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Abstract: In this paper, a food chain model with ratio-dependent functional response is

investigated under homogeneous Neumann boundary conditions. Using the energy estimate and

Gagliardo-Nirenberg-type inequalities, the existence and the uniform boundedness of global solu-

tions are proved. Meanwhile, the sufficient condition for global asymptotic stability of the positive

equilibrium point for the model is given by constructing the Lyapunov function.
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1 Introduction

There is growing biological and physiological evidence, see for instance [1] and the
literature cited therein, that in some situations, specially when predators have to search for
food and therefore have to share or compete for food, a more suitable general predator-prey
theory should be based on the so-called ratio-dependent theory, which can be roughly stated
as that the per capita predator growth rate should be a function of the ratio of prey to
predator abundance. This is supported by numerous field and laboratory experiments and
observations, see for instance [5].

The prey-dependent food-chain models were studied in [6, 7, 9, 11, 13, 20], while mathe-
matically interesting, inherit the mechanism that generates the factitious paradox of enrich-
ment and fail to produce the often observed extinction dynamics resulting in the collapse of
the system. Consequently, a ratio-dependent food chain model, which is an ODE system with
three equations whose species are hence assumed to be spatially homogeneous, was proposed
by Hsu, Hwang, and Kuang in [10] to describe the growth of plant, pest, and top predator.
However, it is not enough that populations of species are considered in only time and density.
To make it more realistic, different spatial locations should also be taken into consideration,
which have resulted in reaction-diffusion model with ratio-dependent functional response
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[12, 14]. Despite the fact that much attention has been paid to studies of weakly-coupled
reaction-diffusion system, few has been found on strong-coupled reaction-diffusion system.

This paper discusses the following three questions in the one-dimensional space: the
existence and the uniform boundedness of the global solution to a ratio-dependent food
chain model with self and cross-diffusion, and the global asymptotic stability of the positive
equilibrium point.

Concretely, consider the following problem

ut = (d1u + α11u
2 + α12uv + α13uw)xx + u(1− u− a1v

u + v
), 0 < x < 1, t > 0,

vt = (d2v + α21uv + α22v
2 + α23vw)xx + v(−b1 +

m1u

u + v
− a2w

v + w
), 0 < x < 1, t > 0,

wt = (d3w + α31uw + α32vw + α33w
2)xx + w(−b2 +

m2v

v + w
), 0 < x < 1, t > 0,

ux(x, t) = vx(x, t) = wx(x, t) = 0, x = 0, 1, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, w(x, 0) = w0(x) ≥ 0, 0 < x < 1, (1.1)

where u0, v0, w0 are nonnegative functions which are not identically zero, u, v and w are the
respective population densities of prey, predator, top predator. di, αij(i, j = 1, 2, 3), ai, bi,mi

(i = 1, 2) are positive constants, d1, d2, d3 are the the diffusion rates of u, v, w, respectively.
αii(i = 1, 2, 3) are referred as self-diffusion pressures, and αij(i 6= j, i, j = 1, 2, 3) are cross-
diffusion pressures. For more details on the biological background, see references [8, 15, 16,
17, 18]. ai, bi,mi (i = 1, 2) which can see more explanations for the biological background,
refer to [10, 12, 14]. Furthermore, to avoid the case where predator and top-predator cannot
survive, even when their food is infinitely abundant, we assume that mi > bi, i = 1, 2.

The ODE problem associated with (1.1) was proposed and studied by Hsu, Hwang, and
Kuang in [10], and from [10], system (1.1) has a unique positive equilibrium (ū, v̄, w̄) if and
only if the following are satisfied:

m2 > b2, A > 1, 0 < a1 <
A

A− 1
, (1.2)

where A = m1/(a2(m2 − b2)/m2 + b1), and

ū =
[a1 + A(1− a1)]

A
, v̄ = (A− 1)ū, w̄ =

(m2 − b2)v̄
b2

.

We also note that m2 > b2 and A > 1 imply m1 > b1.
In particular, they obtained the extinction conditions of certain species and discussed

the local asymptotical stability of (ū, v̄, w̄) and various scenarios where distinct solutions can
be attracted to the origin, the pest-free steady state, and the positive steady state (ū, v̄, w̄).
For more detail, we refer the reader to [10]. From their results, the authors pointed out that
this ODE system is very rich in dynamics.

The corresponding weakly coupled reaction-diffusion system (1.1) has received a lot
of attention, see [12, 14]. But up to now, the corresponding researches chiefly concen-
trate on the existence and nonexistence of nonconstant positive steady-state solutions of
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the weakly-coupled reaction-diffusion system (1.1). To the best of our knowledge, when
αij(i 6= j, i, j = 1, 2, 3) is positive, (1.1) is a strongly-coupled reaction-diffusion system
which occurs frequently is biological and it is very difficult to analyze, there are very few
results for the (1.1).

