b_{1,1}^{2} b_{2,0}, \sigma=\sigma_{4.9} b_{1,0} b_{1,1} b_{2,0}^{2}$, where the first degrees of $\sigma_{4 . i}(i=1,2,3, \cdots, 9)$ are all $t+2$ and the second degrees of them are listed in Table $2(M=t-1$, and $N=t-3)$.

Table 2: The factors and second degrees

$\sigma_{4 . i}$	the second degree	$\sigma_{4 . i}$	the second degree
$\sigma_{4.1}$	$(t+1) p^{2} q+(t-1) p q+M q+N$	$\sigma_{4.2}$	$(t+1) p^{2} q+(t-5) p q+M q+N$
$\sigma_{4.3}$	$(t+2) p^{2} q+(t-2) p q+M q+N$	$\sigma_{4.4}$	$(t+1) p^{2} q+(t-2) p q+M q+N$
$\sigma_{4.5}$	$(t+2) p^{2} q+(t-5) p q+M q+N$	$\sigma_{4.6}$	$(t+1) p^{2} q+(t-4) p q+M q+N$
$\sigma_{4.7}$	$(t+1) p^{2} q+(t-3) p q+M q+N$	$\sigma_{4.8}$	$(t+2) p^{2} q+(t-3) p q+M q+N$
$\sigma_{4.9}$	$(t+2) p^{2} q+(t-4) p q+M q+N$		

By the argument similar to Subcase 1.3, we get that $\sigma_{4 . i}=0(i=1,2 \cdots 9)$, thus $\sigma=0$.
Subcase 1.5 If σ has $t+5$ factors, there exist five factors $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{5.1} b_{1,1}^{3} b_{2,0}^{2}, \sigma=\sigma_{5.2} b_{1,1}^{2} b_{2,0}^{3}$, $\sigma=\sigma_{5.3} b_{2,0}^{4} b_{1,1}, \sigma=\sigma_{5.4} b_{1,1}^{4} b_{2,0}, \sigma=\sigma_{5.5} b_{2,0}^{5}, \sigma=\sigma_{5.6} b_{1,1}^{5}$, where the first degrees of $\sigma_{5 . i}(i=1,2,3, \cdots, 6)$ are all t and the second degrees of them are listed in Table $3(M=t-1$, and $N=t-3)$.

Table 3: The factors and second degrees

$\sigma_{5 . i}$	the second degree	$\sigma_{5 . i}$	the second degree
$\sigma_{5.1}$	$t p^{2} q+(t-3) p q+M q+N$	$\sigma_{5.2}$	$t p^{2} q+(t-4) p q+M q+N$
$\sigma_{5.3}$	$t p^{2} q+(t-5) p q+M q+N$	$\sigma_{5.4}$	$t p^{2} q+(t-2) p q+M q+N$
$\sigma_{5.5}$	$t p^{2} q+(t-6) p q+M q+N$	$\sigma_{5.6}$	$t p^{2} q+(t-1) p q+M q+N$

Similarly to $\sigma_{3.2}$, we can get that $\sigma_{5 . i}=0(i=1,2 \cdots 5)$. As for $\sigma_{5.6}$, from the Corollary 2.2 , there exist two factors $h_{3,0}$, so $\sigma_{5.6}=0$. Thus, we can get $\sigma=0$.

Case 2 When $t=5, E_{1}^{t+10,(t+5) p^{2} q+(t-1)(p+1) q+t-3, *}=E_{1}^{15,10 p^{2} q+4 p q+3 q+q+2, *}$, the generator contains $(q+2)$ factors a_{i}. Therefore, the first degree $\geqslant q+2>15$, it's a contradiction. So, we get $\sigma=0$. When $t=4, t=3$, the proofs are the similar to $t=5$. Summarize the above Case 1 and Case 2, $E_{1}^{t+10,(t+5) p^{2} q+(t-1)(p+1) q+t-3, *}=0$. That is

$$
0 \neq \tilde{\gamma}_{t} h_{0} b_{1}^{5} \in \operatorname{Ext}_{A}^{t+11,(t+5) p^{2} q+(t-1)(p+1) q+t-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)(3 \leqslant t<p-5)
$$

Proposition 3.4 Let $r \geqslant 2,3 \leqslant t<p-5$, then

$$
\operatorname{Ext}_{A}^{t+11-r,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-r-2, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0
$$

It is sufficient if we can show that $E_{1}^{t+11-r,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-r-2, *}=0$.

Case 1 If $r>6, t+11-r<t+5$, so we have

$$
E_{1}^{t+11-r,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-r-2, *}=0 .
$$

Case 2 If $r=6$, then

$$
E_{1}^{t+11-r,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-r-2, *}=E_{1}^{t+5,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-8, *}
$$

Subcase 2.1 When $t \geqslant 8$, from the Corollary 2.2, there exist six factors $h_{1,2}$, so $\sigma=0$.
Subcase 2.2 When $t=7, E_{1}^{t+5,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-8, *}=E_{1}^{12,12 p^{2} q+6 p q+5 q+q-1, *}$. The generator contains $(q-1)$ factors a_{i}. Therefore, the first degree $\geqslant q-1>12$, it's a contradiction. So, the generator is impossible to exist.

Subcase 2.3 When $3 \leqslant t \leqslant 6$, by the similar argument in Subcase 2.2, the generator is impossible to exist.

