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Abstract: This paper investigate the stability and Hopf bifurcation of a delayed predator-prey

model with Holling type-III response function and stage-structure for the predator. By applying

the norm form of differential dynamic system and the center manifold theorem, we determined the

stability of the interior equilibrium the direction of the period solution. Obviously, the result of

Tian and Xu is promoted in this paper.
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1 Introduction

The predator-prey systems play an important and fundamental role among the rela-
tionships between the biological population. There exists a strong interest during the last
few decades to study predator-prey system in population dynamics by mathematicians and
biologists. It has turned out that many researches in mathematical models contribute to un-
derstanding the interactions of predator and prey in these systems. Then various dynamics
behaviors are achieved, such as steady states, oscillations, bifurcations and chaos depending
on the model parameters, see [1–5].

Recently, the models governed by the ordinary and partial differential equations involv-
ing delays attracted people’s attention and were successfully applied to many problems in
many research areas (such as biology, population dynamics, neural networks, feedback con-
trolled mechanical systems and so on, see [6–7]). In delayed differential equations, period
solutions can arise through the Hopf bifurcation. Several methods for analyzing the nature
of Hopf bifurcation had been proposed by many authors. Thereinto, the center manifold
theory is one of the rigorous mathematical tools to study bifurcations of delay differential
equations, see [13–20].

From the view of biology, many species have a life history that take them through an
immature and mature stage, and the predator in the first stage often has no ability to attack
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prey and reproduce. Many author have investigated the models with stage-structure and
obtained varies dynamics behaviors, see [4–12]. In [4], a predator-prey model with stage-
structure and Holling type II response is considered as follow:





ẋ(t) = x(t)
(
r − ax(t)− a1y2(t)

1+mx(t)

)
,

ẏ1(t) = a2x(t)y2(t)
1+mx(t)

− r1y1(t)−Dy1(t),
ẏ2(t) = Dy1(t)− r2y2(t),

(1.1)

where x(t), y1(t), y2(t) represent the densities of prey, immature and mature predator,
respectively, ax(t), r1, r2 represent the death rate of prey, immature and mature predator,
respectively. D is the convert rate from immature predator to mature predator. ax

1+mx
is

response function of the mature predators’ capture. The stability of model (1.1) was studied
by Xu et al. [4] in detail.

Consider the time-delay due to the pregnant of the mature predator for advanced ani-
mals influences the stability of the equilibrium in delayed differential equations, we establish
a delayed Holling Type III response predator-prey system as follows:





ẋ(t) = x(t)
(
r − ax(t)− a1x(t)y2(t)

1+mx2(t)

)
,

ẏ1(t) = a2x2(t−τ)y2(t−τ)
1+mx2(t−τ)

− r1y1(t)−Dy1(t),
ẏ2(t) = Dy1(t)− r2y2(t).

(1.2)

The rest of this paper is organized as follows: in the next section, by analyzing the
corresponding characteristic equations, the local stability of each of the feasible equilibrium
of system (1.2) is discussed and the existence of a Hopf bifurcation at the coexistence equi-
librium is established. The stability and the direction of periodic solutions bifurcating from
Hopf bifurcations are investigated by using the normal form theory [23] and the center man-
ifold theorem [24] in Section 3. The numerical simulations are carried out to support the
theoretical analysis of the research in Section 4. Finally, a brief discussion is given in Section
5 .

2 Equilibrium Analysis

In this section, we analysis the local stability of each of feasible equilibria of system (1.2)
and the existence of Hopf bifurcations at the coexistence equilibrium. Obviously, system (1.2)
always has a trivial equilibrium E0(0, 0, 0) and a predator-extinction equilibrium E1( r

a
, 0, 0).

If the following condition holds:

H1 : a2hr2 > r2(a2 + mr2)(D + r1),

then system (1.2) has a unique coexistence equilibrium E∗(x∗, y∗1 , y∗2) , where

x∗ =

√
r2(D + r1)

a2D −mr2(D + r1)
, y∗1 =

r2

D
y∗2 , y∗2 =

(r − ax∗)(1 + m(x∗)2)
a1x∗

. (2.1)
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The characteristic equation of system (1.2) at the trivial equilibrium E0(0, 0, 0) is of the
form

(λ− r)(λ + D + r1)(λ + r2) = 0. (2.2)

It is apparently to see that the trivial equilibrium E0(0, 0, 0) is always unstable.
The characteristic equation of system (1.2) at the trivial equilibrium E1( r

a
, 0, 0) takes

the form

(λ + r)(λ2 + (r2 + D + r1)λ + r2(D + r1)− a2D(x0)2

1 + m(x0)2
e−λτ ) = 0. (2.3)

Clearly, (2.3) has a negative real root λ = −r , other roots are determined by the follow
equation:

λ2 + P1λ + P0 + Q0e
−λτ = 0, P0 = r2(D + r1), P1 = D + r1 + r2, Q0 = − a2r

2D

a2 + mr2
.