For simplicity, denote ‖·‖W k
p (0,1) by | · |k,p and ‖·‖Lp(0,1) by | · |p. For the time-dependent

solutions of (1.1), the local existence is an immediate consequence of a series of important
papers [2–4] by Amann. Roughly speaking, if u0(x), v0(x), w0(x) in W 1

p (Ω) with p > N, then
(1.1) has a unique nonnegative solution u, v, w ∈ C

(
[0, T ),W 1

p (Ω)
) ⋂

C∞ ((0, T ), C∞(Ω)) ,

where T ∈ (0,∞] is the maximal existence time for the local solution. If the solution (u, v, w)
satisfies the estimates

sup{‖u(·, t)‖W 1
p (Ω), ‖v(·, t)‖W 1

p (Ω), ‖w(·, t)‖W 1
p (Ω) : 0 < t < T} < ∞,

then T = +∞. Moreover, if u0(x), v0(x), w0(x) ∈ W 2
p (Ω), then u, v, w ∈ C

(
[0,∞),W 2

p (Ω)
)
.

Our main results as follows:
Theorem 1 Let u0(x), v0(x), w0(x) ∈ W 2

2 (0, 1), (u, v, w) is the unique nonnegative
solution of system (1.1) in the maximal existence interval [0, T ). Assume that

8α11α21α31 > α21α
2
13 + α2

12α31,

8α12α22α32 > α32α
2
21 + α2

23α12,

8α13α23α33 > α23α
2
31 + α2

32α13. (1.3)

Then there exist t0 > 0 and positive constants M, M ′ which depend only on di, αij(i, j =
1, 2, 3), ai, bi,mi(i = 1, 2) such that

sup{|u(·, t)|1,2, |v(·, t)|1,2, |w(·, t)|1,2 : t ∈ (t0, T )} ≤ M ′, (1.4)

max{u(x, t), v(x, t), w(x, t) : (x, t) ∈ [0, 1]× (t0, T )} ≤ M, (1.5)

and T = +∞. Moreover, in the case that d1, d2, d3 ≥ 1, d2
d1

, d3
d1
∈ [d, d], where d and d are

positive constants, M ′,M depend on d, d but do not on d1, d2, d3.

Theorem 2 Assume that all conditions in Theorem 1 are satisfied and (1.2) holds.
Assume that the following hold :

a1 < 1, a2 + b1 < m1, (1.6)

a1(A− 1)/A < m1K/(a2 + b1), (1.7)

a2b2m1(m2 − b2)(a2 + b1) < b1m2K[m1 − (a2 + b1)][b1m2 + a2(m2 − b2)], (1.8)

4αβūv̄w̄d1d2d3 > M2ū(αα23v̄ + βα32w̄)2(d1 + 2α11M + α12M + α13M)

+αM2v̄(α13ū + βα31w̄)2(d2 + α21M + 2α22M + α23M)

+βM2w̄(α12ū + αα21v̄)2(d3 + α31M + α32M + 2α33M), (1.9)

where α = a1ū
m1v̄

, β = a1a2ū
m1m2w̄

, K = 1
2

{
2− m1

b1
+

√
(2− m1

b1
)2 + 4(1− a1)(m1

b1
− 1)

}
, M is the

positive constant in (1.5). Then the positive equilibrium point (ū, v̄, w̄) is global asymptotic
stable.
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Remark 1 Problem (1.1) has a positive solution implies (1.2) holds. From [14], the
positive equilibrium point (ū, v̄, w̄) of the corresponding weakly coupled reaction-diffusion
system (1.1) is also global asymptotic stable under conditions (1.6)–(1.8) hold.

Remark 2 Problem (1.1) has no non-constant positive steady-state solution if all
conditions of Theorem 2 hold.

2 Global Existence and Uniform Boundedness

In order to establish the uniform W 1
2−estimate of the solution to system (1.1), the

following corollaries to Gagliardo-Nirenberg-type inequality (see [16]) play important roles.
Corollary 1 There exists a positive constant C such that

|u|2 ≤ C(|ux|
1
3
2 |u|

2
3
1 + |u|1), ∀u ∈ W 1

2 (0, 1), (2.1)

|u|4 ≤ C(|ux|
1
2
2 |u|

1
2
1 + |u|1), ∀u ∈ W 1

2 (0, 1), (2.2)

|u| 5
2
≤ C(|ux|

2
5
2 |u|

3
5
1 + |u|1), ∀u ∈ W 1

2 (0, 1), (2.3)

|ux|2 ≤ C(|uxx|
3
5
2 |u|

2
5
1 + |u|1), ∀u ∈ W 2

2 (0, 1). (2.4)

In this section we always denote that C is Sobolev embedding constant or other kind
of absolute constant, Aj , Bj , Cj are the positive constants which depend only on αij(i, j =
1, 2, 3), ai, bi,mi(i = 1, 2) and Kj are positive constants depending on di and αij(i, j =
1, 2, 3), ai, bi,mi(i = 1, 2). When d1, d2, d3 ≥ 1, d1

d2
, d3

d2
∈ [d, d], Lj depend only on d, d but do

not on d1, d2, d3.