Case 3 If $r=5$, then

$$
E_{1}^{t+11-r,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-r-2, *}=E_{1}^{t+6,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-7, *} .
$$

Subcase 3.1 When $t \geqslant 7$, from the Lemma 2.5, we know that the generator contains $t+5$ factors, one of which must be the factor $b_{i, j}$. Thus, the possible nontrivial forms will be $\sigma=\sigma_{3.1} b_{1,1}, \sigma=\sigma_{3.2} b_{2,0}$, where $\sigma_{3.1} \in E_{1}^{t+4,(t+4) p^{2} q+(t-1) p q+(t-1) q+t-7, *}, \sigma_{3.2} \in$ $E_{1}^{t+4,(t+4) p^{2} q+(t-2) p q+(t-1) q+t-7, *}$. By the similar argument in Subcase2.1, we can get that $\sigma_{3.1}=0, \sigma_{3.2}=0$.

Subcase 3.2 When $3 \leqslant t \leqslant 6$, by the similar argument in Subcase 2.2, the generator is impossible to exist.

Case 4 If $r=4$, then

$$
E_{1}^{t+11-r,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-r-2, *}=E_{1}^{t+7,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-6, *}
$$

Subcase 4.1 When $t \geqslant 6$, from Lemma 2.5, we know that the number of the factors in σ will be $t+5$ or $t+6$.

Subcase 4.1.1 If σ contains $t+6$ factors, then there exists a factor $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{4.1} b_{1,0}, \sigma=\sigma_{4.2} b_{1,1}$, $\sigma=\sigma_{4.3} b_{2,0}$, where

$$
\begin{aligned}
& \sigma_{4.1} \in E_{1}^{t+5,(t+5) p^{2} q+(t-2) p q+(t-1) q+t-6, *}, \sigma_{4.2} \in E_{1}^{t+5,(t+4) p^{2} q+(t-1) p q+(t-1) q+t-6, *}, \\
& \sigma_{4.3} \in E_{1}^{t+5,(t+4) p^{2} q+(t-2) p q+(t-1) q+t-6, *} .
\end{aligned}
$$

By the similar argument in Subcase 2.1, we know that $\sigma_{4.1}=0$. As for $\sigma_{4.2}$, from Lemma 2.5, $\sigma_{4.2}$ must contain $t+4$ factors, thus $\sigma=\sigma_{4.2} b_{1,1}$ contains $t+5$ factors. It is a contradiction with that σ contains $t+6$ factors, then $\sigma_{4.2}=0$. Similarly, we can get $\sigma_{4.3}=0$.

Subcase 4.1.2 If σ contains $t+5$ factors, then there exist two factors $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{4.4} b_{1,1}^{2}, \sigma=\sigma_{4.5} b_{2,0}^{2}$,
$\sigma=\sigma_{4.6} b_{1,1} b_{2,0}$, where

$$
\begin{aligned}
& \sigma_{4.4} \in E_{1}^{t+3,(t+3) p^{2} q+(t-1) p q+(t-1) q+t-6, *}, \sigma_{4.5} \in E_{1}^{t+3,(t+3) p^{2} q+(t-3) p q+(t-1) q+t-6, *}, \\
& \sigma_{4.6} \in E_{1}^{t+3,(t+3) p^{2} q+(t-2) p q+(t-1) q+t-6, *} .
\end{aligned}
$$

By the similar argument in Subcase 2.1, we can get $\sigma_{4.4}=0$. As for $\sigma_{4.5}$, from the Lemma 2.4 and $t-3<t-1$, so $\sigma_{4.5}=0$. Similarly, we can get $\sigma_{4.6}=0$.

Subcase 4.2 When $3 \leqslant t \leqslant 5$, by the similar argument in Subcase 2.2, we know that the generator is impossible to exist. Thus, we have $\sigma=0$.

Case 5 If $r=3$, then

$$
E_{1}^{t+11-r,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-r-2, *}=E_{1}^{t+8,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-5, *} .
$$

Subcase 5.1 When $t \geqslant 5$, from Lemma 2.5, the number of the factors in σ will be $t+5, t+6$ or $t+7$.

Subcase 5.1.1 If σ contains $t+7$ factors, then there exists a factor $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{5.1} b_{1,0}, \sigma=\sigma_{5.2} b_{1,1}$, $\sigma=\sigma_{5.3} b_{2,0}$, where

$$
\begin{aligned}
& \sigma_{5.1} \in E_{1}^{t+6,(t+5) p^{2} q+(t-2) p q+(t-1) q+t-5, *}, \sigma_{5.2} \in E_{1}^{t+6,(t+4) p^{2} q+(t-1) p q+(t-1) q+t-5, *}, \\
& \sigma_{5.3} \in E_{1}^{t+6,(t+4) p^{2} q+(t-2) p q+(t-1) q+t-5, *} .
\end{aligned}
$$

