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Abstract: In this paper, a food chain model with ratio-dependent functional response is
investigated under homogeneous Neumann boundary conditions. Using the energy estimate and
Gagliardo-Nirenberg-type inequalities, the existence and the uniform boundedness of global solu-
tions are proved. Meanwhile, the sufficient condition for global asymptotic stability of the positive
equilibrium point for the model is given by constructing the Lyapunov function.
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1 Introduction

There is growing biological and physiological evidence, see for instance [1] and the
literature cited therein, that in some situations, specially when predators have to search for
food and therefore have to share or compete for food, a more suitable general predator-prey
theory should be based on the so-called ratio-dependent theory, which can be roughly stated
as that the per capita predator growth rate should be a function of the ratio of prey to
predator abundance. This is supported by numerous field and laboratory experiments and
observations, see for instance [5].

The prey-dependent food-chain models were studied in [6, 7, 9, 11, 13, 20], while mathe-
matically interesting, inherit the mechanism that generates the factitious paradox of enrich-
ment and fail to produce the often observed extinction dynamics resulting in the collapse of
the system. Consequently, a ratio-dependent food chain model, which is an ODE system with
three equations whose species are hence assumed to be spatially homogeneous, was proposed
by Hsu, Hwang, and Kuang in [10] to describe the growth of plant, pest, and top predator.
However, it is not enough that populations of species are considered in only time and density.
To make it more realistic, different spatial locations should also be taken into consideration,

which have resulted in reaction-diffusion model with ratio-dependent functional response
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[12, 14]. Despite the fact that much attention has been paid to studies of weakly-coupled
reaction-diffusion system, few has been found on strong-coupled reaction-diffusion system.

This paper discusses the following three questions in the one-dimensional space: the
existence and the uniform boundedness of the global solution to a ratio-dependent food
chain model with self and cross-diffusion, and the global asymptotic stability of the positive
equilibrium point.

Concretely, consider the following problem

a1v
u; = (dyu + aq1u® + apuv + agsuw) gy + u(l —u — j_ ), O<z<1,t>0,
U+ v
miu ao2W

vy = (dov + o uv + agv? + A3vW) 4y + V(—by + ), 0<z<1,t>0,

u-+v v+ w
T2V 0<z<1,t>0,
w

wy = (daw + azjuw + azvw + a33w2)m + w(—by + ”

Uz (2,t) = v (2, t) = wy(z,t) =0, x=0,1,t>0,
u(z,0) = up(z) > 0,v(z,0) = vo(z) > 0,w(z,0) =we(z) >0, 0<x<Il, (1.1)

where ug, vg, Wy are nonnegative functions which are not identically zero, u,v and w are the
respective population densities of prey, predator, top predator. d;, a;;(i,j = 1,2,3), a;, bi,m;
(i = 1,2) are positive constants, di, ds, d3 are the the diffusion rates of u, v, w, respectively.
a;;(i = 1,2,3) are referred as self-diffusion pressures, and «;;(i # j, i,j = 1,2,3) are cross-
diffusion pressures. For more details on the biological background, see references [8, 15, 16,
17, 18]. a;,b;,m; (i = 1,2) which can see more explanations for the biological background,
refer to [10, 12, 14]. Furthermore, to avoid the case where predator and top-predator cannot
survive, even when their food is infinitely abundant, we assume that m; > b;,i =1, 2.

The ODE problem associated with (1.1) was proposed and studied by Hsu, Hwang, and
Kuang in [10], and from [10], system (1.1) has a unique positive equilibrium (u,v,w) if and

only if the following are satisfied:

A
b A>1 _— 1.2
my >by, A>1, 0<ar < 5 (1.2)
where A = my /(az(ms — be)/ma + b1), and
a:[a1+A(1—a1)]7 5= (A—1)q, u_}:(mz—bz)v
A by

We also note that mg > by and A > 1 imply m; > b;.

In particular, they obtained the extinction conditions of certain species and discussed
the local asymptotical stability of (@, v, w) and various scenarios where distinct solutions can
be attracted to the origin, the pest-free steady state, and the positive steady state (@, v, w).
For more detail, we refer the reader to [10]. From their results, the authors pointed out that
this ODE system is very rich in dynamics.