Denote

f(λ) = λ2 + (r2 + h + r1)λ + r2(D + r1)− a2D(x0)2

1 + m(x0)2
e−λτ ,

if (H1) holds, it is easy to show that, for λ real,

f(0) = −a2Dr2 − r2(a2 + mr2)(D + r1)
a2 + mr2

< 0, lim
λ→∞

f(λ) = ∞.

Hence, f(λ) = 0 has at least one positive real root. Therefore, if (H1) holds, the equilibrium
E1( r

a
, 0, 0) is unstable. If a2Dr2 < r2(a2 + mr2)(D + r1), it is readily seen from (2.3) that

E1( r
a
, 0, 0) is locally asymptotically stable when τ = 0 . In this case, it is easy to show that

P 2
1 − 2P0 = (D + r1)2 + r2

2 > 0,

P 2
0 −Q2

0 = (r2(r1 + D) +
a2Dr2

a2 + mr2
)(

r2(r1 + D)(a2 + mr2)− a2Dr2

a2 + mr2
) > 0.

By Theorem 3.4.1 in Kuang [30], we see that, E1( r
a
, 0, 0) is asymptotically stable for all

τ > 0 .
The characteristic equation of system at the coexistence equilibrium E∗(x∗, y∗1 , y∗2) is

of the form
λ3 + p2λ

2 + p1λ + p0 + (q1λ + q0)e−λτ = 0, (2.4)

where

p0 = r2(D + r1)(
2a1x

∗y∗2
(1 + m(x∗)2)2

+ 2ax∗ − r),

p1 = r2(D + r1) + (D + r1 + r2)(
2a1x

∗y∗2
(1 + m(x∗)2)2

+ 2ax∗ − r),

p2 = D + r1 + r2 − r +
2a1x

∗y∗2
(1 + m(x∗)2)2

+ 2ax∗,

q0 =
r2(D + r1)(r − 2ax∗)

1 + m(x∗)2
, q1 = − r2(D + r1)

1 + m(x∗)2
.
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When τ = 0 , (2.4) becomes λ3 + p2λ
2 + (p1 + q1)λ + p0 + q0 = 0. Clearly, by calculation we

derive that

p0 + q0 = r2(D + r1)(
3(r − 2ax∗)
1 + m(x∗)2

+ 2ax∗ − r),

p1 + q1 = (D + r1 + r2)(
2a1x

∗y∗2
(1 + m(x∗)2)2

+ 2ax∗ − r) + r2(D + r1)(
m(x∗)2

1 + m(x∗)2
).

Hence, by the Routh-Hurwitz theorem, the equilibrium E∗(x∗, y∗1 , y∗2) is locally asymptoti-
cally stable when τ = 0 if the following holds: p2(p1 + q1)− (p0 + q0) > 0 and E∗(x∗, y∗1 , y∗2)
is unstable if the inequality in (H2) is reversed.

If iω(w > 0) is a solution of (2.4) , separating real and imaginary parts, we have

−ω3 + p1ω = q0 sinωτ − q1ω cos ωτ , p2ω
2 − p0 = q0 cos ωτ + q1ω sinωτ . (2.5)

Squaring and adding the two equations of (2.5) , it follows that

ω6 + (p2
2 − 2p1)ω4 + (p2

1 − 2p0p2 − q2
1)ω

2 + p2
0 − q2

0 = 0 , (2.6)

it is easy to show that

p2
2 − 2p1 = (D + r1)2 + r2

2 + (
2a1x

∗y∗2
(1 + m(x∗)2)2

+ 2ax∗ − r)2,

p2
1 − 2p0p2 − q2

1 = r2
2(D + r1)2(1− 1

(1 + m(x∗))2
) + r2

2(
2a1x

∗y∗2
(1 + m(x∗))2

+ 2ax∗ − r)2

+(D + r1)2(
2a1x

∗y∗2
(1 + m(x∗))2

+ 2ax∗ − r)2,

p0 − q0 = r2(D + r1)(
r − ax∗

1 + m(x∗)2
+ 2ax∗ − r) .