Similarly to $\sigma_{4.2}$, we can get $\sigma_{5 . i}=0(i=1,2,3)$.
Subcase 5.1.2 If σ contains $t+6$ factors, then there exist two factors $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{5.4} b_{1,1}^{2}, \sigma=\sigma_{5.5} b_{2,0}^{2}$, $\sigma=\sigma_{5.6} b_{1,0} b_{1,1}, \sigma=\sigma_{5.7} b_{1,0} b_{2,0}, \sigma=\sigma_{5.8} b_{1,1} b_{2,0}$, where

$$
\begin{aligned}
& \sigma_{5.4} \in E_{1}^{t+4,(t+3) p^{2} q+(t-1) p q+(t-1) q+t-5, *}, \sigma_{5.5} \in E_{1}^{t+4,(t+3) p^{2} q+(t-3) p q+(t-1) q+t-5, *}, \\
& \sigma_{5.6} \in E_{1}^{t+4,(t+4) p^{2} q+(t-2) p q+(t-1) q+t-5, *}, \sigma_{5.7} \in E_{1}^{t+4,(t+4) p^{2} q+(t-3) p q+(t-1) q+t-5, *}, \\
& \sigma_{5.8} \in E_{1}^{t+4,(t+3) p^{2} q+(t-2) p q+(t-1) q+t-5, *} .
\end{aligned}
$$

Similarly to $\sigma_{4.2}$, we can get that $\sigma_{5.4}=0, \sigma_{5.5}=0, \sigma_{5.8}=0$. Similarly to $\sigma_{4.5}$, we can get that $\sigma_{5.6}=0, \sigma_{5.7}=0$.

Subcase 5.1.3 If σ contains $t+5$ factors, then there exist three factors $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{5.9} b_{1,1}^{3}, \sigma=\sigma_{5.10} b_{2,0}^{3}$, $\sigma=\sigma_{5.11} b_{1,1}^{2} b_{2,0}, \sigma=\sigma_{5.12} b_{1,1} b_{2,0}^{2}$, where

$$
\begin{aligned}
& \sigma_{5.9} \in E_{1}^{t+2,(t+2) p^{2} q+(t-1) p q+(t-1) q+t-5, *}, \sigma_{5.10} \in E_{1}^{t+2,(t+2) p^{2} q+(t-4) p q+(t-1) q+t-5, *}, \\
& \sigma_{5.11} \in E_{1}^{t+2,(t+2) p^{2} q+(t-2) p q+(t-1) q+t-5, *}, \sigma_{5.12} \in E_{1}^{t+2,(t+2) p^{2} q+(t-3) p q+(t-1) q+t-5, *},
\end{aligned}
$$

By the similar argument in Subcase2.1, we can know that $\sigma_{5.9}=0$. Similarly to $\sigma_{4.5}$, we can get that $\sigma_{5.10}=0, \sigma_{5.11}=0, \sigma_{5.12}=0$.

Subcase 5.2 When $t=4$ or $t=3$, by the similar argument in Subcase2.2, we know that the generator is impossible to exist. Thus, in this case, we can get $\sigma=0$.

Case 6 If $r=2$, then

$$
E_{1}^{t+11-r,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-r-2, *}=E_{1}^{t+9,(t+5) p^{2} q+(t-1) p q+(t-1) q+t-4, *}
$$

Subcase 6.1 When $t \geqslant 5$, from Lemma 2.5, the number of the factors in σ will be $t+5, t+6, t+7$ or $t+8$.

Subcase 6.1.1 If σ contains $t+8$ factors, then there exists a factor $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{6.1} b_{1,0}, \sigma=\sigma_{6.2} b_{1,1}$, $\sigma=\sigma_{6.3} b_{2,0}$, where

$$
\begin{aligned}
& \sigma_{6.1} \in E_{1}^{t+7,(t+5) p^{2} q+(t-2) p q+(t-1) q+t-4, *}, \sigma_{6.2} \in E_{1}^{t+7,(t+4) p^{2} q+(t-1) p q+(t-1) q+t-4, *}, \\
& \sigma_{6.3} \in E_{1}^{t+7,(t+4) p^{2} q+(t-2) p q+(t-1) q+t-4, *}
\end{aligned}
$$

Similarly to $\sigma_{4.2}$, we can get $\sigma_{6.1}=0, \sigma_{6.2}=0, \sigma_{6.3}=0$.
Subcase 6.1.2 If σ contains $t+7$ factors, then there exist two factors $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{6.4} b_{1,0}^{2}, \sigma=\sigma_{6.5} b_{1,1}^{2}$, $\sigma=\sigma_{6.6} b_{2,0}^{2}, \sigma=\sigma_{6.7} b_{1,0} b_{1,1}, \sigma=\sigma_{6.8} b_{1,0} b_{2,0}, \sigma=\sigma_{6.9} b_{1,1} b_{2,0}$, where

$$
\begin{aligned}
& \sigma_{6.4} \in E_{1}^{t+5,(t+5) p^{2} q+(t-3) p q+(t-1) q+t-4, *}, \sigma_{6.5} \in E_{1}^{t+5,(t+3) p^{2} q+(t-1) p q+(t-1) q+t-4, *}, \\
& \sigma_{6.6} \in E_{1}^{t+5,(t+3) p^{2} q+(t-3) p q+(t-1) q+t-4, *}, \sigma_{6.7} \in E_{1}^{t+5,(t+4) p^{2} q+(t-2) p q+(t-1) q+t-4, *}, \\
& \sigma_{6.8} \in E_{1}^{t+5,(t+4) p^{2} q+(t-3) p q+(t-1) q+t-4, *}, \sigma_{6.9} \in E_{1}^{t+5,(t+3) p^{2} q+(t-2) p q+(t-1) q+t-4, *} .
\end{aligned}
$$

Similarly to $\sigma_{4.5}$, we can get that $\sigma_{6.4}=0$. Similarly to $\sigma_{4.2}$, we can get that $\sigma_{6 . i}=0$ ($i=5,6 \cdots 9$).