The corresponding weakly coupled reaction-diffusion system (1.1) has received a lot
of attention, see [12, 14]. But up to now, the corresponding researches chiefly concen-

trate on the existence and nonexistence of nonconstant positive steady-state solutions of
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the weakly-coupled reaction-diffusion system (1.1). To the best of our knowledge, when
a;;(1 # j, i,j = 1,2,3) is positive, (1.1) is a strongly-coupled reaction-diffusion system
which occurs frequently is biological and it is very difficult to analyze, there are very few
results for the (1.1).

For simplicity, denote || - [lwx(0,1) by | [k and || -|[L»(0,1) by |- [,. For the time-dependent
solutions of (1.1), the local existence is an immediate consequence of a series of important
papers [2-4] by Amann. Roughly speaking, if ug(z), vo(x), wo( ) in W) (Q) Withp > N, then
(1.1) has a unique nonnegative solution u,v,w € C ([0,T), W}(©2)) ) C*> ((0,T),C>(9)),
where T € (0, oo] is the maximal existence time for the local solutlon. If the solutlon (u,v,w)

satisfies the estimates

sup{ [|lu(-, ) lw (o), [v(s Ollwie, lw Ollwiq) : 0 <t < T} < oo,
then T' = +o00. Moreover, if ug(z), vo(z), wo(z) € W2(§2), then u,v,w € C ([0, 00), W2(Q2)) .
Our main results as follows:
Theorem 1 Let ug(z),vo(z), wo(xz) € WZ(0,1), (u,v,w) is the unique nonnegative
solution of system (1.1) in the maximal existence interval [0,7). Assume that
a1 (3 > 0210@3 + 04%2031,
812029039 > Q30005 + 5112,
8y 3oz aizg > a23a§1 + a§2a13. (13)

Then there exist t, > 0 and positive constants M, M’ which depend only on d;, a;;(4,j =
1,2,3), a;, b;, m;(i = 1,2) such that

sup{|u(-, t)|1,2, [v(-, D) |12, [w( )12 0t € (B0, T)} < M, (14)
max{u(z,t),v(x,t),w(z,t): (x,t) € [0,1] x (to,T)} < M, (1.5)

and T' = +oo. Moreover, in the case that di,ds,ds > 1, 32, 33 € [d,d], where d and d are

positive constants, M’, M depend on d,d but do not on di, ds, ds.
Theorem 2 Assume that all conditions in Theorem 1 are satisfied and (1.2) holds.
Assume that the following hold :

a1 <1, as+b <my, (1.6)
a1(A—1)/A <miK/(az + by), (1.7)
asbomy(mg — ba)(as + by) < bymeK[my — (az + b1)][bims + az(me — b2)],  (1.8)
dapuvwd,dyds > M>U(aagst + Basew)?(dy 4+ 201 M + oM + a3 M)
+aM?*v(ay3t + Baziw)?(dy + oy M + 2000 M + i3 M)

+BM*w (a1t + g 0)?(dg + azi M + aza M + 2a33 M), (1.9)

where @ = &% 3 = 1021 K:l{Q—%+\/(2—%)2—1—4(1—%)(@—1)}, M is the

miv’ mimo’ 2 b1
positive constant in (1.5). Then the positive equilibrium point (@, v, w) is global asymptotic
stable.
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Remark 1 Problem (1.1) has a positive solution implies (1.2) holds. From [14], the
positive equilibrium point (%, o, w) of the corresponding weakly coupled reaction-diffusion
system (1.1) is also global asymptotic stable under conditions (1.6)—(1.8) hold.

Remark 2 Problem (1.1) has no non-constant positive steady-state solution if all

conditions of Theorem 2 hold.

2 Global Existence and Uniform Boundedness

In order to establish the uniform W, —estimate of the solution to system (1.1), the
following corollaries to Gagliardo-Nirenberg-type inequality (see [16]) play important roles.