Hence, if p0 > q0 , (2.6) has no positive real roots. Accordingly, if (H2) and p0 > q0 holds,
then the equilibrium E∗(x∗, y∗1 , y∗2) is locally asymptotically stable for all τ ≥ 0 . If p0 < q0,

then (2.6) has a unique positive root ω0, that is, (2.5) has a pair of purely imaginary roots
of the form ±ω0 . Denote

τ0n =
1
ω0

arccos
q0(p2ω

2
0 − p0) + q1ω0(ω3

0 − p1ω0)
q2
0 + q2

1ω
2
0

+
2nπ

ω0

, n = 0, 1, 2, · · · . (2.7)

Noting that if (H2) holds, E∗(x∗, y∗1 , y∗2) is locally stable when τ = 0, by the general
theory on characteristic equations of delay differential equations from [21] (Theorem 3.4.1),
E∗(x∗, y∗1 , y∗2) remains stable for τ < τ0 , where τ0 = τ00.

We claim thatd(Reλ)
dτ

∣∣∣
τ=τ0

> 0, this will show that there exists at least one eigenvalue

with positive real part for τ > τ0 . Moreover, the conditions for the existence of a Hopf
bifurcation [23] are then satisfied yielding a periodic solution. To this end, differentiating
(2.4) with respect τ , it follows that

(3λ2 + 2p2λ + p1)
dλ

dτ
+ q1e

−λτ dλ

dτ
− τ(q1λ + q0)e−λτ dλ

dτ
= λ(q1λ + q0)e−λτ ,
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which yield
(

dλ

dτ

)−1

=
3λ2 + 2p2λ + p1

−λ(λ3 + p2λ2 + p1λ + p0)
+

q1

λ(q1λ + q0)
− τ

λ
.

Hence, it can be calculated that

sgn
{

d(Reλ)
dτ

}

λ=iω0

= sgn

{
Re

(
dλ

dτ

)−1
}

λ=iω0

= sgn
{
−(p1 − 3ω2

0)(ω
2
0 − p1) + 2p2(p0 − p2ω

2
0)

(ω3
0 − p1ω0)2 + (p0 − p2ω2

0)2
− q2

1

q2
0 + q2

1ω
2
0

}
. (2.8)

We derive from (2.5) that (ω3
0 − p1ω0)2 + (p0 − p2ω

2
0)

2 = q2
0 + q2

1ω
2
0 . Hence, it follows that

sgn
{

d(Reλ)
dτ

}

λ=iω0

= sgn
{

3ω4
0 + 2(p2

2 − 2p1)ω2
0 + p2

1 − 2p0p2 − q2
1

q2
0 + q2

1ω
2
0

}
> 0.

Therefore, the transversal condition holds and a Hopf bifurcation occurs at ω = ω0, τ = τ0.

We have the following theorem on stability and Hopf bifurcation.

Theorem 2.1 For system (1.2), we have the following:

(i) The equilibrium E0(0, 0, 0) is always unstable;

(ii) The predator-extinction equilibrium E1( r
a
, 0, 0) is locally asymptotically stable if

a2Dr2 < r2(D + r1)(a2 + mr2); E1( r
a
, 0, 0) is unstable if a2Dr2 < r2(D + r1)(a2 + mr2);

(iii) Let (H1) and p2(p1+q1) > p0+q0 holds. If p0 > q0, then the coexistence equilibrium
E∗(x∗, y∗1 , y∗2) is locally asymptotically stable for all τ ≥ 0; if p0 < q0, then there exist a
positive number τ0 such that E∗(x∗, y∗1 , y∗2) is locally asymptotically stable if 0 < τ < τ0 and
is unstable if τ > τ0. Futher, system (1.2) undergoes a Hopf bifurcation at E∗(x∗, y∗1 , y∗2)
when τ = τ0 .

3 Direction and Stability of Hopf Bifurcation

In the following part, we will investigate the direction of these Hopf bifurcations and
stability of bifurcated periodic solutions arising through Hopf bifurcations based on the
normal form theory and center manifold theorem introduced by Hassard et al. [24]. We
have achieved the conditions under which a family of periodic solutions bifurcated from the
positive equilibrium of system (1.2) when the delay crosses through the critical value τ0n.

Which determine the direction of Hopf bifurcation and stability of bifurcated periodic
solutions of system (1.2) at the critical value τ0n:

g20 = 2τ0Ḡĝ20, g11 = 2τ0Ḡĝ11, g02 = 2τ0Ḡĝ02, g21 = 2τ0Ḡĝ21,



No. 2 Hopf bifurcation of a delayed predator-prey model with stage structure for the predator 257