Proof of Theorem 1 First, we establish L1-estimates of the solution (u, v, w) of (1.1).
Taking integrations of the first three equations in (1.1) over the domain [0,1], respectively,
and then combining the three integration equalities linearly, we have

d

dt

∫ 1

0

[
m1u + a1v +

a1a2

m2

w

]
dx ≤ −

∫ 1

0

[
b1

a1

(a1v) + b2

(
a1a2

m2

w

)]
dx + m1

∫ 1

0

(u− u2)dx.

Let m1

∫ 1

0
udx−m1

∫ 1

0
u2dx ≤ C1−C2

∫ 1

0
udx, where C2 = min{ b1

a1
, b2}, by Young inequality,

m1(C2 + 1)
∫ 1

0

udx ≤ 1
2ε

(m1(C2 + 1))2 +
ε

2

∫ 1

0

u2dx.

Let ε = 2m1, then C1 = 1
4
m1(C2 + 1)2. Thus

d

dt

∫ 1

0

[
m1u + a1v +

a1a2

m2

w

]
dx ≤ C1 − C2

∫ 1

0

[
m1u + a1v +

a1a2

m2

w

]
dx. (2.5)

Then there exists a positive constant τ0 such that

∫ 1

0

udx,

∫ 1

0

vdx,

∫ 1

0

wdx ≤ M0, t ≥ τ0, (2.6)
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where M0 = 3C1
2C2

max{(a1)−1, (m1)−1, m2
a1a2

}. Moreover, there exists a positive constant M ′
0

which depends on ai, bi,mi(i = 1, 2) and the L1−norm of u0, v0 and w0, such that

∫ 1

0

udx,

∫ 1

0

vdx,

∫ 1

0

wdx ≤ M ′
0, t ≥ 0. (2.6)′

Second, we will obtain L2-estimates of u, v, w. We multiply the first three equations in
(1.1) by u, v, w, respectively, and integrate over [0,1] to have

1
2

d

dt

∫ 1

0

u2dx ≤ −d1

∫ 1

0

u2
xdx−

∫ 1

0

[(2α11u + α12v + α13w)u2
x + α12uuxvx + α13uuxwx]dx

+
∫ 1

0

u2dx,

1
2

d

dt

∫ 1

0

v2dx ≤ −d2

∫ 1

0

v2
xdx−

∫ 1

0

[(α21u + 2α22v + α23w)v2
x + α21vuxvx + α23vvxwx]dx

+m1

∫ 1

0

v2dx,

1
2

d

dt

∫ 1

0

w2dx ≤ −d3

∫ 1

0

w2
xdx−

∫ 1

0

[(α31u + α32v + 2α33w)w2
x + α31wuxwx + α32wvxwx]dx

+m2

∫ 1

0

w2dx.

Let d∗ = min{d1, d2, d3}. We proceed in the following two cases.
(1) t ≥ τ0.

1
2

d

dt

∫ 1

0

(u2 + v2 + w2)dx ≤ −d∗
∫ 1

0

(u2
x + v2

x + w2
x)dx−

∫ 1

0

q(ux, vx, wx)dx

+A

∫ 1

0

(u2 + v2 + w2)dx,

where A = max{1,m1,m2}, and

q(ux, vx, wx) = (2α11u + α12v + α13w)u2
x

+(α21u + 2α22v + α23w)v2
x + (α31u + α32v + 2α33w)w2

x

+(α12u + α21v)uxvx + (α13u + α31w)uxwx + (α23v + α32w)vxwx

is positive semi-definite quadratic form of ux, vx, wx if (1.3) holds. Then

1
2

d

dt

∫ 1

0

(u2 + v2 + w2)dx ≤ −d∗
∫ 1

0

(u2
x + v2

x + w2
x)dx + A

∫ 1

0

(u2 + v2 + w2)dx.(2.7)

Notice by (2.1) and (2.6) that |u|62 ≤ C(|ux|22|u|41 + |u|61) ≤ CM4
0 (|ux|22 + M2

0 ). Therefore

−d∗
∫ 1

0

(u2
x + v2

x + w2
x)dx ≤ 3d∗M2

0 − C3d
∗
[∫ 1

0

(u2 + v2 + w2)dx

]3

. (2.8)



272 Journal of Mathematics Vol. 35

Substituting (2.8) into (2.7), we have

1
2

d

dt

∫ 1

0

(u2 +v2 +w2)dx ≤ −C3d
∗
[∫ 1

0

(u2 + v2 + w2)dx

]3

+A

∫ 1

0

(u2 +v2 +w2)dx+3d∗M2
0 .

