THE EQUIVALENCE AND ESTIMATE OF SEVERAL AFFINE INVARIANT DISTANCES BETWEEN CONVEX BODIES

SHAO Yong－chong，GUO Qi
（Department of Mathematics，Suzhou University of Science and Technology，Suzhou 215009，China）

Abstract

In this paper，the equivalences of several different definitions of two types of Banach－Mazur distance between convex bodies are shown respectively，the conditions under which these two types of Banach－Mazur distance coincide are discussed，and the Banach－Mazur distances between polar bodies of special convex bodies are studied as well．The results obtained here will play some role in estimating the best upper bound of Banach－Mazur distances．

Keywords：affine invariant distance；convex body；Banach－Mazur distance；polar set
2010 MR Subject Classification：52A38
Document code：A Article ID：0255－7797（2015）02－0287－07

1 Introduction

Denote by \mathcal{K}^{n} the family of all convex bodies（i．e．the convex sets with nonempty interior）in the Euclidean space \mathbb{R}^{n} ．Other notation are referred to［15］．

Denote by $\mathcal{A} f f\left(\mathbb{R}^{n}\right)\left(\mathrm{GL}\left(\mathbb{R}^{n}\right)\right)$ the family of all affine（linear）maps from \mathbb{R}^{n} to \mathbb{R}^{n} and by aff $\left(\mathbb{R}^{n}\right)$ the family of all affine functionals on \mathbb{R}^{n} ．As a rule，elements of \mathbb{R}^{n} are denoted by lower－case letters，subsets by capitals and real numbers by small Greek letters．Given $C \in \mathcal{K}^{n}$ ，then by λC we mean the homothetic copy of C of ratio λ with the center at the origin o ，and we write $\lambda_{x} C:=\lambda(C-x)+x$ ．

In the well－known paper［9］，John proved that for every centrally symmetric convex body $C \in \mathcal{K}^{n}$ with the origin as its center，there is a unique ellipsoid E（i．e．an affine image of the unit ball in \mathbb{R}^{n} ）such that $E \subset C \subset \sqrt{n} E$ ，which in some sense describes the similarity between C and E ．Later on，it was realized that the John＇s approach provided actually a way describing the differences between convex bodies，therefore，as a consequence， several（similarly，translation or affine invariant）distances between convex bodies，such as the so－called Banach－Mazur distance etc，were introduced and studied（see［1－3，5，8，10－ 14］）．It turns out that these distances defined for convex bodies play some roles in convex geometrical analysis and other related mathematics areas（cf．［4，6，7］）．

[^0]In this article, we discuss some well-known (affine invariant) distances which appear different. Precisely, following distances will be discussed.

Definition 1 For $K, L \in \mathcal{K}^{n}$, four (affine invariant) distances of different forms are defined as follows (see $[4-6,9]$).
i) $d_{1}(K, L):=\inf \left\{\alpha \beta \mid \alpha>0, \beta>0,(1 / \beta) L_{x} \subset u K_{z} \subset \alpha L_{x}\right\}$ where L_{x} denotes $L-x$ and the infimum is taken over all applicable $z, x \in \mathbb{R}^{n}, u \in \mathrm{GL}\left(\mathbb{R}^{n}\right)$;
ii) $d_{2}(K, L):=\inf \left\{\lambda \geq 1 \mid L \subset \mathrm{~T} K \subset \lambda_{x} L\right\}$;
iii) $d_{3}(K, L):=\inf \left\{\lambda \geq 1 \mid \mathrm{T} L \subset K \subset \lambda_{x} \mathrm{~T} L\right\}$;
iv) $d_{4}(K, L):=\inf \left\{\lambda \geq 1 \mid \mathrm{T}_{1} L \subset \mathrm{~T}_{2} K \subset \lambda_{x} \mathrm{~T}_{1} L\right\}$, where the infimum is taken over all applicable $x \in \mathbb{R}^{n}, \mathrm{~T}, \mathrm{~T}_{1}, \mathrm{~T}_{2} \in \mathcal{A} f f\left(\mathbb{R}^{n}\right)$.