where

ĝ20 = −(a +
a1c3

c3
2

)ρ2
1ρ̄
∗
1 −

2a1x
∗

c2
2

ρ1ρ̄
∗
1 +

a2c3

c3
2

e−2iω0τ0ρ2
1ρ̄
∗
2 +

2a2x
∗

c2
2

e−2iω0τ0ρ1ρ̄
∗
2,

ĝ11 = −(a +
a1c3

c3
2

)ρ1ρ̄1ρ̄
∗
1 −

a1x
∗

c2
2

(ρ1 + ρ̄1)ρ̄∗1 +
a2c3

c3
2

e−2iω0τ0ρ2
1ρ̄
∗
2 +

a2x
∗

c2
2

e−2iω0τ0(ρ1 + ρ̄1)ρ̄∗2,

ĝ02 = −aρ̄2
1ρ̄
∗
1 −

a1c3

c3
2

ρ̄2
1ρ̄
∗
1 −

2a1x
∗

c2
2

ρ̄1ρ̄
∗
1 +

a2c3

c3
2

e−2iω0τ0 ρ̄2
1ρ̄
∗
2 +

2a2x
∗

c2
2

e−2iω0τ0 ρ̄1ρ̄
∗
2,

ĝ21 =
6mx∗(c3 + c2y

∗
2)ρ

2
1ρ̄1

c4
2

(a1ρ̄
∗
1 − a2ρ̄

∗
2e
−iω0τ0) +

c2 − 4mx∗

c3
2

(ρ2
1 + 2ρ1ρ̄1)(a2ρ̄

∗
2e
−iω0τ0 − a1ρ̄

∗
1)

−a1x
∗ρ̄∗1

c2
2

(W (3)
20 (0)ρ̄2 + W

(3)
20 (0) + 2W

(1)
11 (0)ρ2 + 2W

(3)
11 (0)) +

a2x
∗ρ̄∗2

c2
2

(W (3)
20 (−1)ρ̄1e

iω0τ0

+W
(3)
20 (−1)eiω0τ0 + 2W

(1)
11 (−1)ρ1e

iω0τ0 + 2W
(3)
11 (−1)eiω0τ0) + ρ̄1ρ̄

∗
1(W

(1)
20 (0)

+2W 1
11(0))(−a− a1c3

c3
2

) + ρ̄1ρ̄
∗
2(W

(1)
20 (−1) + 2W 1

11(−1))
a2c3

c3
2

eiω0τ0 ,

where the terms Ḡ, W 1
11(0), W 3

11(0), W 1
11(−1), W 3

11(−1),W 1
20(0), W 3

20(0), W 1
20(−1), W 3

20(−1)
are calculated in Appendix. Now, we exhibit these coefficients we can evaluate the following
values

C1(0) =
i

2ω0τ0

(g11g20 − 2|g11|2 − 1
3
|g02|2) +

g21

2
,

µ2 = −ReC1(0)
Reλ′(τ0)

, β2 = 2Re{C1(0)}, T2 =
ImC1(0) + µ2Imλ′(τ0)

ω0τ0

.

Now using the quantities above, the properties of the Hopf bifurcation is determined by the
following results.

Theorem 3.1 For system (1.2) , we have the following:
(i) If µ2 > 0 (µ2 < 0) , then the Hopf bifurcation is supercritical (subcritical) and the

bifurcating periodic solutions exist for τ > τ0 (τ < τ0) .
(ii) β2 determines the stability of the bifurcating periodic solutions: the bifurcating

solutions on the center manifold are stable (unstable) if β2 < 0 (β2 > 0).
(iii) And T2 determines the period of the bifurcating periodic solutions: the period

increase (decrease) if T2 > 0 (T2 < 0). From the discussion in Section 2, we know that
Re(λ′(τ0)) > 0, therefore we have the following result.

Theorem 3.2 The direction of the Hopf bifurcation of system (1.2) at the origin when
τ = τj (j = 0, 1, 2, · · · ) is supercritical (subcritical) and the bifurcating periodic solutions on
the center manifold are stable (unstable) if Re{C1(0)} < 0(> 0); particularly, when τ = τ0,
the stability of the bifurcating periodic solutions is the same as that on the center manifold.

4 Numerical simulations

We now give an example to illustrate algorithm for determining the existence of Hopf
bifurcation in Section 2 and the direction and stability of Hopf bifurcation in Section 3. Let
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Figure 1: When τ = 2.2 < τ0 and with the initial condition x0 = 0.6, y0
1 = 12, y0

2 = 42 ,
that show the positive equilibrium point E∗ is locally asymptotically.
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Figure 2: When τ = 2.4 > τ0 , with the same initial condition above that shows the
bifurcating periodic solutions from the positive equilibrium point E∗.
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r = 25, r1 = 2
19

, r2 = 2
19

, a = 16, a1 = 4, a2 = 7
2
,m = 16, D = 1

2
, it is easy to show that

a2Dr2 − r2(a2 + mr2)(D + r1) = 440.3206 > 0.

Hence, system (1.2) has a unique coexistence equilibrium

E∗(

√
92

1055
,

3325
92

√
92

1055
− 2128

1055
,

63175
368

√
92

1055
− 10108

1055
).