(2.9)
This means that there exist positive constants τ1 and M1 depending on di, aij(i, j = 1, 2, 3),
ai, bi,mi(i = 1, 2) such that

∫ 1

0

u2dx,

∫ 1

0

v2dx,

∫ 1

0

w2dx ≤ M1, t ≥ τ1. (2.10)

When d∗ ≥ 1, M1 is independent of d∗ since the zero point of the right-hand side in (2.10)
can be estimated by positive constants independent on d∗

(2) t ≥ 0. Replacing M0 with M ′ and repeating estimates (2.7)–(2.10), one can obtain
a new inequality which is similar to (2.10). The coefficients of this new inequality depend
not only on di, aij(i = 1, 2, 3), ai, bi,mi(i = 1, 2) but also on initial functions u0, v0 and w0.

Then there exists positive constant M ′
1 depending on di, aij(i, j = 1, 2, 3), ai, bi,mi(i = 1, 2)

and the L2-norm of u0, v0, w0 such that
∫ 1

0

u2dx,

∫ 1

0

v2dx,

∫ 1

0

w2dx ≤ M ′
1, t ≥ 0. (2.10)′

For d ≥ 1, M ′
1 is independent of d∗.

Finally, L2-estimates of ux, vx and wx will be obtained. We introduce the scaling that

ũ =
u

d2

, ṽ =
v

d2

, w̃ =
w

d2

, t̃ = d1t, (2.11)

denoting ξ = d2
d1

, η = d3
d1

, and using u, v, w, t instead of ũ, ṽ, w̃, t̃, respectively, then system
(1.1) reduces to

ut = Pxx + uf(u, v, w), 0 < x < 1, t > 0,

vt = Qxx + vg(u, v, w), 0 < x < 1, t > 0,

wt = Rxx + wh(u, v, w), 0 < x < 1, t > 0,

ux(x, t) = vx(x, t) = wx(x, t) = 0, x = 0, 1, t > 0,

u(x, 0) = ũ0(x) ≥ 0, v(x, 0) = ṽ0(x) ≥ 0, w(x, 0) = w̃0(x) ≥ 0, 0 < x < 1, (2.12)

where
P = u + α11ξu

2 + α12ξuv + α13ξuw,

Q = ξ(v + α21uv + α22v
2 + α23vw),

R = ηw + α31ξuw + α32ξvw + α33ξw
2,

f(u, v, w) = d−1
1 (1− d2u− a1v

u+v
),

g(u, v, w) = d−1
1 (−b1 + m1u

u+v
− a2w

v+w
),

h(u, v, w) = d−1
1 (−b2 + m2v

v+w
).
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We still divide the subsequent discuss into two cases.

(1) t ≥ τ∗1 (= d2τ1) (namely, t ≥ τ1 in original scale). It is clearly that

∫ 1

0

udx,

∫ 1

0

vdx,

∫ 1

0

wdx ≤ M0d
−1
2 ,

∫ 1

0

u2dx,

∫ 1

0

v2dx,

∫ 1

0

w2dx ≤ M1d
−2
2 ,

|P |1, |Q|1, |R|1 ≤ A1K1d
−1
2 , (2.13)

where K1 = (1 + ξ + η)M0 + M1ξd
−1
2 . By Young inequality, one can obtain

∫ 1

0

u4dx ≤
(∫ 1

0

u2dx

) 1
3
(∫ 1

0

u5dx

) 2
3

≤ M
1
3
1 d

− 2
3

1

(∫ 1

0

u5dx

) 2
3

,

∫ 1

0

u2v2dx ≤
(∫ 1

0

u2dx

) 1
6
(∫ 1

0

v2dx

) 1
6
(∫ 1

0

u5dx

) 1
3
(∫ 1

0

v5dx

) 1
3

≤ M
1
3
1 d

− 2
3

1

(∫ 1

0

u5dx

) 1
3
(∫ 1

0

v5dx

) 1
3

,

∫ 1

0

u3dx ≤
(∫ 1

0

u2dx

) 2
3
(∫ 1

0

u5dx

) 1
3

≤ M
2
3
1 d

− 4
3

1

(∫ 1

0

u5dx

) 1
3

,

∫ 1

0

uv2dx ≤
(∫ 1

0

u2dx

) 1
2
(∫ 1

0

v2dx

) 1
6
(∫ 1

0

v5dx

) 1
3

≤ M
2
3
1 d

− 4
3

1

(∫ 1

0

v5dx

) 1
3

.(2.14)

Multiply the first three equations in (2.12) by Pt, Qt, Rt, and integrating them over the
domain [0,1], respectively, then adding up the three integration equalities, we have