Subcase 6.1.3 If σ contains $t+6$ factors, then there exist three factors $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{6.10} b_{1,1}^{3}, \sigma=\sigma_{6.11} b_{2,0}^{3}$, $\sigma=\sigma_{6.12} b_{1,1}^{2} b_{1,0}, \sigma=\sigma_{6.13} b_{1,1}^{2} b_{2,0}, \sigma=\sigma_{6.14} b_{1,0} b_{2,0}^{2}, \sigma=\sigma_{6.15} b_{1,1} b_{2,0}^{2}, \sigma=\sigma_{6.16} b_{1,0} b_{1,1} b_{2,0}$, where the first degrees of $\sigma_{6 . i}(i=10,11, \cdots, 16)$ are all $t+3$ and the second degrees of them are listed in Table $4(M=t-1$, and $N=t-4)$.

Table 4: The factors and second degrees

$\sigma_{6 . i}$	the second degree	$\sigma_{6 . i}$	the second degree
$\sigma_{6.10}$	$(t+2) p^{2} q+(t-1) p q+M q+N$	$\sigma_{6.11}$	$(t+2) p^{2} q+(t-4) p q+M q+N$
$\sigma_{6.12}$	$(t+3) p^{2} q+(t-2) p q+M q+N$	$\sigma_{6.13}$	$(t+2) p^{2} q+(t-2) p q+M q+N$
$\sigma_{6.14}$	$(t+3) p^{2} q+(t-4) p q+M q+N$	$\sigma_{6.15}$	$(t+2) p^{2} q+(t-3) p q+M q+N$
$\sigma_{6.16}$	$(t+3) p^{2} q+(t-3) p q+M q+N$		

Similarly to $\sigma_{4.2}$, we can get that $\sigma_{6.10}=0, \sigma_{6.11}=0, \sigma_{6.13}=0$. Similarly to $\sigma_{4.5}$, we can get that $\sigma_{6.12}=0, \sigma_{6.14}=0, \sigma_{6.15}=0, \sigma_{6.16}=0$.

Subcase 6.1.4 If σ contains $t+5$ factors, then there exist four factors $b_{i, j}\left(b_{1,0}, b_{1,1}, b_{2,0}\right)$. Due to the commutativity, the possible nontrivial forms will be $\sigma=\sigma_{6.17} b_{1,1}^{4}, \sigma=\sigma_{6.18} b_{2,0}^{4}$,
$\sigma=\sigma_{6.19} b_{1,1}^{3} b_{2,0}, \sigma=\sigma_{6.20} b_{1,1} b_{2,0}^{3}, \sigma=\sigma_{6.21} b_{1,2}^{2} b_{2,0}^{2}$, where the first degrees of $\sigma_{6 . i}(i=$ $17,18, \cdots, 21)$ are all $t+1$ and the second degrees of them are listed in Table $5(M=t-1$, and $N=t-4)$.

Table 5: The factors and second degrees

$\sigma_{6 . i}$	the second degree	$\sigma_{6 . i}$	the second degree
$\sigma_{6.17}$	$(t+1) p^{2} q+(t-1) p q+M q+N$	$\sigma_{6.18}$	$(t+1) p^{2} q+(t-5) p q+M q+N$
$\sigma_{6.19}$	$(t+1) p^{2} q+(t-2) p q+M q+N$	$\sigma_{6.20}$	$(t+1) p^{2} q+(t-4) p q+M q+N$
$\sigma_{6.21}$	$(t+1) p^{2} q+(t-3) p q+M q+N$		

Similarly to Subcase2.1, we can get that $\sigma_{6.17}=0$. Similarly to $\sigma_{3.2}$, we can get that $\sigma_{6 . i}=0(i=18,19,20,21)$.

Subcase 6.2 When $t=3, t=4$, by the similar argument in Subcase 2.2, we know that the generator is impossible to exist. Thus, we have $\sigma=0$.

Therefore, we can get that $E_{1}^{t+11-r,(5+t) p^{2} q+(t-1) p q+(t-1) q+t-r-2, *}=0$.
That is $\operatorname{Ext}_{A}^{t+11-r,(5+t) p^{2} q+(t-1) p q+(t-1) q+t-r-2, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0$.
Proposition 3.5 Let $s \geqslant 2, p \geqslant 11$, then $\operatorname{Ext}_{A}^{s+11,5 p^{2} q+q+s-1}\left(H^{*} V(2), \mathbb{Z}_{p}\right)=0$.
From Corollary 3.2, we have

$$
\operatorname{Ext}_{A}^{s+11,5 p^{2} q+q+s-1}\left(H^{*} V(3), \mathbb{Z}_{p}\right) \cong \operatorname{Ext}_{P}^{s+11,5 p^{2} q+q+s-1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