Corollary 1  There exists a positive constant C' such that

fuls < C(lua§lul} + Jul),  Vue Wi(0,1), (2.1)
luls < C(lug I3 [ulf +Juh),  Yu € Wi(0,1), (2.2)
fuls < Clugliluli +lul),  YueW)(0,1), (2.3)
fuale < Cllusel5 luls + Juh),  Vu e WE0,1). (2.4)

In this section we always denote that C' is Sobolev embedding constant or other kind
of absolute constant, A;, Bj, C; are the positive constants which depend only on «;;(i,j =
1,2,3), a;,b;,m;(i = 1,2) and K, are positive constants depending on d; and «;;(i,j =
1,2,3), a;, b;, m;(i = 1,2). When dy,ds,d3 > 1, Z—;, 3—2 € [d,d], L; depend only on d,d but do
not on dy, ds, d3.

Proof of Theorem 1 First, we establish L'-estimates of the solution (u,v,w) of (1.1).
Taking integrations of the first three equations in (1.1) over the domain [0,1], respectively,

and then combining the three integration equalities linearly, we have

1

d "o !
— [mlu 4+ av + alazw} dx < —/ [1 (a1v) + be (a1a2 w>] dx +my / (u — u?)dw.
dt 0 mo 0 aq my 0

Let my fol udr —m, fol wider < Cp—Cy fol udx, where Cy = min{%, b2}, by Young inequality,

1 1
m1(Cs + 1)/ udz < i(ml(C'g +1))* + €/ u?dx.
0 2e 2 Jo

Let € = 2m,, then C; = iml(Cg + 1)2. Thus

d 1
dt J,

a10a32

1
w] de < C; — 02/ [mlu +av + @142 w] dx. (2.5)
o m

[mlu + a1v +
2

mo

Then there exists a positive constant 7, such that

1 1 1
/ udw,/ vdac,/ wdx < My, t > 19, (2.6)
0 0 0
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where M, = % max{(a;)~", (m1)~", 72 }. Moreover, there exists a positive constant M

which depends on a;, b;, m;(i = 1,2) and the L'—norm of ug, vy and wy, such that

1 1 1
/ udx,/ vdx,/ wdx < M, t>0. (2.6)
0 0 0

Second, we will obtain L2-estimates of u, v, w. We multiply the first three equations in

(1.1) by u,v,w, respectively, and integrate over [0,1] to have

1 d 1 1 1
ST wde < —d; / uldx — / [(2011u + 120 + ay3w)u? 4+ QiU v, + aysut,w,|de
0 0 0

1
+/ u?dz,
0

1d 1 1
- vidr < —dy vidm — [(a21u + 2020 + a23w)vi + Qo1 VULV, + QozgvU W, ]|dE
2dt J, o o
1
+my / vide,
0
1d [ 1 1
by widr < —dg/ widx — / [(a31t + Qg0 + 2033w) W2 + Q31 WU W, + QzpWVW, ] dT
0 0 0
1
+meo / w?dzx.
0
Let d* = min{d,,ds,ds}. We proceed in the following two cases.
(1) t Z T0-
1d 1 1
—— [ WP+ ruwddr < —d" | (W40 +wd)de — | qlug, v, w,)ds
2dt J, o 0

1
+A/ (u? + v + w?)dx,
0
where A = max{1,m;, my}, and

q(Ug, vz, wy) = (2001u + @120 + azw)u
(a1t + 20990 + o)V + (g1 + Qs + 2033w ) w2

+ (12U + @210)Uuz vy + (13U + az1w) Uz W, + (230 + Q32w )V W,y
is positive semi-definite quadratic form of wu,,v,, w, if (1.3) holds. Then

1d [ 1 1
Sd (u* +v* +widz < —d* / (u + v +w?)dx + A/ (u? +v* + w?)dz.(2.7)
0 0 0
Notice by (2.1) and (2.6) that |u|$ < C(Jug|3|ulf + |ul$) < CM(Ju. |3 + MZ). Therefore
1 1 3
—d" / (u2 4+ v2 + w?)dr < 3d* M7 — Csd* [/ (u?® +v* + w2)dx] . (2.8)
0 0
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Substituting (2.8) into (2.7), we have

1d [! L 3 1

P (u? +v* +w?)dz < —Csd* [/ (u® 4+ v* + wz)dx] +A/ (u? +v* +w?)dz + 3d* M.
0 0 0

(2.9)