The following are some weaker version of the above distances
Definition 2 For $K, L \in \mathcal{K}^{n}$, we define (see [4-6, 9]).
i) $\widetilde{d}_{1}(K, L):=\inf \left\{|\alpha \beta|>0 \mid(1 / \beta) L_{x} \subset u K_{z} \subset \alpha L_{x}\right\}$, where the infimum is taken over all applicable $z, x \in \mathbb{R}^{n}, u \in \operatorname{GL}\left(\mathbb{R}^{n}\right)$;
ii) $\widetilde{d}_{2}(K, L):=\inf \left\{|\lambda| \geq 1 \mid L \subset \mathrm{~T} K \subset \lambda_{x} L\right\}$;
iii) $\widetilde{d}_{3}(K, L):=\inf \left\{|\lambda| \geq 1 \mid \mathrm{T} L \subset K \subset \lambda_{x} \mathrm{~T} L\right\}$;
iv) $\widetilde{d}_{4}(K, L):=\inf \left\{|\lambda| \geq 1 \mid \mathrm{T}_{1} L \subset \mathrm{~T}_{2} K \subset \lambda_{x} \mathrm{~T}_{1} L\right\}$,
where the infimum is taken over all applicable $x \in \mathbb{R}^{n}, \mathrm{~T}, \mathrm{~T}_{1}, \mathrm{~T}_{2} \in \mathcal{A} f f\left(\mathbb{R}^{n}\right)$.
Remark All $d_{i}{ }^{\prime}$ s (resp. \widetilde{d} 's) are called (resp. absolute) Banach-Mazur distance (B-M distance for short) between K, L by different authors respectively, however, as far as we know, there seems no proofs available to show that they are indeed the same.

In next section, we will show that all $d_{i}^{\prime} \mathrm{s}$ (resp. $\left.\widetilde{d}_{i}^{\prime} \mathrm{s}\right)$ are indeed the same. Furthermore, we provide a sufficient condition for K and L under which $d_{i}(K, L)=\widetilde{d}_{i}(K, L)$.

2 The Equivalence of Distances of Different Forms

The first result in this section concerns the equivalence of all d_{i} 's (resp. \tilde{d}_{i} 's).
Theorem 1 For any convex bodies $K, L \in \mathcal{K}^{n}$, we have
i) $d_{1}(K, L)=d_{2}(K, L)=d_{3}(K, L)=d_{4}(K, L)$;
ii) $\widetilde{d}_{1}(K, L)=\widetilde{d}_{2}(K, L)=\widetilde{d}_{3}(K, L)=\widetilde{d}_{4}(K, L)$.

Proof i) First we prove $d_{1}(K, L)=d_{2}(K, L)$. For any λ and affine map $\mathrm{T}=u+x^{*}$ and $x^{*} \in \mathbb{R}^{n}\left(\right.$ where $u \in \operatorname{GL}\left(\mathbb{R}^{n}\right)$) with $L \subset \mathrm{~T} K=u K+x^{*} \subset \lambda_{x} L=\lambda(L-x)+x$, we have

$$
L-x \subset u K+x^{*}-x=u K_{z} \subset \lambda(L-x)
$$

where $z=u^{-1}\left(x-x^{*}\right)$. Thus $d_{1}(K, L) \leq d_{2}(K, L)$ (taking $\beta=1$ and $\alpha=\lambda!$).
Conversely, if $(1 / \beta) L_{x} \subset u K_{z} \subset \alpha L_{x}$, i.e. $L_{x} \subset \beta u K_{z} \subset \alpha \beta L_{x}$ or

$$
L \subset \beta u K_{z}+x \subset \alpha \beta(L-x)+x,
$$

then writing $\mathrm{T}:=\beta u-\beta u(z)+x$ and $\lambda:=\alpha \beta$, we get $L \subset \mathrm{~T} K \subset \lambda_{x} L$, which clearly leads to $d_{2}(K, L) \leq d_{1}(K, L)$. So $d_{1}(K, L)=d_{2}(K, L)$.