From [4, Lemma 2.2], we know that the rank of $\operatorname{Ext}_{P}^{s+11,5 p^{2} q+q+s-1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is less than or equal to that of $\left[P\left(b_{j}^{i}\right) \otimes H^{*, *}(U(L))\right]^{s+11,5 p^{2} q+q+s-1}$, and $\left[P\left(b_{j}^{i}\right) \otimes H^{*, *}(U(L))\right]^{s, t}$ is the E_{2}-term of the MSS, where $P()$ is the polynomial algebra. Up to the total degree $t-s<$ $\left(p^{3}+3 p^{2}+2 p+1\right) q-4, H^{s, t}(U(L))$ is multiplicative by the following cohomology classes

$$
\begin{aligned}
& h_{i}=\left\{R_{1}^{i}\right\}, \quad g_{i}=\left\{R_{2}^{i} R_{1}^{i}\right\}, \quad k_{i}=\left\{R_{2}^{i} R_{1}^{i+1}\right\}(i \geqslant 0), \\
& l_{1}=\left\{R_{3}^{0} R_{2}^{0} R_{1}^{0}\right\}, \quad l_{2}=\left\{R_{2}^{1} R_{2}^{0} R_{1}^{1}\right\}, \quad l_{3}=\left\{R_{3}^{0} R_{1}^{2} R_{1}^{0}\right\}, \\
& l_{4}=\left\{R_{3}^{0} R_{2}^{1} R_{1}^{2}\right\}, \quad l_{5}=\left\{R_{3}^{1} R_{2}^{1} R_{1}^{1}\right\}, \quad l_{6}=\left\{R_{2}^{2} R_{2}^{1} R_{1}^{2}\right\}, \\
& m_{1}=\left\{R_{3}^{0} R_{2}^{1} R_{2}^{0} R_{1}^{1}\right\}, m_{2}=\left\{R_{4}^{0} R_{3}^{0} R_{2}^{0} R_{1}^{0}\right\}, \\
& m_{3}=\left\{R_{3}^{1} R_{2}^{1} R_{2}^{0} R_{1}^{1}\right\}, m_{4}=\left\{R_{2}^{2} R_{3}^{0} R_{1}^{2} R_{1}^{0}\right\} .
\end{aligned}
$$

Moreover, we have additively

$$
\begin{aligned}
& H^{*, *}(U(L)) \cong\left\{1, l_{4}, h_{3}\right\} \otimes\left\{1, h_{0}, h_{1}, g_{0}, k_{0}, k_{0} h_{0}\right\} \\
& +\left\{h_{2}, h_{2} h_{0}, g_{1}, l_{1}, l_{2}, l_{1} h_{1}, k_{1}, l_{3}, k_{1} h_{1}, l_{1} h_{2}, m_{1}, m_{1} h_{0}, g_{2}, g_{2} h_{0}, l_{5}, m_{2}, m_{3}, l_{6}, m_{4}\right\}
\end{aligned}
$$

and the bidegrees of R_{j}^{i}, b_{j}^{i} are $\left(1,2\left(p^{i+j}-p^{i}\right)\right),\left(2,2\left(p^{i+j-1}-p^{i+1}\right)\right)$, respectively. In the MSS, b_{1}^{0} converges to $b_{0} \in \operatorname{Ext}_{P}^{2, p q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, and the total degree of b_{1}^{0} is $\left|b_{1}^{0}\right|=p q-2$. The generators whose total degrees are less than or equal to $5 p^{2} q+q-12$ in $\left[P\left(b_{j}^{i}\right) \otimes H^{*, *}(U(L))\right]^{s, t}$ and the total degrees $|\lambda| \bmod p q-2$ are listed in Table $6\left(t=1,2,3,4,5, t^{\prime}=1,2,3,4\right)$.

Table 6: The generators λ and total degrees $|\lambda| \bmod p q-2$

λ	$\left(b_{1}^{1}\right)^{t},\left(b_{2}^{0}\right)^{t^{\prime}}$	\otimes	h_{0},	h_{1},	g_{0},	k_{0},	$k_{0} h_{0}$,	h_{2},	$h_{2} h_{0}$,	g_{1},
$\|\lambda\|$	$t q, t^{\prime}(q+2)$	+	$q-1$,	1,	$2 q$,	$q+2$,	$2 q+1$,	$q+1$,	$2 q$,	$q+4$,
l_{1},	l_{2},	$l_{1} h_{1}$,	k_{1},	l_{3},	$k_{1} h_{1}$,	$l_{1} h_{2}$,	m_{1},	$m_{1} h_{0}$		
$4 q+3$,	$2 q+5$,	$4 q+4$,	$2 q+4$,	$4 q+3$,	$2 q+5$,	$5 q+4$,	$4 q+8$,	$5 q+7$		

Let x be a generator of $\operatorname{Ext}_{A}^{s+11,5 p^{2} q+q+s-1}\left(H^{*} V(2), \mathbb{Z}_{p}\right)$, then we have

$$
\left(i_{3}\right)_{*}(x) \in \operatorname{Ext}_{A}^{s+11,5 p^{2} q+q+s-1}\left(H^{*} V(3), \mathbb{Z}_{p}\right)
$$

