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Abstract: This paper investigates the generalization performance of least square regression
with functional data and ¢;-regularizer. The estimate of learning rate is established by Rademacher
average technique. The theoretical result is a natural extension for coefficient-based regularized
regression when input space is a subset of infinite-dimensional Euclidean space.

Keywords: regression; functional data; ¢;-regularizer; Rademacher average

2010 MR Subject Classification: 62J02

Document code: A Article ID: 0255-7797(2015)02-0281-06

1 Introduction

Let (X,d) be a metric space and Y C [—M, M] for some M > 0. The relation between
the input x € X and the output y € Y is described by a fixed (but unknown) distribution
pon Z:=X x ). Based on a set of samples z := {z;}!", = {(z;,y;)}}"; € 2™, the goal of
least square regression is to pick a function f : X — ) such that the expected risk

E(f) = /Z ((x) — y)*dp

as small as possible. The function that minimizes the risk is called the regression function.

It is given by
o) = [ violalo), o .
y

where p(-|x) is the conditional probability measure at x induced by p.

In this paper we consider kernel-based least square regression with ¢;-regularizer. Recall
that K : X x X — R is a Mercer kernel if it is a continuous, symmetric, and positive semi-
definite. The candidate reproducing kernel Hilbert space (RKHS) Hy associated with a
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Mercer kernel K is defined as the closure of the linear span of the set of functions {K, :=
K(z,-) : € X}, equipped with the inner product (-,-)x defined by (K,, K,)x = K(z,y)
(see [1]). The reproducing property is given by (K, f)x = f(z) for all x € X and f € H.
The data dependent hypothesis space (related with K and z) is defined by

m

Hi . = {Eaini o, eR=1,--- ,m}.
i=1

The regression algorithm with ¢;-regularizer is given as

fu=arg min {&(£)+ 2001}, ()

fGHK,Z

where
&) = o> (i )

A = A(m) > 0 is a regularization parameter, and

m

Qz(f):inf{Z|ai|:f: Y aKm}
=1

i=1

The coefficient-based framework (1.1) often leads to sparsity of the regression coefficient
{a;} with properly chosen regularization parameter A [10]. There are some error analysis of
(1.1) based on capacity estimate with covering numbers in [7, 9, 11]. As illustrated in [6], the
covering number usually depends on the dimension of the input data. However, in some real
word applications, input data items are in the form of random functions and the regression
function takes values in an infinite-dimensional separable Hilbert space [3, 4, 8, 12]. To fill the
theoretical gap for functional data, we present our analysis by measuring the complexity of
hypothesis space with Rademacher average. Satisfactory estimate of learning rate is derived

under weaker conditions on X and p than [9, 11].

2 Error Decomposition and Preliminary Lemmas

Define the data independent regularization function
o= axg min {E(F) +nllf % }, (2.1)

where n = n(m) > 0 is another regularization parameter.
The following error decomposition scheme can be founded in [7, 10].

Proposition 2.1 Based on the definitions of f, and f,, we have

E(f2) = E(fp) < E(f2) = E(f,) + A2 (f2) < S(2,1) + H(z,1) + D(n), (2.2)
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where

S(z,n) = {&(f2) = &(f2)} +{&(f) — E(fa)},
77) = {Ez(fz>+>‘9z(fz)}_{Sz(fn)—f—n”fﬂnﬁ(}v
D) = &(fy) =€) + Al fallk-

Here, S(z,n) is called sample error, H(z, n) is called hypothesis error, and D(n) is called
approximation error. The bounding technique for sample error S(T, \) relies on the com-
plexity measure of hypothesis function space Hx ,. To derive a dimensional-free estimate,
we introduce Rademacher complexity (see [2]) as the measure of capacity.

Definition 2.1 Suppose that zi,--- ,z,, are independent samples selected according
to a distribution. Let F be a class of real-valued functions defined on X. The empirical

Rademacher average of F is defined by

m

7A€m(‘7-') = Eg{ sup iZ(f,'f(xi)

m
rer 4

B PR 7$77L}’

where 01, - , 0, are independent uniform {41}-valued random variables. The Rademacher
complexity of F is Ry (F) = ERp(F).

We introduce McDiarmid’s inequality and some properties of Rademacher complexity
(see [2]) which are used in the sample error estimation.