Next, we prove $d_{2}(K, L)=d_{4}(K, L)$. It is obvious that $d_{2}(K, L) \geq d_{4}(K, L)$. On the other hand, set $d_{4}(K, L)=d^{*}$, then by the definition of d_{4}, for $\forall \varepsilon>0$, there exist $\mathrm{T}_{1}^{*}, \mathrm{~T}_{2}^{*} \in$ $\mathcal{A} f f\left(\mathbb{R}^{n}\right)$ and $x \in \mathbb{R}^{n}$ such that

$$
\mathrm{T}_{1}^{*} L \subset \mathrm{~T}_{2}^{*} K \subset\left(d^{*}+\varepsilon\right)_{x} \mathrm{~T}_{1}^{*} L
$$

from which we get

$$
d_{2}\left(\mathrm{~T}_{1}^{*} L, K\right)=\inf \left\{\lambda \geq 1 \mid \mathrm{T}_{1}^{*} L \subset \mathrm{~T} K \subset \lambda_{x} \mathrm{~T}_{1}^{*} L\right\} \leq d^{*}+\varepsilon
$$

Thus by the affine invariant of d_{2}, we get $d_{2}(K, L)=d_{2}\left(T_{1}^{*} L, K\right) \leq d^{*}+\varepsilon$ which, by the arbitrariness of ε, leads to $d_{2}(K, L) \leq d^{*}=d_{4}(K, L)$. So $d_{2}(K, L)=d_{4}(K, L)$.

The same argument works as well in showing $d_{3}(K, L)=d_{4}(K, L)$.
ii) The proof is similar to that for i).

Remark i) Since all d_{i} 's (resp. \widetilde{d}_{i} 's) are equal, we denote them uniformly by $d_{B M}$ (resp. $\left.\widetilde{d}_{B M}\right)$. It may happen that $d_{B M}(K, L)>\widetilde{d}_{B M}(K, L)$ as shown by the example: in \mathbb{R}^{2}, suppose that K is a regular pentagon and L is a triangle, then it was shown by Lassak in [10] that $d_{2}(K, L)=1+\sqrt{5} / 2 \approx 2.118$ while it was confirmed in [4] that $\widetilde{d}_{2}(K, L) \leq 2$ for all $K, L \in \mathcal{K}^{2}$.
ii) $\sup _{K, L \in \mathcal{K}^{n}} \widetilde{d}_{B M}(K, L)=n$ was confirmed in [4], however it is still a great challenge to find $\sup _{K, L \in \mathcal{K}^{n}} d_{B M}(K, L)$. A lot of efforts has been put on such an estimate, among which it is an applicable approach to find the relation between $d_{B M}$ and $\widetilde{d}_{B M}$. Next theorem provides a sufficient condition for K and L under which $d_{B M}(K, L)=\widetilde{d}_{B M}(K, L)$ holds.

Theorem 2 Let $K, L \in \mathcal{K}^{n}$. Then $d_{B M}(K, L)=\widetilde{d}_{B M}(K, L)$ if one of K, L is centrally symmetric.

In order to prove Theorem 2, we need the following lemma.
Lemma 1 Let $K, L \in \mathcal{K}^{n}$. Then there are $\alpha, \beta \in \mathbb{R} \backslash\{0\}, x, z \in \mathbb{R}^{n}$ and $u \in \operatorname{GL}\left(\mathbb{R}^{n}\right)$ such that $(1 / \beta) L_{x} \subset u K_{z} \subset \alpha L_{x}$ iff there exist $x_{1}, z_{1} \in \mathbb{R}^{n}$ such that

$$
(1 / \beta) L_{x_{1}} \subset u K_{z_{1}} \subset \alpha L
$$

Proof If $(1 / \beta) L_{x} \subset u K_{z} \subset \alpha L_{x}$, then $(1 / \beta) L_{x}+\alpha x \subset u K_{z}+\alpha x \subset \alpha L$, i.e.,

$$
(1 / \beta) L_{(1-\alpha \beta) x} \subset u K_{z-u^{-1}(\alpha x)} \subset \alpha L
$$

Now the proof is done by taking $x_{1}=(1-\alpha \beta) x$ and $z_{1}=z-u^{-1}(\alpha x)$.
Conversely, suppose $(1 / \beta) L_{x_{1}} \subset u K_{z_{1}} \subset \alpha L$. If $\alpha \beta=1$, then $L_{x_{1}} \subset \beta u K_{z_{1}} \subset \alpha \beta L=L$ which implies obviously $x_{1}=o$. Thus, we take $x=o$ and $z=z_{1}$. If $\alpha \beta \neq 1$, it is easy to check that $(1 / \beta) L_{x} \subset u K_{z} \subset \alpha L_{x}$, where $x=(1 /(1-\alpha \beta)) x_{1}$ and $z=z_{1}+u^{-1}\left((\alpha /(1-\alpha \beta)) x_{1}\right)$.