The total degree of $\left(i_{3}\right)_{*}(x)$ is $5 p^{2} q+q+s-1-(s+11)=5 p^{2} q+q-12 \equiv 6 q-2(\bmod p q-2)$. From the above Table, we know that the generator λ with total degree $\bmod p q-2$ being equal to $6 q-2$ in $\left[P\left(b_{j}^{i}\right) \otimes H^{*, *}(U(L))\right]^{s, t}$ doesn't exist. So, we can get that $\left(i_{3}\right)_{*}(x)=0$. Consider the following exact sequence:

$$
\begin{gathered}
\cdots \xrightarrow{\left(j_{3}\right)_{*}} \operatorname{Ext}_{A}^{s+10,5 p^{2} q+q+s-1-\left(2 p^{3}-1\right)}\left(H^{*} V(2), \mathbb{Z}_{p}\right) \xrightarrow{\left(\alpha_{3}\right)_{*}} \operatorname{Ext}_{A}^{s+11,5 p^{2} q+q+s-1}\left(H^{*} V(2), \mathbb{Z}_{p}\right) \\
\xrightarrow{\left(i_{3}\right)_{*}} \mathrm{Ext}_{A}^{s+11,5 p^{2} q+q+s-1}\left(H^{*} V(3), \mathbb{Z}_{p}\right) \xrightarrow{\left(j_{3}\right)_{*}} \cdots,
\end{gathered}
$$

there exists an element $x_{1} \in \operatorname{Ext}_{A}^{s+10,5 p^{2} q+q+s-1-\left(2 p^{3}-1\right)}\left(H^{*} V(2), \mathbb{Z}_{p}\right)$ satisfying $\left(\alpha_{3}\right)_{*}\left(x_{1}\right)=$ x. The total degree of $\left(i_{3}\right)_{*}\left(x_{1}\right)$ is $5 p^{2} q+q+s-1-\left(2 p^{3}-1\right)-(s+10) \equiv 4 q-6$ $(\bmod p q-2)$. From the above Table, we know that

$$
0=\left(i_{3}\right)_{*}\left(x_{1}\right) \in \operatorname{Ext}_{A}^{s+10,5 p^{2} q+q+s-1-\left(2 p^{3}-1\right)}\left(H^{*} V(3), \mathbb{Z}_{p}\right)
$$

Using the exactness repeatedly, there exists an element $x_{k} \in \mathrm{Ext}_{A}^{s+11-k, 5 p^{2} q+q+s-1-k\left(2 p^{3}-1\right)}$ $\left(H^{*} V(2), \mathbb{Z}_{p}\right)$ satisfying $\left(\alpha_{3}\right)_{*}\left(x_{k}\right)=x_{k-1}$. But the total degree of $\left(i_{3}\right)_{*}\left(x_{k}\right) \bmod p q-2$ is different from that in the above table, so we know that

$$
0=\left(i_{3}\right)_{*}\left(x_{k}\right) \in \operatorname{Ext}_{A}^{s+11-k, 5 p^{2} q+q+s-1-k\left(2 p^{3}-1\right)}\left(H^{*} V(3), \mathbb{Z}_{p}\right)
$$

Let $k=5$, then

$$
x_{5} \in \operatorname{Ext}_{A}^{s+6,5 p^{2} q+q+s-1-5\left(2 p^{3}-1\right)}\left(H^{*} V(2), \mathbb{Z}_{p}\right)=\operatorname{Ext}_{A}^{s+6,-10 p^{2}+q+s+4}\left(H^{*} V(2), \mathbb{Z}_{p}\right)=0
$$

Therefore, we have $x=\underbrace{\left(\alpha_{3}\right)_{*} \cdots\left(\alpha_{3}\right)_{*}}_{5}\left(x_{5}\right)=0$, that is

$$
\operatorname{Ext}_{A}^{s+11,5 p^{2} q+q+s-1}\left(H^{*} V(2), \mathbb{Z}_{p}\right)=0(s \geqslant 2, p \geqslant 11)
$$

Proposition 3.6 Let $r \geqslant 2, p \geqslant 11$, then

$$
\operatorname{Ext}_{A}^{11-r, 5 p^{2} q+q-r+1}\left(H^{*} V(2), \mathbb{Z}_{p}\right)=0
$$

The proposition is evident for $r \geqslant 11$. Thus, we need only to consider the case of $2 \leqslant r<11$.

For any $y \in \operatorname{Ext}_{A}^{11-r, 5 p^{2} q+q-r+1}\left(H^{*} V(2), \mathbb{Z}_{p}\right)$, we can know $0<q-r+1<q$ from $2 \leqslant r<11$. Since $\operatorname{Sdim}\left(\left(i_{3}\right)_{*}(y)\right)=5 p^{2} q+q-r+1=q-r+1 \neq 0(\bmod q)$ and $\operatorname{Ext}_{P}^{s, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0(t \neq 0 \bmod q)$, from Proposition 3.1, we can get that

$$
0=\left(i_{3}\right)_{*}(y) \in \operatorname{Ext}_{A}^{11-r, 5 p^{2} q+q-r+1}\left(H^{*} V(3), \mathbb{Z}_{p}\right)
$$