This means that there exist positive constants 71 and M; depending on d;,a;;(i,j = 1,2, 3),
ai,b;, m;(i = 1,2) such that

1 1 1
/ uzdx,/ vzdx,/ wdr < My, t > 1. (2.10)

0 0 0
When d* > 1, M; is independent of d* since the zero point of the right-hand side in (2.10)

can be estimated by positive constants independent on d*

(2) t > 0. Replacing M, with M’ and repeating estimates (2.7)—(2.10), one can obtain
a new inequality which is similar to (2.10). The coefficients of this new inequality depend
not only on d;, a;;(i = 1,2,3), a;,b;,m;(i = 1,2) but also on initial functions ug, vy and wy.
Then there exists positive constant M| depending on d;,a;;(i,j = 1,2,3), a;,b;,m;(i = 1,2)
and the L2-norm of ug, vy, wy such that

1 1 1
/ u2d1:,/ UZdSL’,/ w?dr < Mj, t>0. (2.10)
0 0 0

For d > 1, M is independent of d*.

Finally, L2-estimates of u,, v, and w, will be obtained. We introduce the scaling that
U v w o~

—, 0= —,w=—,t=dt 2.11
d2 , U dg , W dg ) 1Y, ( )

71:

denoting £ = j—j,n = %7 and using u, v, w,t instead of @, 7, W, t, respectively, then system

(1.1) reduces to

up = Ppp +uf(u,v,w), 0 <z <1,t>0,
vy = Quy +vg(u,v,w), 0 <z <1,t>0,
wy = Ry + wh(u,v,w), 0 <z <1,t>0,
Ug (2, t) = v (2, t) = wy(z,t) =0, x=0,1,t >0,
u(z,0) = tp(z) > 0,v(x,0) = 0o(x) > 0,w(x,0) =we(z) > 0,0 <z <1, (2.12)
where
P =u+ a1 éu? + apéuv + agséuw,
Q = £(v + anuv + av? + agzvw),
R = nw + az fuw + azxévw + azzéw?,
fluyv,w) = di (1 — dou — 2%,

g(u,v,w) = dfl(_bl + ZI_A,l_Z - Sj_ﬁ)?

h(U,U,IU) = dl_l(_bQ + M)

v+w
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We still divide the subsequent discuss into two cases.

(1) t > 7/ (= da71) (namely, t > 71 in original scale). It is clearly that

1 1 1
/ udx,/ Ud:r,/ wdzx < Modgl,
0 0 0
1 1 1
/ qux,/ dea),/ w?dz < M1d§2,
0 0 0

|P[1, QL1 [Ry < AiKady ', (2.13)

where K; = (1 + &+ n)M, + M, &d; . By Young inequality, one can obtain

1 1 3 1 3 L, 1 3
/ uldr < (/ uzdx> </ u5dm> < M3dy® (/ u5dx> )
0 0 0 0
1 1 5 1 & 1 3 1 3
/ wolde < </ u2da:> </ v2dx> </ u5da:> (/ v5dx>
0 0 0 0 0
L, 1 3 1 3
< M@d® (/ usd;v> (/ v5d;v> ,
0 0
1 1 3 1 3 . . 1 3
/ wdr < (/ u2d1:> (/ u5d$> < M3d® (/ usdx> ,
0 0 0 0
1 1 3 1 3 1 3 . 1 3
/ widr < </ u2dx> </ vzdx> </ v5d:r> < My#d? (/ U5dx> (2.14)
0 0 0 0 0

Multiply the first three equations in (2.12) by P, Q:, R:, and integrating them over the

domain [0,1], respectively, then adding up the three integration equalities, we have

1 1 1 1 1
N Ty g e o
0 0 0 0
1

—I—/ [(1 4+ 20116u + a12év + apzéw)uu f + apéuv, f 4 ayséuw, fldx
0
1
—|—§/ [o1v*urg + (1 4 o1u + 20900 + Qo3w)v0;g + Qozv*wiglda
0
1
+ / [z &w?ush + aspfw?vih + (7 + as1€u + aseév + 2asséw)ww,hldz,
0
1
where § = / (P2 + Q2+ R%)dx. It is not hard to verify by (1.3) that there exists a positive
0
constant Cy depending only on «;; (i,j = 1,2,3), such that

q(ug, v, wy) > Cy(u + v+ w)(u? + v +w?).
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Thus