Remark By similar arguments to that for Lemma 1, we can show that

$$
\begin{aligned}
& d_{B M}(K, L)=\inf \left\{\alpha \beta \mid \alpha>0, \beta>0,(1 / \beta) L_{x} \subset u K_{z} \subset \alpha L_{y}\right\} \\
& \widetilde{d}_{B M}(K, L)=\inf \left\{|\alpha \beta|>0 \mid(1 / \beta) L_{x} \subset u K_{z} \subset \alpha L_{y}\right\}
\end{aligned}
$$

which are actually the original definitions.
Proof of Theorem 2 Clearly we need only to show the equality for d_{1}. By definition, it is obvious that $d_{1}(K, L) \geq \widetilde{d}_{1}(K, L)$.

Now, without loss of generality, suppose that L is centrally symmetric with the origin as its center. It is a routine by a compactness argument to show that there are $\alpha^{*}, \beta^{*} \in \mathbb{R} \backslash\{0\}$, $x, z \in \mathbb{R}^{n}$ and $u \in \mathrm{GL}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
\left(1 / \beta^{*}\right) L_{x} \subset u K_{z} \subset \alpha^{*} L_{x} \text { and } \widetilde{d}_{1}(K, L)=\left|\alpha^{*} \beta^{*}\right| \tag{*}
\end{equation*}
$$

If $\alpha^{*}>0, \beta^{*}>0$, then by definition we have clearly $d_{1}(K, L) \leq \alpha^{*} \beta^{*}=\widetilde{d}_{1}(K, L)$. If $\alpha^{*}<0, \beta^{*}<0$, then by $\left(^{*}\right)$ we have also

$$
\left(1 /\left(-\beta^{*}\right)\right) L_{x} \subset(-u) K_{z} \subset\left(-\alpha^{*}\right) L_{x}
$$

which leads to $d_{1}(K, L) \leq\left(-\alpha^{*}\right)\left(-\beta^{*}\right)=\widetilde{d}_{1}(K, L)$ as well.
If $\alpha^{*}<0$ and $\beta^{*}>0$, by Lemma 1 , there exist $x_{1}, z_{1} \in \mathbb{R}^{n}$ such that

$$
\left(1 / \beta^{*}\right) L_{x_{1}} \subset u K_{z_{1}} \subset \alpha^{*} L=\alpha^{*}(-L)=\left(-\alpha^{*}\right) L
$$

Thus, by Lemma 1 again, we get $d_{1}(K, L) \leq\left(-\alpha^{*}\right) \beta^{*}=\widetilde{d}_{1}(K, L)$. Hence $d_{1}(K, L)=$ $\widetilde{d}_{1}(K, L)$.

Remark A question related to Theorem 2 is: if $d_{B M}(K, L)=\widetilde{d}_{B M}(K, L)$ holds for all $L \in \mathcal{K}^{n}$, must K be centrally symmetric?

3 Banach-Mazur Distance Between Polar Bodies

As mentioned above, it is a long-standing open problem to get $\sup _{K, L \in \mathcal{K}^{n}} d_{B M}(K, L)$. There are many different approaches to tackling with such a problem, among which, besides relating $d_{B M}$ to $\widetilde{d}_{B M}$, another method is to relate the B-M distance between convex bodies to that between their polar bodies (cf. [14]). In this section, we discuss the B-M distances between polar bodies.

For $K \in \mathcal{K}^{n}$ and $x \in \operatorname{int} K$, the interior of K, we write

$$
K^{x}:=\left\{z \in \mathbb{R}^{n} \mid\langle z, y-x\rangle \leq 1 \text { for all } y \in K\right\}
$$

called the polar set of K based on x. In particular, if $x=o \in \operatorname{int} K$, we use K^{*} in stead of K^{o}. It is obvious that if $x \in \operatorname{int} K \subset L$, then $K^{x} \supset L^{x}$. It is also easy to check that for any $x \in \operatorname{int} K, o \in \operatorname{int} K^{x}$; and $K^{* *}=K$. Furthermore, K is symmetric (with center at o) iff so is K^{*}.

Proposition 1 Let $K \in \mathcal{K}^{n}$ and $o \in \operatorname{int} K$. Then $(\mathrm{T} K)^{*}=\mathrm{T}^{-\top} K^{*}$ for all invertible $\mathrm{T} \in \mathrm{GL}\left(\mathbb{R}^{n}\right)$, where $\mathrm{T}^{-\top}=\left(\mathrm{T}^{\top}\right)^{-1}$ and T^{\top} denotes the transpose of T . In particular, for $\lambda \neq 0,(\lambda K)^{*}=\frac{1}{\lambda} K^{*}$.