By calculation, we have

p0 − q0 ≈ −0.3258 < 0, p2(p1 + q1)− (p0 + q0) ≈ 1.6236 > 0,

τ ≈ 2.3940, C1(0) ≈ −14.3078 + 2.4964i,

µ2 ≈ 1.6612, β2 ≈ −28.6155, T2 ≈ 24.9693.

By Theorem 3.1 , we obtain the result that the Hopf bifurcation of system (1.2) occurring
at τ0 = 2.3940 is subcritical and the bifurcating periodic solution exist when τ cross τ0 to
the left and the bifurcating periodic solution is stable, and the equilibrium E∗ is locally
asymptotically stable if 0 < τ < τ0 as is illustrated by computer simulations in Fig.1 and is
unstable if τ > τ0 as is illustrated by computer simulations in Fig. 2. System (4.1) will show
the complicated dynamical behaviors, here, we choose the initial condition x0 = 0.6, y0

1 =
12, y0

2 = 42 in our simulations.

5 Conclusions

In this paper, we conclude the stability properties of this system based on the improve-
ment of a stage structure predator-prey system proposed in [7]. By deriving the equation
describing the flow on the center manifold, we determine the direction of the Hopf bifur-
cations and the stability of the bifurcating periodic solutions. It shows that under some
conditions, the time delay due to the gestation of the mature predator may destabilize the
coexistence equilibrium of the system and cause the population to fluctuate.

In addition, with the development of the society, the ordinary differential equations of
the ecosystem is no longer satisfy mankind’s significance. Correspondingly, the economic
profit is becoming a important factor for governments, merchants and even every citizen.
Therefore, it is necessary that we should study the differential-algebraic system centered on
economic profit and commercial harvesting, and investigates the efforts of economic profit
on the dynamics of the predator-prey system.
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一类带有捕食者阶段结构的滞后型捕食食饵模型的Hopf分支

柯于胜, 李必文, 陈伯山

(湖北师范学院数学统计学院,湖北黄石 435002)

摘要: 本文研究了一类带有阶段结构和HollingIII型滞后函数响应的捕食食饵模型的稳定性和Hopf分

支的问题. 利用微分动力系统的标准型和中心流形定理, 获得了内平衡点局部稳定和周期解的方向性, 推广

了文献 [4] 所得出的结论.
关键词: 阶段结构; Hopf分支; 稳定性; Holling III型
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Appendix

We denote x̄(t) = x(t)−x∗, ȳ1(t) = y1(t)−y∗1 , ȳ2(t) = y2(t)−y∗2 . By the transformation,
the system (1.2) can be taken the form of

˙̄x = cx̄− r2(D+r1)
D

ȳ2 − ax̄2 − a1h(x̄, ȳ2) ,

˙̄y1 = c2x̄(t− τ) + a1
a2

r2(D+r1)
D

ȳ2(t− τ)− (D + r1)ȳ1 + a2h(x̄(t− τ), ȳ2(t− τ)),
˙̄y2 = Dȳ1 − r2ȳ2,

(1)

where

h(x, y) =
c1xy(x + 2x∗) + x2(c3 − 2mx∗y∗2x)

c2
1(c1 + m(x2 + 2xx∗))

,

c1 = 1 + m(x∗)2, c2 =
2a1x

∗y∗2
c2
1

, c3 = y∗2(1− 3m(x∗)2), c = r − 2ax∗ − c2 .

Then we imitate [25] to do the presentations as follow.
Let t = sτ, x̄(sτ) = x̂(s), ȳ1(sτ) = ŷ1(s), ȳ2(sτ) = ŷ2(s), τ = τ0 + µ, µ ∈ R, τ0 is defined

by (2.7), then system (1.2) can be transformed as an FDE in C = C([−1, 0], R3), we will
denote x = x̂, y1 = ŷ1, y2 = ŷ2,

ẋ(t) = (τ0 + µ)
(
cx(t)− r2(D+r1)

D
y2(t)− ax2(t)− a1h(x, y2)

)
,

ẏ1(t) = (τ0 + µ)
(
c2x(t− 1)− a1

a2

r2(D+r1)
D

y2(t− 1)− (D + r1)y1(t) + a2h(x(t− 1), y2(t− 1)
)
,

ẏ2(t) = (τ0 + µ)
(
Dy1 − r2y2

)
.

(2)
For φ = (φ1, φ2, φ3)T ∈ C([−1, 0], R3), system (1) is equivalent to the following operator
equation

U̇(t) = L(µ)Ut + F (µ)Ut, (3)

where U = (x, y1, y2), Ut = U(t + θ) for θ ∈ [−1, 0].

