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Abstract: This paper investigates the generalization performance of least square regression

with functional data and `1-regularizer. The estimate of learning rate is established by Rademacher

average technique. The theoretical result is a natural extension for coefficient-based regularized

regression when input space is a subset of infinite-dimensional Euclidean space.

Keywords: regression; functional data; `1-regularizer; Rademacher average

2010 MR Subject Classification: 62J02

Document code: A Article ID: 0255-7797(2015)02-0281-06

1 Introduction

Let (X , d) be a metric space and Y ⊂ [−M, M ] for some M > 0. The relation between
the input x ∈ X and the output y ∈ Y is described by a fixed (but unknown) distribution
ρ on Z := X × Y. Based on a set of samples z := {zi}m

i=1 = {(xi, yi)}m
i=1 ∈ Zm, the goal of

least square regression is to pick a function f : X → Y such that the expected risk

E(f) =
∫

Z
(f(x)− y)2dρ

as small as possible. The function that minimizes the risk is called the regression function.
It is given by

fρ(x) =
∫

Y
ydρ(y|x), x ∈ X ,

where ρ(·|x) is the conditional probability measure at x induced by ρ.
In this paper we consider kernel-based least square regression with `1-regularizer. Recall

that K : X × X → R is a Mercer kernel if it is a continuous, symmetric, and positive semi-
definite. The candidate reproducing kernel Hilbert space (RKHS) HK associated with a
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Mercer kernel K is defined as the closure of the linear span of the set of functions {Kx :=
K(x, ·) : x ∈ X}, equipped with the inner product 〈·, ·〉K defined by 〈Kx,Ky〉K = K(x, y)
(see [1]). The reproducing property is given by 〈Kx, f〉K = f(x) for all x ∈ X and f ∈ HK .
The data dependent hypothesis space (related with K and z) is defined by

HK,z =
{ m∑

i=1

αiKxi
: αi ∈ R, i = 1, · · · ,m

}
.

The regression algorithm with `1-regularizer is given as

fz = arg min
f∈HK,z

{
Ez(f) + λΩz(f)

}
, (1.1)

where

Ez(f) =
1
m

m∑
i=1

(yi − f(xi))2,

λ = λ(m) > 0 is a regularization parameter, and

Ωz(f) = inf
{ m∑

i=1

|αi| : f =
m∑

i=1

αiKxi

}
.

The coefficient-based framework (1.1) often leads to sparsity of the regression coefficient
{αi} with properly chosen regularization parameter λ [10]. There are some error analysis of
(1.1) based on capacity estimate with covering numbers in [7, 9, 11]. As illustrated in [6], the
covering number usually depends on the dimension of the input data. However, in some real
word applications, input data items are in the form of random functions and the regression
function takes values in an infinite-dimensional separable Hilbert space [3, 4, 8, 12]. To fill the
theoretical gap for functional data, we present our analysis by measuring the complexity of
hypothesis space with Rademacher average. Satisfactory estimate of learning rate is derived
under weaker conditions on X and ρ than [9, 11].

2 Error Decomposition and Preliminary Lemmas

Define the data independent regularization function

fη := arg min
f∈HK

{
E(f) + η‖f‖2

K

}
, (2.1)

where η = η(m) > 0 is another regularization parameter.
The following error decomposition scheme can be founded in [7, 10].
Proposition 2.1 Based on the definitions of fz and fη, we have

E(fz)− E(fρ) ≤ E(fz)− E(fρ) + λΩz(fz) ≤ S(z, η) +H(z, η) +D(η), (2.2)
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where

S(z, η) = {E(fz)− Ez(fz)}+ {Ez(fη)− E(fη)},
H(z, η) = {Ez(fz) + λΩz(fz)} − {Ez(fη) + η‖fη‖2

K},
D(η) = E(fη)− E(fρ) + λ‖fη‖2

K .

Here, S(z, η) is called sample error, H(z, η) is called hypothesis error, and D(η) is called
approximation error. The bounding technique for sample error S(T, λ) relies on the com-
plexity measure of hypothesis function space HK,z. To derive a dimensional-free estimate,
we introduce Rademacher complexity (see [2]) as the measure of capacity.

Definition 2.1 Suppose that x1, · · · , xm are independent samples selected according
to a distribution. Let F be a class of real-valued functions defined on X . The empirical
Rademacher average of F is defined by

R̂m(F) = Eσ

{
sup
f∈F

∣∣∣ 1
m

m∑
i=1

σif(xi)
∣∣∣ : x1, · · · , xm

}
,

where σ1, · · · , σm are independent uniform {±1}-valued random variables. The Rademacher
complexity of F is Rm(F) = ER̂m(F).

We introduce McDiarmid’s inequality and some properties of Rademacher complexity
(see [2]) which are used in the sample error estimation.

Lemma 2.1 Let x1, · · · , xm be independent random variables taking values in a set A,
and assume that f : Am → R satisfies

sup
x1,··· ,xm,x′i

∣∣∣f(x1, · · · , xm)− f(x1, · · · , xi−1, x
′
i, xi+1, · · · , xm)

∣∣∣ ≤ ci

for every 1 ≤ i ≤ m. Then, for every t > 0,

P
{

f(x1, · · · , xm)− Ef(x1, · · · , xm) ≥ t
}
≤ exp

{−2t2

m∑
i=1

c2
i

}
.

Lemma 2.2 Let G,G1, G2 be classes of real functions. Then
(1) Rm(|G|) ≤ Rm(G), where |G| = {|f | : f ∈ G}.
(2) Rm(G1 ⊕ G2) ≤ Rm(G1) +Rm(G2), where G1 ⊕ G2 = {g1 + g2 : (g1, g2) ∈ G1 × G2}.
(3) If φ : R→ R is Lipschitz with constant Lφ and satisfies φ(0) = 0, then Rm(|φ◦G|) ≤

2LφRm(G).