1
2
ȳ′(t) ≤ −

∫ 1

0

u2
t dx− ξ

∫ 1

0

v2
t dx− η

∫ 1

0

w2
t dx− ξ

∫ 1

0

q(ut, vt, wt)dx

+
∫ 1

0

[(1 + 2α11ξu + α12ξv + α13ξw)uutf + α12ξu
2vtf + α13ξu

2wtf ]dx

+ξ

∫ 1

0

[α21v
2utg + (1 + α21u + 2α22v + α23w)vvtg + α23v

2wtg]dx

+
∫ 1

0

[α31ξw
2uth + α32ξw

2vth + (η + α31ξu + α32ξv + 2α33ξw)wwth]dx,

where ȳ =
∫ 1

0

(P 2
x +Q2

x +R2
x)dx. It is not hard to verify by (1.3) that there exists a positive

constant C4 depending only on αij (i, j = 1, 2, 3), such that

q(ut, vt, wt) ≥ C4(u + v + w)(u2
t + v2

t + w2
t ).
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Thus

1
2
ȳ′(t) ≤ −

∫ 1

0

u2
t dx− ξ

∫ 1

0

v2
t dx− η

∫ 1

0

w2
t dx− C4ξ

∫ 1

0

(u + v + w)(u2
t + v2

t + w2
t )dx

+
∫ 1

0

(1 + 2α11ξu + α12ξv + α13ξw)uutfdx +
∫ 1

0

ξ(1 + α21u + 2α22v + α23w)vtgvdx

+
∫ 1

0

(η + α31ξu + α32ξv + 2α33ξw)wthwdx +
∫ 1

0

α12ξu
2vtfdx +

∫ 1

0

α13ξu
2wtfdx

+
∫ 1

0

α21ξv
2utgdx +

∫ 1

0

α23ξv
2wtgdx +

∫ 1

0

α31ξw
2uthdx +

∫ 1

0

α32ξw
2vthdx. (2.15)

By the estimates (2.13), (2.14), one can obtain the following estimates for the terms on the
right-hand side of (2.15)

−
∫ 1

0

u2
t dx ≤ −1

2

∫ 1

0

P 2
xxdx +

∫ 1

0

u2f2dx,

−ξ

∫ 1

0

v2
t dx ≤ −ξ

2

∫ 1

0

Q2
xxdx + ξ

∫ 1

0

v2g2dx,

−η

∫ 1

0

w2
t dx ≤ −η

2

∫ 1

0

R2
xxdx + η

∫ 1

0

w2h2dx,

∫ 1

0

u2f2dx ≤ d−2
1 (1 + a2

1)
∫ 1

0

u2dx + d−2
1 d2

2

∫ 1

0

u4dx + a1d
−2
1 d2

∫ 1

0

u3dx

≤ (1 + a2
1)d

−2
1 d−2

2 M1 + d
− 8

3
1 d2

2M
1
3
1

(∫ 1

0

u5dx

) 2
3

+ a1d
− 10

3
1 d2M

2
3
1

(∫ 1

0

u5dx

) 1
3

,

ξ

∫ 1

0

v2g2dx ≤
∫ 1

0

ξd−2
1 (b2

1 + a2
2 + m2

1 + a2b1)v2dx ≤ ξM1d
−2
1 d−2

2 (b2
1 + a2

2 + m2
1 + a2b1),

η

∫ 1

0

w2h2dx ≤ d−2
1 (b2

2 + m2
2)η

∫ 1

0

w2dx ≤ ηd−2
1 (b2

2 + m2
2)M1d

−2
2 .

Therefore,

−
∫ 1

0

u2
t dx− ξ

∫ 1

0

v2
t dx− η

∫ 1

0

w2
t dx

≤ −1
2

∫ 1

0

P 2
xxdx− ξ

2

∫ 1

0

Q2
xxdx− η

2

∫ 1

0

R2
xxdx

+C5(1 + ξ + η)M1d
−2
1 d−2

2 + C6ξ
2(1 + η)M

1
3
1 d

− 2
3

2

[∫ 1

0

u5dx

] 2
3

+C7ξd
−1
1 M

2
3
1 d

− 4
3

2

(∫ 1

0

u5dx

) 1
3

. (2.16)
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For
∫ 1

0

uutfdx, one can obtain

∫ 1

0

uutfdx

≤ d−1
1 (1 + a1)

∣∣∣∣
∫ 1

0

utudx

∣∣∣∣ + ξ

∣∣∣∣
∫ 1

0

u2utdx

∣∣∣∣

≤ d−1
1 (1 + a1)

(
1
2ε

∫ 1

0

udx +
ε

2

∫ 1

0

uu2
t dx

)
+ ξ

(
1
2ε

∫ 1

0

u3dx +
ε

2

∫ 1

0

uu2
t dx

)

≤ 1 + a1

2ε
M0d

−1
1 d−1

2 +
1
2ε

ξM
2
3
1 d

− 4
3

1

(∫ 1

0

u5dx

) 1
3

+
(d−1

1 + ξ)
2

ε

∫ 1

0

uu2
t dx.