F (µ, φ) =




f1

f2

0


 = (τ0 + µ)



−aφ2

1(0)− a1h(φ1(0), φ3(0))
a2h(φ1(−1), φ3(−1))

0


 .
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We define

Lµφ = (τ0+µ)




c 0 − r2(D+r1)
D

0 −(D + r1) 0
0 D −r2


φ(0)+(τ0+µ)




0 0 0
c2 0 a1

a2

r2(D+r1)
D

0 0 0


φ(−1).

By the Riesz representation theorem, there exists a 3×3 matrix functions η(θ, µ) : [−1, 0] →
R3×3 whose elements are of bounded variation such that

Lµφ =
∫ 0

−1

[dη(θ, µ)]φ(θ) for φ ∈ C([−1, 0], R3), (4)

in fact, we chose η(θ, µ) = Bδ(θ) + Kδ(θ + 1), then (3) is satisfied.
For φ ∈ C([−1, 0], R3), define

A(µ, φ) =





dφ(θ)
dθ

, −1 ≤ θ < 0,∫ 0

−1

[dη(s, µ)]φ(s), θ = 0,

R(µ, φ) =

{
0, −1 ≤ θ < 0,

F (µ, θ), θ = 0.

Then system (2) is equivalent to the following operator equation:

U̇(t) = A(µ)Ut + R(µ)Ut .

For ψ ∈ C([−1, 0], (R3)∗) , the adjoint operator A∗ of the A is defined as

A∗ψ(s) =





−dψ(s)
ds

, −1 ≤s< 0,∫ 0

−1

[dηT (t, 0)]φ(−t), s = 0.

For φ ∈ C([−1, 0], R3) and ψ ∈ C([−1, 0], (R3)∗) , define a bilinear form

〈φ, ψ〉 = ψ̄T (0)φ(0)−
∫ 0

−1

∫ θ

ξ=0

ψ̄T (ξ − θ)dη(θ)φ(ξ)dξ,

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators.
From the discussion in Section 2, we know that q(θ) and q∗(s) are eigenvectors of A and

A∗ corresponding to iw0τ0 and −iw0τ0, respectively. We defined q(θ) = (ρ1, ρ2, 1)T eiω0τ0θ,

then A(0)q(θ) = iw0t0q(θ), it follows the above definition that

(τ0)




c− iw0τ0 0 − r2(D+r1)
D

0 −(D + r1)− iw0τ0 0
0 D −r2 − iw0τ0


 q(0) =




0
0
0


 ,
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then, we can easily get q(θ) = (ρ1, ρ2, 1)T eiw0τ0θ = q(0)eiw0τ0θ, where ρ1 = r2(D+r1)
D(c−iω0)

,

ρ2 = r2+iω0
D

. Similarly, by definition of A∗,

(τ0)




c + iw0τ0 0 − r2(D+r1)
D

0 −(D + r1) + iw0τ0 0
0 D −r2 + iw0τ0


 q∗(0) =




0
0
0




and q∗(θ) = Ḡ(ρ∗1, ρ∗2, 1)T eiw0τ0θ = q∗(0)eiw0τ0θ, where ρ∗1 = −c2De−iω0

(c+iω)(D+r1−iω)
, ρ∗2 = D

D+r1−iω0
,

in order to have 〈q∗(s), q(θ)〉 = 1 , we evaluate the value Ḡ , By the definition of the bilinear
inner product, we have

〈q∗(0), q(0)〉
= Ḡ(ρ̄∗1, ρ̄∗2, 1)(ρ1, ρ2, 1)T − ∫ 0

−1

∫ θ

ξ=0

Ḡ(ρ̄∗1, ρ̄∗2, 1)e−iw0(ξ−θ)dη(θ, 0)(ρ1, ρ2, 1)eiw0ξdξ

= Ḡ

(
ρ1ρ̄

∗
1 + ρ2ρ̄

∗
2 + 1−

∫ 0

−1

(ρ∗1, ρ∗2, 1)e−iw0θθη(θ)(ρ1, ρ2, 1)T

)

= Ḡ
(
1 + ρ1ρ̄

∗
1 + ρ2ρ̄

∗
2 + (c2ρ1 + a1r2(D+r1)

a2D
)τ0e

−iω0τ0 ρ̄∗2
)

.