According to the exactness, there exists an element

$$
y_{1} \in \operatorname{Ext}_{A}^{10-r, 5 p^{2} q+q-r+1-\left(2 p^{3}-1\right)}\left(H^{*} V(2), \mathbb{Z}_{p}\right)
$$

such that $\left(\alpha_{3}\right)_{*}\left(y_{1}\right)=y$, and
$\operatorname{Sdim}\left(\left(i_{3}\right)_{*}\left(y_{1}\right)\right)=5 p^{2} q+q-r+1-\left(2 p^{3}-1\right)=4 p^{2} q-p q-r=q-r \neq 0(\bmod q)$,
so $0=\left(i_{3}\right)_{*}\left(y_{1}\right) \in \operatorname{Ext}_{A}^{10-r, 5 p^{2} q+q-r+1-\left(2 p^{3}-1\right)}\left(H^{*} V(3), \mathbb{Z}_{p}\right)$.
Similarly, there exists an element $y_{k} \in \operatorname{Ext}_{A}^{11-k-r, 5 p^{2} q+q-r+1-k\left(2 p^{3}-1\right)}\left(H^{*} V(2), \mathbb{Z}_{p}\right)$ satisfying $\left(\alpha_{3}\right)_{*}\left(y_{k}\right)=y_{k-1}$, and $\operatorname{Sdim}\left(\left(i_{3}\right)_{*}\left(y_{k}\right)\right) \neq 0(\bmod q)$. Let $k=5$, then

$$
y_{5} \in \operatorname{Ext}_{A}^{6-r, 5 p^{2} q+q-r+1-5\left(2 p^{3}-1\right)}\left(H^{*} V(2), \mathbb{Z}_{p}\right)=\operatorname{Ext}_{A}^{6-r,-10 p^{2}+q-r+6}\left(H^{*} V(2), \mathbb{Z}_{p}\right)=0
$$

Thus, we get that $y=\underbrace{\left(\alpha_{3}\right)_{*} \cdots\left(\alpha_{3}\right)_{*}}_{5}\left(y_{5}\right)=0$, that is

$$
\operatorname{Ext}_{A}^{11-r, 5 p^{2} q+q-r+1}\left(H^{*} V(2), \mathbb{Z}_{p}\right)=0(r \geqslant 2, p \geqslant 11)
$$

The Proof of Theorem 1.2 First, we consider the ASS with E_{2}-term:

$$
\operatorname{Ext}_{A}^{s, t}\left(H^{*} V(2), \mathbb{Z}_{p}\right) \Rightarrow \pi_{t-s} V(2),
$$

and its differential is $d_{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t+r-1}$.
From Proposition 3.5,

$$
E_{2}^{r+11,5 p^{2} q+q+r-1}=\operatorname{Ext}_{A}^{r+11,5 p^{2} q+q+r-1}\left(H^{*} V(2), \mathbb{Z}_{p}\right)
$$

we can get that $E_{r}^{r+11,5 p^{2} q+q+r-1}=0(r \geqslant 2)$. Let $h_{0} b_{1}^{5}$ be the image of $h_{0} b_{1}^{5} \in \operatorname{Ext}_{A}^{11,5 p^{2} q+q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ under the map

$$
\left(i_{2}\right)_{*}\left(i_{1}\right)_{*}\left(i_{0}\right)_{*}: \operatorname{Ext}_{A}^{11,5 p^{2} q+q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \rightarrow \operatorname{Ext}_{A}^{11,5 p^{2} q+q}\left(H^{*} V(2), \mathbb{Z}_{p}\right)
$$

then $d_{r}\left(h_{0} b_{1}^{5}\right) \in E_{r}^{r+11,5 p^{2} q+q+r-1}=0(r \geqslant 2)$. Furthermore, we can get that

$$
h_{0} b_{1}^{5} \in E_{2}^{11,5 p^{2} q+q}=\operatorname{Ext}_{A}^{11,5 p^{2} q+q}\left(H^{*} V(2), \mathbb{Z}_{p}\right)
$$

is a permanent cycle in the ASS. Moreover, from Proposition 3.6,

$$
E_{2}^{11-r, 5 p^{2} q+q-r+1}=\operatorname{Ext}_{A}^{11-r, 5 p^{2} q+q-r+1}\left(H^{*} V(2), \mathbb{Z}_{p}\right)=0(r \geqslant 2)
$$

we have that $E_{r}^{11-r, 5 p^{2} q+q-r+1}=0(r \geqslant 2)$. So, $h_{0} b_{1}^{5}$ is impossible to be the d_{r}-boundary in the ASS, and $h_{0} b_{1}^{5} \in \operatorname{Ext}_{A}^{11,5 p^{2} q+q}\left(H^{*} V(2), \mathbb{Z}_{p}\right)$ converges to a nontrivial element in $\pi_{*} V(2)$.

The Proof of Theorem 1.1 From Theorem 1.2, we know that there exists a nontrivial element f in $\pi_{*} V(2)$, which is represented by $h_{0} b_{1}^{5} \in \operatorname{Ext}_{A}^{11,5 p^{2} q+q}\left(H^{*} V(2), \mathbb{Z}_{p}\right)$, where $h_{0} b_{1}^{5}$ denotes the image of $h_{0} b_{1}^{5} \in \operatorname{Ext}_{A}^{11,5 p^{2} q+q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ under the homomorphism

$$
\left(i_{2}\right)_{*}\left(i_{1}\right)_{*}\left(i_{0}\right)_{*}: \operatorname{Ext}_{A}^{11,5 p^{2} q+q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \rightarrow \operatorname{Ext}_{A}^{11,5 p^{2} q+q}\left(H^{*} V(2), \mathbb{Z}_{p}\right)
$$