Proof By the definition of polar body,

$$
\begin{aligned}
& (\mathrm{T} K)^{*}=\left\{x \in \mathbb{R}^{n} \mid\langle x, \mathrm{~T} y\rangle \leq 1 \text { for all } y \in K\right\} \\
= & \left\{x \in \mathbb{R}^{n} \mid\left\langle\mathrm{T}^{\top} x, y\right\rangle \leq 1 \text { for all } y \in K\right\} \\
= & \left\{\mathrm{T}^{-\top} z \in \mathbb{R}^{n} \mid\langle z, y\rangle \leq 1 \text { for all } y \in K\right\}=\mathrm{T}^{-\top} K^{*} .
\end{aligned}
$$

The following theorem is natural.
Theorem 3 Let $K, L \in \mathcal{K}^{n}$ be symmetric with the origin o as their centers. Then $d_{B M}(K, L)=d_{B M}\left(K^{*}, L^{*}\right)$.

Proof Suppose $d_{B M}(K, L)=\lambda_{0}$. Then by the definition of $d_{B M}(\cdot, \cdot)$, for any $\varepsilon>0$, there is $\mathrm{T}_{0} \in \mathrm{GL}\left(\mathbb{R}^{n}\right)$ such that $K \subseteq \mathrm{~T}_{0} L \subseteq\left(\lambda_{0}+\varepsilon\right) K$. Thus, by the property of polar bodys and Proposition 1, we have

$$
\begin{aligned}
& {\left[\left(\lambda_{0}+\varepsilon\right) K\right]^{*} \subseteq\left(\mathrm{~T}_{0} L\right)^{*} \subseteq K^{*} } \\
\Leftrightarrow & \frac{1}{\lambda_{0}+\varepsilon} K^{*} \subseteq \mathrm{~T}_{0}^{-\top} L^{*} \subseteq K^{*} \\
\Leftrightarrow & K^{*} \subseteq\left(\lambda_{0}+\varepsilon\right) \mathrm{T}_{0}^{-\top} L^{*} \subseteq\left(\lambda_{0}+\varepsilon\right) K^{*}
\end{aligned}
$$

i.e., $K^{*} \subseteq \mathrm{~T}_{1} L^{*} \subseteq\left(\lambda_{0}+\varepsilon\right) K^{*}$, where $\mathrm{T}_{1}:=\left(\lambda_{0}+\varepsilon\right) \mathrm{T}_{0}^{-\top} \in \operatorname{GL}\left(\mathbb{R}^{n}\right)$, which implies $d_{B M}\left(K^{*}, L^{*}\right) \leq \lambda_{0}+\varepsilon$. So $d_{B M}(K, L) \geq d_{B M}\left(K^{*}, L^{*}\right)$ by the arbitrariness of ε.

Conversely, simply by substituting K with K^{*} in the above argument, we get

$$
d_{B M}\left(K^{*}, L^{*}\right) \geq d_{B M}(K, L)
$$

(using the fact that $K^{* *}=K$). Thus $d_{B M}(K, L)=d_{B M}\left(K^{*}, L^{*}\right)$.
For non-symmetric cases, the situation becomes more complicated and of course more interesting. In general, given convex bodies $K, L \in \mathcal{K}^{n}$, we don't know if there exist $x \in$ $\operatorname{int} K, y \in \operatorname{int} L$ such that $d_{B M}(K, L)=d_{B M}\left(K^{x}, L^{y}\right)$. In the following, we discuss in \mathcal{K}^{2} a special case only where one of K and L is a triangle and the other is a quadrangle (observe that the polar sets of a triangle are still triangle).

Theorem 4 Let Q be a quadrangle. Then $d_{B M}(\triangle, Q)=d_{B M}\left(\triangle, Q^{x_{0}}\right)$ for some $x_{0} \in$ $\operatorname{int} Q$.

To prove Theorem 4, we need the following lemmas.
Lemma 2 Let Q be a quadrangle, then there exists $\bar{x} \in \operatorname{int} Q$ such that $Q^{\bar{x}}$ is a parallelogram.