Thus, we can choose Ḡ as

Ḡ =
1

1 + ρ1ρ̄∗1 + ρ2ρ̄∗2 + (c2ρ1 + a1r2(D+r1)
a2D

)τ0e−iω0τ0 ρ̄∗2
,

such that 〈q∗(s), q(θ)〉 = 1, 〈q∗(s), q̄(θ)〉 = 0 .
According to the algorithms given in [22] and utilizing a computation process akin to

that of Wei and Ruan [25] , we compute the coordinates to describe the center manifold C0

at µ = 0 . We define

z(t) = 〈q∗, xt〉, W (t, θ) = xt(θ)− 2Rez(t)q(θ), (5)

thus, we have W (t, θ) = W (z(t), z̄(t), θ), where

W (z(t), z̄(t), θ) = W (z, z̄) =




W
(1)
20 (θ)

W
(2)
20 (θ)

W
(3)
20 (θ)


 z2

2
+




W
(1)
11 (θ)

W
(2)
11 (θ)

W
(3)
11 (θ)


 zz̄+




W
(1)
02 (θ)

W
(2)
02 (θ)

W
(3)
02 (θ)


 z̄2

2
+· · · ,

in fact, z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗ .
Noting that W is also real if xt is real, For solution xt ∈ C0 of (3.4),

ż(t) = iω0τ0z+ q̄∗(θ)F (0,W (z(t), z̄(t), θ))+2Rezq(θ) := iω0τ0z+ q̄∗(θ)F0 = iω0τ0z+g(z, z̄).

By using (5), we have xt = (φ1, φ2, φ3) = W (t, θ)+zq(θ)+z̄q̄(θ) and q(θ) = (ρ1, ρ2, 1)T eiw0τ0θ,
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then we achieve

φ1(0) = ρ1z + ρ̄1z̄ + W 1
20(0) z2

2
+ W 1

11(0)zz̄ + W 1
02(0) z̄2

2
,

φ2(0) = ρ2z + ρ̄2z̄ + W 2
20

z2

2
+ W 2

11(0)zz̄ + W 2
02(0) z̄2

2
,

φ3(0) = z + z̄ + W 3
20

z2

2
+ W 3

11(0)zz̄ + W 3
02(0) z̄2

2
,

φ1(−1) = ρ1ze−iw0τ0θ + ρ̄1z̄eiw0τ0θ + W 1
20(−1) z2

2
+ W 1

11(−1)zz̄ + W 1
02(−1) z̄2

2
,

φ2(−1) = ρ1ze−iw0τ0θ + ρ̄1z̄eiw0τ0θ + W 2
20(−1) z2

2
+ W 2

11(−1)zz̄ + W 2
02(−1) z̄2

2
,

φ3(−1) = ze−iw0τ0θ + z̄eiw0τ0θ + W 3
20(−1) z2

2
+ W 3

11(−1)zz̄ + W 3
02(−1) z̄2

2
.

(6)

From the above presentation, we have

g(z, z̄) = g20
z2

2
+g11zz̄+g02

z̄2

2
+g21

z2z̄

2
+· · · = q̄∗F0(0, xt) = Ḡτ0(ρ̄∗1, ρ̄∗2, 1)(f1, f2, 0)T , (7)

where

f1 = −aφ2
1(0)− a1h(φ1(0), φ3(0))

= −(a + a1c3
c3
2

)φ2
1(0)− 2a1x∗

c2
2

φ1(0)φ3(0)− a1(c2−4mx∗)
c3
2

φ2
1(0)φ3(0) + O((|φ1(0)|+ |φ3(0)|)3),

f2 = a2h(φ1(−1), φ3(−1))
= a2c3

c3
2

φ2
1(0) + 2a2x∗

c2
2

φ1(0)φ3(0) + a2(c2−4mx∗)
c3
2

φ2
1(0)φ3(0) + O((|φ1(−1)|+ |φ3(−1)|)3).

(8)
Thus, By comparing the coefficients, we obtain g20 = 2τ0Ḡĝ20, g11 = 2τ0Ḡĝ11, g02 = 2τ0Ḡĝ02,

g21 = 2τ0Ḡĝ21, where

ĝ20 = −(a +
a1c3

c3
2

)ρ2
1ρ̄
∗
1 −

2a1x
∗

c2
2

ρ1ρ̄
∗
1 +

a2c3

c3
2

e−2iω0τ0ρ2
1ρ̄
∗
2 +

2a2x
∗

c2
2

e−2iω0τ0ρ1ρ̄
∗
2,

ĝ11 = −(a +
a1c3

c3
2

)ρ1ρ̄1ρ̄
∗
1 −

a1x
∗

c2
2

(ρ1 + ρ̄1)ρ̄∗1 +
a2c3

c3
2

e−2iω0τ0ρ2
1ρ̄
∗
2 +

a2x
∗

c2
2

e−2iω0τ0(ρ1 + ρ̄1)ρ̄∗2,

ĝ02 = −aρ̄2
1ρ̄
∗
1 −

a1c3

c3
2

ρ̄2
1ρ̄
∗
1 −

2a1x
∗

c2
2

ρ̄1ρ̄
∗
1 +

a2c3

c3
2

e−2iω0τ0 ρ̄2
1ρ̄
∗
2 +

2a2x
∗

c2
2

e−2iω0τ0 ρ̄1ρ̄
∗
2,

ĝ21 =
6mx∗(c3 + c2y

∗
2)ρ

2
1ρ̄1

c4
2

(a1ρ̄
∗
1 − a2ρ̄

∗
2e
−iω0τ0) +

c2 − 4mx∗

c3
2

(ρ2
1 + 2ρ1ρ̄1)(a2ρ̄

∗
2e
−iω0τ0 − a1ρ̄

∗
1)