Similarly, we estimates the rest term on the right-hand side of (2.15), we have
∫ 1

0

(1 + 2α11ξ + α12ξv + α13ξ)uutfdx +
∫ 1

0

ξ(1 + α21u + 2α22v + α23w)vvtgdx

+
∫ 1

0

(η + α31ξu + α32ξv + 2α33ξw)wwthdx +
∫ 1

0

α12ξuvtfdx +
∫ 1

0

α13ξuwtfdx

+
∫ 1

0

α21ξv
2utgdx +

∫ 1

0

α23ξv
2wtgdx +

∫ 1

0

α31ξw
2uthdx +

∫ 1

0

α32ξw
2vthdx

≤ λεξ

∫ 1

0

(u + v + w)(u2
t + v2

t + w2
t )dx +

C8

ε
M0d

−1
1 d−2

2 (1 + ξ + η)

+
C9

ε
M

2
3
1 d

− 4
3

2 ξ(1 + d−1
1 + η)

[∫ 1

0

(u5 + v5 + w5)dx

] 1
3

+
C10

ε
ξ2

∫ 1

0

(u5 + v5 + w5)dx,

(2.17)

where λ is a positive integer. Choose a small enough positive number ε = ε(αij(i = 1, 2, 3),
ai, bi, mi, (i = 1, 2) such that λε < C4. Substituting inequalities (2.16) and (2.17) into (2.15),
one can obtain

1
2
ȳ′(t) ≤ −1

2

∫ 1

0

P 2
xxdx− ξ

2

∫ 1

0

Q2
xxdx− η

2

∫ 1

0

R2
xxdx

+B1K2d
−1
1 d−1

2 + B2K3d
− 4

3
1 z

1
3 + B3K4d

− 2
3

1 z
2
3 + B4K5z, (2.18)

where z =
∫ 1

0
(u5 + v5 + w5)dx, K2 = (1 + ξ + η)(M0 + M1), K3 = M

2
3
1 ξ(1 + d−1

1 + η),

K4 = M
1
3
1 ξ2(1 + η), K5 = ξ2. Clearly,

P ≥ α11ξu
2, Q ≥ α22ξv

2, R ≥ α33ξw
2.

It follows from inequality (2.3) to functions P, Q, R that

z ≤ B5ξ
− 5

2

∫ 1

0

(P
5
2 + Q

5
2 + R

5
2 )dx ≤ B6ξ

− 5
2 K

3
2
1 d

− 3
2

1 ȳ
1
2 + B6ξ

− 5
2 K

5
2
1 d

− 5
2

1 ,

z
1
3 ≤ B7ξ

− 5
6 K

1
2
1 d

− 1
2

1 ȳ
1
6 + B7ξ

− 5
6 K

5
6
1 d

− 5
6

1 ,

z
2
3 ≤ B8ξ

− 5
3 K1d

−1
1 ȳ

1
3 + B8ξ

− 5
3 K

5
3
1 d

− 5
3

1 . (2.19)
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Moreover, one can obtain by (2.4) and (2.15)

−ξ

2

∫ 1

0

P 2
xxdx− 1

2

∫ 1

0

Q2
xxdx− η

2

∫ 1

0

R2
xxdx

≤ −B9 min{1, ξ, η}L− 4
3

1 d
4
3
1 J̄

5
3 + (1 + ξ + η)L2

1d
−2
1 . (2.20)

Combining (2.18), (2.19) and (2.20) we have

1
2
ȳ′(t)

≤ −A1 min{1, ξ, η}K− 4
3

1 d
4
3
2 ȳ

5
3 + A2ξ

− 5
6 K

1
2
1 K3d

− 11
6

2 ȳ
1
6 + A3ξ

− 5
3 K1K4d

− 5
3

2 ȳ
1
3

+A4ξ
− 5

2 K
3
2
1 K5d

− 3
2

2 ȳ
1
2

+A5[K2
1d−2

2 (1 + ξ + η) + K2d
−1
1 d−1

2 + K
5
6
1 K3ξ

− 5
6 d
− 13

6
2 + K

5
3
1 K4ξ

− 5
3 d
− 7

3
2 + K

5
2
1 K5ξ

− 5
2 d
− 5

2
2 ].