3 Error Analysis

To derive the upper bound of sample error, we establish the concentration estimation
of E(f)− Ez(f) based on Rademacher average.
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Proposition 3.1 Let κ := supx∈X
√

K(x, x) and denote Fr = {f ∈ HK : ‖f‖K ≤ r}.
Then, with confidence at least 1− δ, there holds

sup
f∈Fr

∣∣∣E(f)− Ez(f)
∣∣∣ ≤

(
4(M + κr)κr + M

√
2 ln(4/δ) + (M + κr)2

√
ln(2/δ)

)
m− 1

2 .

Proof For each f ∈ Fr, we have ‖f‖∞ ≤ κ‖f‖K ≤ κr and `(f(x), y) := (y − f(x))2 ≤
(M +κr)2. Let z′ be the same copy of z with k-th sample replaced by sample (x′k, y

′
k). Then

∣∣∣ sup
f∈Fr

|E(f)− Ez(f)| − sup
f∈Fr

|E(f)− Ez′(f)|
∣∣∣ ≤ sup

f∈Fr

∣∣∣Ez(f)− Ez′(f)
∣∣∣ ≤ (M + κr)2

m
.

McDiarmid’s inequality implies that with probability at least 1− δ/2,

sup
f∈Fr

|E(f)− Ez(f)| ≤ E sup
f∈Fr

|E(f)− Ez(f)|+ (M + κr)2
√

ln(2/δ)
2m

. (3.1)

Denote φ(f(x)) = (y − f(x))2 − y2. From Hoeffding inequality, we have with confidence
1− δ/2,

E sup
f∈Fr

|E(f)− Ez(f)| ≤ E sup
f∈Fr

∣∣∣Eφ(f(x))− 1
n

n∑
i=1

φ(f(xi))
∣∣∣ + M

√
2 ln(4/δ)

m
. (3.2)

By the standard symmerization arguments [2] and Lemma 2,

E sup
f∈Fr

∣∣∣Eφ(f(x))− 1
m

m∑
i=1

φ(f(xi))
∣∣∣

≤ 2E sup
f∈Fr

∣∣∣ 1
m

m∑
i=1

σiφ(f(xi))
∣∣∣ ≤ 4(M + κr)E sup

f∈Fr

∣∣∣ 1
m

m∑
i=1

σif(xi)
∣∣∣

≤ 4(M + κr)Rm(Fr). (3.3)

Based on the reproducing property of f ∈ Fr, we have

Rm(Fr) = EEσ

(
sup
f∈Fr

∣∣∣ 1
m

m∑
i=1

σi〈f,Kxi
〉
∣∣∣ : x1, · · · , xm

)
≤ rEEσ

(∥∥∥ 1
n

m∑
i=1

σiKxi

∥∥∥ : x1, · · · , xm

)

≤ r

m
EEσ

( m∑
i,j=1

σiσjK(xi, xj) : x1, · · · , xm

) 1
2 ≤ r

m
E
( m∑

i=1

K(xi, xi)
) 1

2

≤ rκ√
m

. (3.4)

By combining (3.1)–(3.4), we derive the desired result.
The upper bound of hypothesis error has been well developed in [7].
Proposition 3.2 The hypothesis error H(z, η) satisfies

H(z, η) ≤ λM2

η
.
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In this paper, we adopt the following condition for approximation error, which has been
extensively used in the literature, see e.g., [4–7, 9, 10].

Definition 3.1 We say the target function fη can be approximated with exponent
0 < β ≤ 1 in HK if there exists a constant cβ ≥ 1, such that

D(η) ≤ cβηβ, ∀η > 0. (3.5)

It is a position to present our main result on learning rate.
Theorem 3.1 Assume that fρ can be approximated with exponent β in HK . Choose

λ = m− β+1
6β+4 . Then, for any 0 < δ < 1, there exists a constant C independent of m, δ such

that

E(fz)− E(fρ) ≤ C
√

ln(1/δ)m− β
6β+4

holds with confidence 1− δ.
Proof By the definitions of fη and D(η), we get ‖fη‖K ≤

√
D(η)

η
. Meanwhile, by the

definition of fz, we get ‖fz‖K ≤ κΩz(fz) ≤ κMλ−1. Then, based on Propositions 2.1, 3.1,
3.2, we have with confidence 1− δ,

E(fz)− E(fρ) ≤ C1

√
ln(1/δ)(M + κ(κMλ−1 +

√
D(η)

η
))2m− 1

2 +
λM2

η
+ D(η), (3.6)

where C1 is a constant independent of m. Choose η = λ
1

β+1 , (3.6) implies that

E(fz)− E(fρ) ≤ C̃1

√
ln(1/δ)

{
(

1
λ2

+ λ
β−1
β+1 )m− 1

2 + λ
β

β+1

}
.

Choose λ = m− β+1
6β+4 , we derive the desired result.

Remark From the result, we know the learning rate of fz can be close to O(m− 1
10 )

when β → 1. This polynomial decay is usually fast enough for practical problem where a
set of finite samples is available. It is worth noting that the presented convergence analysis
does not need the assumption on covering numbers and the interior cone condition on X in
[9, 11].
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基于函数型数据的系数正则化回归的收敛速度
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摘要: 本文研究了基于函数型输入和`1 -正则化的最小二乘回归问题的推广性能. 利用基

于Rademacher平均的分析技术, 获得了学习速度的估计, 推广了已有的欧式空间有限维输入结果.
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