Proof Let $e_{i}(i=1, \cdots, 4)$ be the vertices of Q (indexed anti-o'clockwise) and \bar{x} be the intersect point of diagonals of Q. Then we have first

$$
Q^{\bar{x}}=\left\{y \mid\left\langle y, e_{i}-\bar{x}\right\rangle \leq 1, i=1, \cdots, 4\right\}=: Q_{1}
$$

In fact, $Q^{\bar{x}} \subseteq Q_{1}$ obviously. Conversely, observing that for any $z \in Q, z=\sum_{i=1}^{4} \lambda_{i} e_{i}$ for some
$\lambda_{i} \geq 0$ with $\sum_{i=1}^{4} \lambda_{i}=1$, we have then, for any

$$
y \in Q_{1},\langle y, z-\bar{x}\rangle=\left\langle y, \sum_{i=1}^{4} \lambda_{i} e_{i}-\bar{x}\right\rangle=\sum_{i=1}^{4} \lambda_{i}\left\langle y, e_{i}-\bar{x}\right\rangle \leq 1,
$$

that is, $y \in Q^{\bar{x}}$. Now, since $\left(e_{1}-\bar{x}\right) \|\left(e_{3}-\bar{x}\right)$ and $\left(e_{2}-\bar{x}\right) \|\left(e_{4}-\bar{x}\right)$, It is easy to see Q_{1} is a parallelogram. The proof is completed.

Lemma 3 Let P be an n-polygon and P^{\prime} an m-polygon, and e_{i}, e_{j}^{\prime} the vertices of P and P^{\prime} respectively, $1 \leq i \leq n, 1 \leq j \leq m$. Then

$$
\delta\left(P, P^{\prime}\right) \leq \max \left\{\max _{1 \leq i \leq n} \min _{1 \leq j \leq m}\left|e_{i}-e_{j}^{\prime}\right|, \max _{1 \leq j \leq m} \min _{1 \leq i \leq n}\left|e_{i}-e_{j}^{\prime}\right|\right\}
$$

where $\delta(\cdot, \cdot)$ denotes the Hausdorff metric.
The proof is straightforward.
Lemma 4 Let $x_{n}, x \in \operatorname{int} Q$ and $x_{n} \rightarrow x$, then $Q^{x_{n}} \rightarrow Q^{x}$ with respect to the Hausdorff metric.

Proof Write $F_{i}^{\prime}:=\left\{y \mid\left\langle y, e_{i}-x_{n}\right\rangle=1\right\}, F_{i}^{\prime \prime}:=\left\{y \mid\left\langle y, e_{i}-x\right\rangle=1\right\}$ and $e_{i}^{\prime}=$ $F_{i}^{\prime} \cap F_{i+1}^{\prime}, e_{i}^{\prime \prime}=F_{i}^{\prime \prime} \cap F_{i+1}^{\prime \prime}, i=1, \cdots, 4$ (if $i=4$, then $i+1:=1$), then $e_{i}^{\prime}, e_{i}^{\prime \prime}$ are the vertices of $Q^{x_{n}}$ and Q^{x} respectively. It is easy to show that $\left|e_{i}^{\prime}-e_{i}^{\prime \prime}\right| \rightarrow 0$ as $x_{n} \rightarrow x$. So, $\delta\left(Q^{x_{n}}, Q^{x}\right) \leq \max _{1 \leq i \leq 4}\left|e_{i}^{\prime}-e_{i}^{\prime \prime}\right| \rightarrow 0$ as $x_{n} \rightarrow x$.

Remark With exactly the same argument, one can show that Lemma 4 holds for all polygons, then further, by the density of polygons in \mathcal{K}^{2}, holds for all convex bodies in \mathcal{K}^{2}.

By Lemma 4 (and Remark after Lemma 4) and the continuity of the B-M distance with respect to the Hausdorff metric, we have the following corollary.

Corollary 1 Given $K, L \in \mathcal{K}^{2}$, the function $p(x):=d_{B M}\left(K, L^{x}\right)$ is continuous in $\operatorname{int} L$.
Proof of Theorem 4 Notice that, for any quadrangle $Q, 1<d_{B M}(\triangle, Q) \leq 2$ (assume that $\left[e_{1}, e_{3}\right]$ is a diagonal of Q, then one of e_{2}, e_{4}, say e_{2}, is further from $\left[e_{1}, e_{3}\right]$ than e_{4}. Thus, it is easy to see that $\Delta_{1} \subset Q \subset 2_{e_{2}} \Delta_{1}$, where $\left.\Delta_{1}=\operatorname{cov}\left\{e_{1}, e_{2}, e_{3}\right\}\right)$. Hence $p(\operatorname{int} Q)=$ $(1,2]$ by the fact (see [5]) that $d_{B M}\left(\triangle, Q^{\bar{x}}\right)=2$ (where $Q^{\bar{x}}$ is as in Lemma 2) and that $d_{B M}\left(\triangle, Q^{x}\right) \rightarrow 1$ as $x \rightarrow \partial Q$, the boundary of Q.