(2.21)

Multiplying inequality (2.21) by d2
2, we have

1
2
y′(t) ≤ −A1 min{1, ξ, η}K− 4

3
1 y

5
3 + A2ξ

− 5
6 K

1
2
1 K3d

− 1
6

2 y
1
6

+A3ξ
− 5

3 K1K4d
− 1

3
2 y

1
3 + A4ξ

− 5
2 K

3
2
1 K5d

− 1
2

2 y
1
2

+A5[K2
1 (1 + ξ + η) + K2ξ + K

5
6
1 K3ξ

− 5
6 d
− 1

6
2 + K

5
3
1 K4ξ

− 5
3 d
− 1

3
2 + K

5
2
1 K5ξ

− 5
2 d
− 1

2
2 ],

(2.22)

where y =
∫ 1

0
[(d2Px)2 + (d2Qx)2 + (d2Rx)2]dx. Inequality (2.22) implies that there exist

τ̃2 > 0 and positive constant M̃2 depending only on di, αij(i, j = 1, 2, 3), ai, bi,mi(i = 1, 2)
such that

∫ 1

0

(d2Px)2dx,

∫ 1

0

(d2Qx)2dx,

∫ 1

0

(d2Rx)2dx ≤ M̃2, t ≥ τ̃2. (2.23)

In the case that d1, d2, d3 ≥ 1, d2
d1

, d3
d1
∈ [d, d], the coefficients of inequality (2.22) can be

estimated by some constants depending on d, d but not on d1, d2, d3. So M̃2 depends on
αij(i, j = 1, 2, 3), ai, bi,mi, (i = 1, 2), d, d and is irrelevant to d1, d2, d3 when d1, d2, d3 ≥ 1
and d2

d1
, d3

d1
∈ [d, d]. Since




ux

vx

wx


 =




Pu Pv Pw

Qu Qv Qw

Ru Rv Rw




−1 


Px

Qx

Rx


 ,

we can transform the formulations of ux, vx, wx into fraction representations, then distribute
the denominators of the absolute value of the fractions to the numerators term by term and
enlarge the term concerning with ux, vx or wx to obtain

|d2ux|+ |d2vx|+ |d2wx| ≤ K(|d2Px|+ |d2Qx|+ |d2Rx|), 0 < x < 1, t > 0, (2.24)
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where K is a constant depending only on ξ, η, αij(i, j = 1, 2, 3), After scaling back and con-
tacting estimates (2.23) and (2.24), there exist positive constant M2 depending on di, αii, (i =
1, 2, 3), α12, α21, α23, α32, ai, bi,mi(i = 1, 2) and τ2 > 0, such that

∫ 1

0

u2
xdx,

∫ 1

0

v2
xdx,

∫ 1

0

w2
xdx ≤ M2, t ≥ τ2. (2.25)

When d1, d2, d3 ≥ 1 and d2
d1

, d3
d1
∈ [d, d], M2 independent on d1, d2, d3.

(2) t ≥ 0. Modifying the dependency of the coefficients in inequalities (2.15)–(2.17),
namely replacing M0,M1 with M ′

0,M
′
1, there exists positive constant M ′

2 depending on
di, αij(i, j = 1, 2, 3), ai, bi,mi, (i = 1, 2) and the W 1

2 -norm of u0, v0, w0 such that

∫ 1

0

u2
xdx,

∫ 1

0

v2
xdx,

∫ 1

0

w2
xdx ≤ M ′

2, t ≥ 0. (2.25)′

Furthermore, in the case that d1, d2, d3 ≥ 1, d2
d1

, d3
d1
∈ [d, d], M ′

2 depends on d, d but not on
d1, d2, d3.

Summarizing estimates (2.6), (2.10), (2.25) and using Sobolev embedding theorem, there
exist positive constants M, M ′ depending only on di, αij(i, j = 1, 2, 3), ai, bi,mi(i = 1, 2)
such that (1.4) and (1.5) hold. In particular, M, M ′ depend only on αij(i, j = 1, 2, 3), ai, bi,mi(i =
1, 2) d, d but do not depend on d1, d2, d3 when d1, d2, d3 ≥ 1, d2

d1
, d3

d1
∈ [d, d].

Similarly, there exist positive constant M ′′ depending on di, αij(i, j = 1, 2, 3), ai, bi,mi(i =
1, 2) and the initial functions u0, v0, w0 such that

|u(·, t)|1,2, |v(·, t)|1,2, |w(·, t)|1,2 ≤ M ′′, t ≥ 0.

Further, in the case that d1, d2, d3 ≥ 1, d2
d1

, d3
d1
∈ [d, d], M ′′ depends only on d, d but not on

d1, d2, d3. Thus T = +∞. This is complete proof of Theorem 1.