Consider the following composition of maps

$$
\tilde{f}: \Sigma^{5 p^{2} q+q-11} S \xrightarrow{f} V(2) \xrightarrow{\gamma^{t}} \Sigma^{t\left(p^{2}+p+1\right) q} V(2) \xrightarrow{j_{0} j_{1} j_{2}} \Sigma^{-t\left(p^{2}+p+1\right) q+(p+1) q+q+3} S
$$

the composed map $\tilde{f}=j_{0} j_{1} j_{2} \gamma^{t} f$ is represented by

$$
\left(j_{0} j_{1} j_{2}\right)_{*}\left(\gamma^{t}\right)_{*}\left(i_{2} i_{1} i_{0}\right)_{*}\left(h_{0} b_{1}^{5}\right) \in \operatorname{Ext}_{A}^{11+t,(5+t) p^{2} q+(t-1)(p+1) q+t-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

From [3], we have known that $\gamma_{t}=j_{0} j_{1} j_{2} \in \pi_{*}(S)$ is represented by $\tilde{\gamma}_{t}$ in the ASS. By the knowledge of Yoneda products, we know that the following composition:

$$
\begin{aligned}
\operatorname{Ext}_{A}^{0,0}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \xrightarrow{\left(i_{2} i_{1} i_{0}\right)_{*}} & \operatorname{Ext}_{A}^{0,0}\left(H^{*} V(2), \mathbb{Z}_{p}\right) \xrightarrow{\left(\gamma^{t}\right)_{*}} \operatorname{Ext}_{A}^{t, t\left(p^{2}+p+1\right) q+t}\left(H^{*} V(2), \mathbb{Z}_{p}\right) \\
& \xrightarrow{\left(j_{0} j_{1} j_{2}\right)_{*}} \operatorname{Ext}_{A}^{t, t p^{2} q+(t-1) p q+(t-2) q+t-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
\end{aligned}
$$

is a homomorphism which is multiplied by $\tilde{\gamma_{t}}$. Hence, $\tilde{f} \in \pi_{*}(S)$ is represented by

$$
\tilde{\gamma}_{t} h_{0} b_{1}^{5} \in \operatorname{Ext}_{A}^{11+t,(5+t) p^{2} q+(t-1)(p+1) q+t-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

in the ASS.
Moreover, from the Proposition 3.4 we know that $\tilde{\gamma}_{t} h_{0} b_{1}^{5}$ can't be hit by the differentials in the ASS, then we get that $\tilde{\gamma}_{t} h_{0} b_{1}^{5}$ converges to a nontrivial element \tilde{f} in $\pi_{*}(S)$.

References

[1] Liulevicius A. The factorization of cyclic reduced powers by secondary cohomology operations[M]. Providence: AMS, 1962.
[2] Aikawa T. 3-Dimensional cohomology of the mod p steenrod algebra[J]. Math. Scand., 1980, 1(47): 91-115.
[3] Wang Xiangjun, Zheng Qibing. The convergence of ${\tilde{\alpha_{s}}}^{(n)} h_{0} b_{k}[J]$. Sci. China Math., 1998, 41(6): 622-628.
[4] Toda H. On spectra realizing exterior part of the Steenrod algebra[J]. Topology, 1971, 2(10): 53-65.
[5] Cohen R L. Odd primary infinite families in the stable homotopy theory [M]. Providence: AMS, 1981.
［6］Lee C．Detection of some elements in the stable homotopy groups of spheres［J］．Math．Z．，1996， 1（222）：231－245．
［7］Wang Jianbo，Hu Linmin．A new family elements in the stable homotopy group of spheres and the convergence of $h_{0} b_{1}^{2}$ in $\pi_{*}(V(1))[J]$ ．Chinese Ann．Math．（Ser．A．），2005，5（26）：375－384．
［8］Ravenel D C．Complex cobordism and stable homotopy groups of spheres［M］．Orlando：Academic Press， 1986.
［9］Wang Yu Yu．The new family elements $\tilde{\gamma}_{t} \tilde{l}_{1} g_{0}$ in the stable homotopy group of spheres［J］．Chinese Ann．Math．（Ser．A．），2007，6（28）：853－862．

球面稳定同伦群中的一族新元素

王玉玉，王俊丽
（天津师范大学数学科学学院，天津 300387）

摘要：本文研究了球面稳定同伦群中元素的非平凡性。利用May谱序列，证明了在Adams谱序列 E_{2} 项中存在乘积元素收敛到球面稳定同伦群的一族阶为 p 的非零元，此非零元具有更高维数的滤子。

关键 词：稳定同伦群；Toda－Smith谱；球谱；Adams谱序列；May谱序列
$\mathrm{MR}(2010)$ 主题分类号：55Q45；55T15；55S10 中图分类号：O189．23

[^0]: ${ }^{*}$ Received date：2013－06－04 Accepted date：2014－02－10
 Foundation item：Supported by the National Natural Science Foundation of China（11301386； 11026197；11226080）；the Outstanding Youth Teacher Foundation of Tianjin（ZX110QN044）and the Doctor Foundation of Tianjin Normal University（52XB1011）．

 Biography：Wang Yuyu（1979－），female，born at Handan，Hebei，associate professor，major in stable homotopy theory．E－mail：wdoubleyu＠aliyun．com．