1
y(t) < — / d:r—g/ 2dx — / ?dm—C@/ (u+v+w)(u] +v; +w})dx
0
1 1
+ / (14 2a118u + 128 + azéw)uug fdx + / E(1 + aoru + 20920 + qozw)viguda
0 0
1 1 1
—|—/ (n 4+ as1€u + azeév + 2a336w)wihwdx + / apéulv fdx + / arséuw, fdx
0 0 0

1 1 1 1
—I—/ aglfvzutgdx—l—/ a23§v2wtgdm+/ a31§w2uthdx+/ aséw?vhdr.  (2.15)
0 0 0 0

By the estimates (2.13), (2.14), one can obtain the following estimates for the terms on the
right-hand side of (2.15)

1 1 1 1

—/ uldr < —2/ P2 da:—l—/ u? f2dw,
0

—g/ dx<—/Q dw—i—f/ g*dx,
—n/ 2de < — / R? dx—i—n/ w?h?dx,

0 2 0 0

1 1 1 1
/ u2f2dx<d12(1+a§)/ u2dx+d12d§/ u4dx+a1d12d2/ uddx
0 0 0 0

8 1 1 % 10 2 1 %
(1+a})dy?dy* M,y + dy *d5M7? (/ u5d:c> + ayd; ® dy M7 </ u5dz) ,
0 0

<
1 1
g/ v?g?dr < / €720 + a2 +m? + agh )v?de < EMyd?dy (b2 + a2 +m? + asby),
0 0
1 1
77/ w?h?dx < d? (b3 + m%)n/ w?dx < ndy?(b3 4+ mi)M,dy .
0 0
Therefore,

/ 2dx — f/ dx/ w?dx
1
§—;/P2 g/QQd:U—/RZd:U

+Cs(1+ € + ) Mydy2dy® + Co€2(1 + m) M d,

2
3

]

1
+Cr&d M dy ? ( / u5dx> . (2.16)
0

wio

Wl
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1
For / uuy fdx, one can obtain
0

1
/ uuy fdz
0

d;l(l + al)

IN

+¢

1 1
/ ugudz / u?uydx
0 0
1 L € 1 1 1 ¢ 1
< dfl(l—l—al) (26/ udm—l—Q/ uufdgg> + ¢ <2€/ u?’da?—i—Q/ uufda:)
0 0 0 0

1 1 2 _4 v 5 dit !
ta ModyHdy 't + —EMPd;? / ude | + we uuidz.
2e 2¢ 0 2 0

IN

Similarly, we estimates the rest term on the right-hand side of (2.15), we have

1 1
/ (14 2a11& + 1280 + a138)uu fdx + / E(1 + a1 + 20920 + aozw)vvsgda
0 0
1 1 1
+/ (n+ az1&u + azaév + 2az3€w)ww hdr + / aéuv, fdx + / apzéuw, fdx
0 0 0
1 1 1 1
—1—/ o1 Ev?urgds + / aaséviwigdr + / as Ew?uhdr + / asséw?v hdx
0 0 0 0

1
C,
< Ae{/ (u+v+w)(u§+u3+w3)dm+§M0d51d52(1+5+n)
0

1 3 1
+%M§d2—§£(l +dyt 4+ 1) U (u® + v° + w5)dq:] + 061052/ (u® +v° + w®)dx,
0 0
(2.17)

where A is a positive integer. Choose a small enough positive number € = e(a;; (i = 1,2, 3),
a;, b, m;, (i = 1,2) such that Ae < Cy. Substituting inequalities (2.16) and (2.17) into (2.15),

one can obtain

low < -1 € 1Q2da;—ﬂ R e

By Kod 'yt + ByKsd, 2% + BsKud, 2% + ByKsz, (2.18)

where = = [} (u® + 0% +w)de, Ky = (14 &+ n)(Mo + M), Ky = Mg+ dy" +),
Ky = M1%52(1 + 1), K5 =& Clearly,