3 Global Stability

In this section we discuss global asymptotic stability of positive equilibrium point
(ū, v̄, w̄) for (1.1), namely to prove Theorem 2. Define

H(u, v, w) =
∫ 1

0

(
u− ū− ū ln

u

ū

)
dx+α

∫ 1

0

(
v − v̄ − v̄ ln

v

v̄

)
dx+β

∫ 1

0

(
w − w̄ − w̄ ln

w

w̄

)
dx,

where α = a1ū
m1v̄

, β = a1a2ū
m1m2w̄

. Obviously, H(u, v, w) is nonnegative and H(u, v, w) = 0 if and
only if (u, v, w) = (ū, v̄, w̄). By Theorem 1, H(u, v, w) is well-posed for t ≥ 0 if (u, v, w) is a
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non-zero solution to system (1.1). The time derivative of H(u, v, w) for system (1.1) satisfies

dH(u, v, w)
dt

= −
∫ 1

0

[(
d1 + 2α11u + α12v + α13w

)
ū

u2
u2

x + α

(
d2 + α21u + 2α22v + α23w

)
v̄

v2
v2

x

+β

(
d3 + α31u + α32v + 2α33w

)
w̄

w2
w2

x +
(

α12
ū

u
+ αα21

v̄

v

)
uxvx

+
(

α13
ū

u
+ βα31

w̄

w

)
uxwx +

(
αα23

v̄

v
+ βα32

w̄

w

)
vxwx

]
dx

−
∫ 1

0

[(
1− a1v̄

(ū + v̄)(u + v)

)
(u− ū)2 + β

m2v̄

(v̄ + w̄)(v + w)
(w − w̄)2

+α

(
m1ū

(ū + v̄)(u + v)
− a2w̄

(v̄ + w̄)(v + w)

)
(v − v̄)2

]
dx. (3.1)

The first integrand in above equality is positive semi-definite if

4αβ
ū

u2

v̄

v2

w̄

w2
(d1 + 2α11u + α12v + α13w)(d2 + α21u + 2α22v + α23w)

·(d3 + α31u + α32v + 2α33w)

+
(

α12
ū

u
+ αα21

v̄

v

)(
α13

ū

u
+ βα31

w̄

w

)(
αα23

v̄

v
+ βα32

w̄

w

)

>
ū

u2

(
αα23

v̄

v
+ βα32

w̄

w

)2

(d1 + 2α11u + α12v + α13w)

+α
v̄

v2

(
α13

ū

u
βα31

w̄

w

)2

(d2 + α21u + 2α22v + α23w)

+β
w̄

w2

(
α12

ū

u
+ αα21

v̄

v

)2

(d3 + α31u + α32v + 2α33w). (3.2)

By the maximum-norm estimate in Theorem 1, condition (1.9) implies (3.2). Under our
assumptions (1.6)–(1.8), we can claim that for t À 1 the following hold:

a1v̄

(ū + v̄)(u + v)
≤ 1,

a2w̄

(v̄ + w̄)(v + w)
≤ m1ū

(ū + v̄)(u + v)
.

So, the second integrand in above equality is positive semi-definite if conditions (1.6)–(1.8)
hold. Therefore, when the all conditions in Theorem 2 hold, there exists a positive constant
δ such that

dH(u, v, w)
dt

≤ −δ

∫ 1

0

[(u− ū)2 + (v − v̄)2 + (w − w̄)2]dx,

dH(u, v, w)
dt

< 0, (u, v, w) 6= (ū, v̄, w̄). (3.3)

Now, we recall the following lemma which can be find in [19].
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Lemma 1 Let a and b be positive constants. Assume that ϕ, ψ ∈ C1[a,+∞), ψ(t) ≥ 0,
and ϕ is bounded from below. If ϕ′(t) ≤ −bψ(t) and ψ′(t) is bounded from above in [a,+∞),
then lim

t→∞
ψ(t) = 0.

Using partial integration, Hölder inequality and (1.5), one can easily verify that

d

dt

∫ 1

0

[(u− ū)2 + (v − v̄)2 + (w − w̄)2]dx

is bounded from above. Then from Lemma 1 and (3.3) we have

|u(·, t)− u|2 → 0, |v(·, t)− v|2 → 0, |w(·, t)− w|2 → 0 (t →∞).

Clearly, |u(·, t)|∞ ≤ C|u| 121,2|u|
1
2
2 . By (1.4), we have

|u(·, t)− u|∞ → 0, |v(·, t)− v|∞ → 0, |w(·, t)− w|∞ → 0 (t →∞).

Namely, (u, v, w) converges uniformly to (ū, v̄, w̄). By the fact that H(u, v, w) is decreasing
for t ≥ 0, it is obvious that (ū, v̄, w̄) is global asymptotic stable. The proof of Theorem 2 is
completed.
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带比例功能反应函数食物链交错扩散模型的整体解

李晓娟

(西北师范大学数学与统计学院,甘肃兰州 730070)

摘要: 本文研究了带有比例功能反应函数食物链交错扩散模型整体解的存在性和正平衡点的稳定性.

利用能量方法和Gagliardo-Nirenberg型不等式, 获得了该模型整体解的存在性和一致有界性, 同时通过构

造Lyapunov 函数给出了该模型正平衡点全局渐近稳定的充分条件.
关键词: 比例依赖功能反应函数; 交错扩散; 整体解; 一致有界性; 稳定性
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