Lemma 2.1 Let x4, - ,z,, be independent random variables taking values in a set A,
and assume that f: A™ — R satisfies

sup

’
L1y Tm, Ty

f('rly"' 7:Em) _f(xla"' 7Ii—17$;75€i+1’"' amm)‘ S C;

for every 1 <1i < m. Then, for every t > 0,

P{f(xl,'-' ) — Ef(zy, - am) > t} < exp{ ;%2 }

Lemma 2.2 Let G, G1, G be classes of real functions. Then

(1) Rm(I9]) < Rm(G), where |G| = {|f| : f € G}.

(2) Rin(G1 @ Ga2) < Rn(G1) + Rin(Gz), where G1 @ Go = {g1 + g2 : (91,92) € G1 X Ga}.

(3) If ¢ : R — R is Lipschitz with constant L, and satisfies ¢(0) = 0, then R,,(|¢poG|) <
2L4R.,.(G).

3 Error Analysis

To derive the upper bound of sample error, we establish the concentration estimation
of £(f) — &,(f) based on Rademacher average.
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Proposition 3.1 Let k := sup, .y /K (z,2) and denote F, = {f € Hx : ||f||lx < r}.
Then, with confidence at least 1 — §, there holds

E(f)—Sz(f)‘§<(M+m)m+M 2In(4/0) + (M + kr)?y/In 2/5)

m\»—A

feFr,

Proof For each f € F,, we have ||f]lc < | fllx < rr and £(f(x),y) := (y — f(x))?

(M + kr)?. Let 2z’ be the same copy of z with k-th sample replaced by sample (x},y;). Then

M + kr)?
sup [£(7) ~ &) ~ sup [£0) — & ()] < sup |ea() — )] < LI
fEF, fEF, fEF, m
McDiarmid’s inequality implies that with probability at least 1 — /2,
In(2/6
sup [£(f) ~ £(1)] < B sup [E(F) ~ E()] + (M + )2y 2t (3.1)
feFr feF, m

Denote ¢(f(z)) = (y — f(x))? — y*>. From Hoeffding inequality, we have with confidence
1-4/2,

2In(4/6
E sup [£(/) — &) < E sup | Eo(f(2) — - Zas Fle)| + oy ZEYD (g9
fEF, fEF, m
By the standard symmerization arguments [2] and Lemma 2,
E sup |Eo(f - — o(f(xy) ‘
sup Z
< o p(f(x; )§4M—l—m“ oi f(x;)
aup [ St st < 3
< 4(M + m“) m(]—}). (3.3)
Based on the reproducing property of f € F,., we have
1 m
Rmf?“ = ( ) K ‘ PR m)< EEO’( ZK : P m)
(F) Séljg Z oilf, T Tm) <7 - Z o T T
T 3 r
< mEE,(Zlmog (i, 5) txy, -, m) SE <ZK T, T; )
0.
TK
< —. 3.4
< = (3.4)

By combining (3.1)—(3.4), we derive the desired result.
The upper bound of hypothesis error has been well developed in [7].
Proposition 3.2 The hypothesis error H(z,7) satisfies

AM?

H(z,n) <
(z,m) p
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In this paper, we adopt the following condition for approximation error, which has been
extensively used in the literature, see e.g., [4-7, 9, 10].

Definition 3.1 We say the target function f, can be approximated with exponent
0 < 8 <1in Hg if there exists a constant ¢z > 1, such that

D(n) < esn’, ¥ > 0. (3.5)

It is a position to present our main result on learning rate.

Theorem 3.1 Assume that f, can be approximated with exponent 3 in Hg. Choose
A = m 5, Then, for any 0 < § < 1, there exists a constant C' independent of m,§ such
that

E(f.) — E(f,) < C/In(1/8)m 5+

holds with confidence 1 — 4.
Proof By the definitions of f, and D(n), we get || f,||x < \/@. Meanwhile, by the
definition of f,, we get || f.||x < k% (fz) < kMA~!. Then, based on Propositions 2.1, 3.1,

3.2, we have with confidence 1 — 6,

D) yyop=t . M by 36)

E(fa) — E(f,) < Ci/In(1/6)(M + (kM + p p

where (] is a constant independent of m. Choose n = )\T}rl, (3.6) implies that

[N

~ 1 s-1. B8
E(f2) = E(f,) < Con/m(1/0){ (5 + A5 )m~F + 2577 .
Choose A\ = mff"%%, we derive the desired result.
Remark From the result, we know the learning rate of f, can be close to O(m 1)
when 3 — 1. This polynomial decay is usually fast enough for practical problem where a
set of finite samples is available. It is worth noting that the presented convergence analysis

does not need the assumption on covering numbers and the interior cone condition on X in
[9, 11].
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