P > ap&u’, Q > anév?, R > agslw’.
It follows from inequality (2.3) to functions P, @, R that
1
2 < Bseh / (P + Q% + R¥)dw < BeS 2 K{dy *y7 + Bel T K7d, 2,
0

< Br68KPd, s + B RK{d, °,
< Byt S Kydi 'yt + Bs¢ SKd; ¢ (2.19)

Wl

z

N
Wl
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Moreover, one can obtain by (2.4) and (2.15)

5 1
-5 ) Pada- /Q -y
0

< —Bymin{1,&,n}L; 5df J5 + (1+&+n)L3d;2 (2.20)

Combining (2.18), (2.19) and (2.20) we have

%ﬂ'(t)
< —Avmin{L &b 2 G5+ AsE KT Kydy © b+ Ast K Kady
+ ALK Kady
+A45[K7d,y *(1 +€+n)+K2d a4 KPRy ;P ¢ K3 Kae3dst + KKy 3dgd),

(2.21)

Multiplying inequality (2.21) by d3, we have

1 . 4 5 _5 1 —1 3
Syt < —Aimin{l,{,n}K, Py + Al K Kad, °ys

FAE 3K Kady Bys + Ay 3K Kad, 2y
FASK2(1 4+ E4n) + Ko + KFK36 8d,° + KF K& 3d,° + KEKs¢ 3 d, 7,
(2.22)

where y = fol[(dsz)2 + (d2Q2)? + (daR;)?|dx. Inequality (2.22) implies that there exist
7 > 0 and positive constant M, depending only on di,o5(i,5 = 1,2,3), a;, b, m;(i = 1,2)
such that

1 1 1
/(ngr)de,/ (szm)zdx,/ (dyR,)?dx < My,  t> 7. (2.23)
0 0 0

In the case that dq,ds,ds > 1, 32,3—3 € [d,d], the coefficients of inequality (2.22) can be
estimated by some constants depending on d,d but not on dy,ds,ds. So M, depends on
ij(i,j = 1,2,3),a;,bi,mi, (i = 1,2),d,d and is irrelevant to dy,ds,ds when dy,dy,d3 > 1

and d’;‘ ds ¢ [d, d]. Since

-1

Ug P, P, P, P,
vy | = Qu Qv Qu Q: |
Wy, R, R, R, R,

we can transform the formulations of u,, v,, w, into fraction representations, then distribute
the denominators of the absolute value of the fractions to the numerators term by term and

enlarge the term concerning with u,, v, or w, to obtain

|d2U,m| + ‘d2U$| + |d2ww\ < K(|d2pm| + ‘dQQI‘ + |d2Rm|),0 <x<1l,t>0, (224)
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where K is a constant depending only on &, n, ay;(i,j = 1,2,3), After scaling back and con-
tacting estimates (2.23) and (2.24), there exist positive constant M; depending on d;, oy, (i =

1,2,3),&12, 21, (23, (32,0, b“ml(l = 172) and To > 0, such that

1 1 1
/ uida@,/ Uidx,/ w?dr < My, t> Ty (2.25)
0 0 0

When dy,ds,ds > 1 and Z—j, g—f € [d,i], M> independent on dy, ds, ds.
(2) ¢ > 0. Modifying the dependency of the coefficients in inequalities (2.15)—(2.17),
namely replacing My, M, with M], M], there exists positive constant M) depending on

diyai;(i,5 =1,2,3),a4,b;,m;, (i = 1,2) and the W3 -norm of ug, v, wo such that

1 1 1
/ uidm,/ Uidl‘,/ w2dr < M), t > 0. (2.25)
0 0 0

Furthermore, in the case that d;,dy,ds > 1, Z—f, 2—51‘ € [d,d], M} depends on d,d but not on
dy,ds, ds.

Summarizing estimates (2.6), (2.10), (2.25) and using Sobolev embedding theorem, there
exist positive constants M, M’ depending only on d;, «;;(i,j = 1,2,3), a;,b;,m;(i = 1,2)
such that (1.4) and (1.5) hold. In particular, M, M’ depend only on a;;(i,j = 1,2,3), a;, b, m;(i =

1,2) d,d but do not depend on dy, dy, ds when dy,dy,ds > 1, %’ g—f € [d,d).