Now by the continuity of $d_{B M}\left(\triangle, Q^{x}\right)$ as shown in Corollary 1 , there is some $x_{0} \in \operatorname{int} Q$ such that $d_{B M}(\triangle, Q)=d_{B M}\left(\triangle, Q^{x_{0}}\right)$.

References

[1] Ball K. An elementary introdution to modern convex geometry[J]. Flavors of Geometry, Mathematical Sciences Research Institute Publications, 1997, 31: 1-58.
[2] Gluskin E D. Diameter of the Minkowski compactum is approximately equal to $n[J]$. Functional Analysis and Its Applications, 1981, 15(1): 57-58.
[3] Gluskin E D. Norms of random matrices and diameters of finite-dimensional sets[J]. Mat. Sbornik, 1983, 120(2): 180-189.
［4］Gordon Y，Litvak A E，Meyer M，Pajor A．John＇s decomposition in the general case and applica－ tions［J］．Journal of Differential Geometry，2004，68（1）：99－119．
［5］Grünbaum B．Measures of symmetry of convex sets［J］．Convexity，Proceedings of Symposia in Pure Mathematics，1963，7：233－270．
［6］Guo Qi，Kaijser S．On the distance between convex bodies［J］．Northeast．Math．J．1999，15（3）： 323－331．
［7］Guo Qi，Kaijser S．Approximations of convex bodies by convex bodies［J］．Northeasten Math．J， 2003，19（4）：323－332．
［8］Jiménez C H，Naszódi M．On the extremal distance between two convex bodies［J］．Israel Journal of Mathematics，2011，183（1）：103－115．
［9］John F．Extremum problems with inequalities as subsidiary conditions［J］．Courant Anniversary Volume，1948，187－204．
［10］Lassk M．Approximation of convex bodies by centrally symmetric bodies［J］．Geometriae Dedicata， 1998，72（1）：63－68．
［11］Makeev V V．Estimating the diameter of the space of plane convex figures with respect to an affine－invareant metric［J］．Journal of Mathematical Sciences，2007，140（4）：529－534．
［12］Novotny P．Approximation of convex bodies by simplices［J］．Geom．Dedicata，1994，50（1）：53－55．
［13］Palmon O．The only convex body with extremal distance from the ball is the simplex［J］．Israel Journal of Mathematics，1992，80（3）：337－349．
［14］Rudelson M．Distance between non－symmetric convex bodies and the $M M^{*}$－estimate［J］．Positivity， 2000，4（2）：161－178．
［15］Schneider R．Convex bodies：The Brunn－Minkowski theory［M］．Cambridge：Cambridge Univ．Press， 1993.

凸体间几种仿射不变距离的等价性与估计

邵永冲，国 起
（苏州科技学院数学系，江苏苏州 215009）

摘要：本文研究了凸体间（绝对）Banach－Mazur距离各种不同的定义，证明了它们的等价性；给出了Banach－Mazur距离与绝对Banach－Mazur距离相等的一个充分条件；最后研究了凸体极体间的Banach－ Mazur距离，并对特殊凸体对证明了其Banach－Mazur距离与其某一对极体间的Banach－Mazur距离相等．文中结果为Banach－Mazur距离最佳上界的估计提供了进一步研究的基础。

关键词：仿射不变距离；凸体；Banach－Mazur距离；极体
$\operatorname{MR}(2010)$ 主题分类号：52A38 中图分类号：O184；O177．99

[^0]: ＊Received date：2012－10－30 Accepted date：2013－04－11
 Foundation item：Supported partially by National Natural Science Foundation of China （11271282）；partially by the GIF of Jiangsu（CXLX11＿0960）．

 Biography：Shao Yongchong（1986－），male，born at Lankao，Henan，master，major in convex geometric analysis．

 Corresponding author：Guo Qi．