Similarly, there exist positive constant M" depending on d;, «;(i,j =1,2,3), a;,b;,m;(i =

1,2) and the initial functions ug, v, wo such that
[u D)2, (5 D)2, w2 < M",t > 0.

Further, in the case that dyi,ds,ds > 1, Z—?, 3—? € [d,d), M" depends only on d,d but not on

dyi,ds,ds. Thus T = +o0. This is complete proof of Theorem 1.

3 Global Stability

In this section we discuss global asymptotic stability of positive equilibrium point

(a,v,w) for (1.1), namely to prove Theorem 2. Define

where @ = 4% 3 = @928 " Qhyiously, H(u,v,w) is nonnegative and H (u,v,w) = 0 if and

mimotw °

only if (u,v,w) = (u,v,w). By Theorem 1, H(u,v,w) is well-posed for ¢t > 0 if (u,v,w) is a
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non-zero solution to system (1.1). The time derivative of H (u, v, w) for system (1.1) satisfies
dH (u,v,w)
dt

1 _
U v
= _ / [(dl + 20011u + a9 + a13w> Eui + <d2 + a9 + 20090 + a23w) ﬁ“i
0
w U v
+0 <d3 + asi1u + azv + 2a33w) —Qwi + (alg + aa21) UpVy
w U v
u w v w
+ <a13 + ﬁa:sl) Up Wy + <aa23 + ﬁa;sz) vxwm} dx
U w v w

‘/01 [(1‘m+§&+w><“‘@2”w3§i+w<“"@z
+a<( m 0210 )>(v - @)2] de. (3.1)

i+ 0)(u+v) (B+w)(v+w

The first integrand in above equality is positive semi-definite if
U v w
lob a s

(d3 + az1u + azov + 2a33w)

u v U w v w
+| ara— + aqo — 13— + PBag;— Qg — + Page—
u v U w v w

_ _ _N\ 2
u v w
> iz (aaggv + Bass ’LU) (d1 + 20110 + apv + a13w)

(d1 + 2@11U + 120V + Oélgw)(dg + Q21U + 2&22’0 + 0423'11))

2

_ 2
v u w
+Oéﬁ (O(l:}uﬂa.?)l w> (dQ + Q21U —|— 20[221) + a23w)

_ 2
w u v
+572 <0412 + O[Oégl> (d3 + a31U + Q32U + 20[33’(1)). (32)
w u v

By the maximum-norm estimate in Theorem 1, condition (1.9) implies (3.2). Under our
assumptions (1.6)—(1.8), we can claim that for ¢ > 1 the following hold:

aiv oW miu

(@ +0)(u+wv) =L (v 4+ 0)(v+w) = (u+v)(u+v)

So, the second integrand in above equality is positive semi-definite if conditions (1.6)—(1.8)
hold. Therefore, when the all conditions in Theorem 2 hold, there exists a positive constant
0 such that

W < —5/0 [(u—a)%+ (v —9)? + (w — @)%dz,
<0, (u,v,w) # (u,v,w). (3.3)

Now, we recall the following lemma which can be find in [19].
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Lemma 1 Let a and b be positive constants. Assume that o, 1 € C'[a, +00), ¥(t) > 0,
and ¢ is bounded from below. If ¢/ (t) < —bip(t) and ¢'(t) is bounded from above in [a, +00),
then tlim ¥(t) =0.

Using partial integration, Hoélder inequality and (1.5), one can easily verify that

d 1

pn i [(u—w)?+ (v—"2)+ (w—w)?|dr

is bounded from above. Then from Lemma 1 and (3.3) we have
lu(-,t) —ala — 0, |v(-,t) =Tl — 0, |w(,t) —wWls =0 (t— ).
Clearly, [u(-,t)|s < Clu|?,[ulZ. By (1.4), we have
[u(-yt) — Ul — 0, [0(-,t) = T|oo — 0, |w(+,t) —W|ew — 0 (t — 00).

Namely, (u,v,w) converges uniformly to (@, v, w). By the fact that H(u,v,w) is decreasing
for t > 0, it is obvious that (@, v, w) is global asymptotic stable. The proof of Theorem 2 is

completed.
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