−a1x
∗ρ̄∗1

c2
2

(W (3)
20 (0)ρ̄2 + W

(3)
20 (0) + 2W

(1)
11 (0)ρ2 + 2W

(3)
11 (0)) +

a2x
∗ρ̄∗2

c2
2

(W (3)
20 (−1)ρ̄1e

iω0τ0

+W
(3)
20 (−1)eiω0τ0 + 2W

(1)
11 (−1)ρ1e

iω0τ0 + 2W
(3)
11 (−1)eiω0τ0)

+ρ̄1ρ̄
∗
1(W

(1)
20 (0) + 2W 1

11(0))(−a− a1c3

c3
2

) + ρ̄1ρ̄
∗
2(W

(1)
20 (−1) + 2W 1

11(−1))
a2c3

c3
2

eiω0τ0 .

Next, we calculate the W i
20(0), W i

11(0), W j
20(−1), W j

11(−1) (i = 1, 2, 3; j = 1, 2) in g21.
From (4) and (5), it is easily to derive:

W
′
=

{
AW − 2Req̄∗(0)F̄ q(θ), −1 ≤ θ < 0,

AW − 2Req̄∗(0)F̄ q(θ), θ = 0,
:= AW + H(z, z̄, θ) ,

where
H(z, z̄, θ) = H20(θ) z2

2
+ H11(θ)zz̄ + H02(θ) z̄2

2
+ · · · . (9)
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Substituting (6) to (5), we obtain

(A− 2iω0τ0) W20 = −H20(θ), (10)

AW11(θ) = −H11(θ) . (11)

According the previous definition, we know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0)F0q(θ)− q∗(0)F̄0q̄(θ) = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ) . (12)

Comparing the coefficients of (6) with (8) gives that

H20(θ) = −g20q(θ)− ḡ02q̄(θ) , (13)

H11(θ) = −g11q(θ)− ḡ11q̄(θ) . (14)

It follow from (7) and (10) that

Ẇ20(θ) = 2iω0τ0W20(θ) + g20q(θ) + ḡ02q̄(θ).

By the previous definition, we denote q(θ) = q(0)eiω0τ0θ, and by solving W20, we obtain

W20(θ) =
ig20

ω0τ0

q(0)eiω0τ0 +
ig20

3ω0τ0

q̄(0)e−iω0τ0 + M1e
2iω0τ0θ .

We can also obtain the follow result by utilizing the same method.

Ẇ11(θ) = g11(θ)q(θ) + ḡ11(θ)q̄(θ) ,W11(θ) = − ig11

ω0τ0

q(0)eiω0τ0 +
ig11

ω0τ0

q̄(0)e−iω0τ0 + M2 .

Now, we will try to find E1 and E2. From the definition of A and (7), we obtain that

∫ 0

−1

dη(θ)W20(θ) = 2iw0W20 −H20(0)

and ∫ 0

−1

dη(θ)W11(θ) = −H11(0),

where dη(θ) = η(θ, 0).
Substituting (13) and (14) and noticing that

(
iw0τ0I −

∫ 0

−1

eiw0τ0θdη(θ)
)

q(0) = 0,

(
−iw0τ0I −

∫ 0

−1

e−iw0τ0θdη(θ)
)

q(0) = 0, (15)

we obtain

(
−2iw0τ0I +

∫ 0

−1
e2iw0τ0θdη(θ)

)
M1 = −2τ0




−(a + a1c3
c3
2

)ρ2
1 − 2a1x∗

c2
2

ρ1

a2e
−2iω0τ0( c3

c3
2
ρ2

1 + 2x∗

c2
2

ρ1)

0



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which is equivalent to



2iω0 − c 0 − r2(D+r1)
D

−c2e
−2iω 2iω0 − (D + r1) −a1

a2

r2(D+r1)
D

e−2iω

0 −D 2iω0 − r2


M1 =




−(a + a1c3
c3
2

)ρ2
1 − 2a1x∗

c2
2

ρ1

a2e
−2iω0τ0( c3

c3
2
ρ2

1 + 2x∗

c2
2

ρ1)

0


 .

Similarly, from (13) and (15), −AW11(θ) = H11(θ) and for θ = 0,

∫ 0

−1

dη(θ)W11(θ) = g11q(0)− ḡ11q̄(0)− τ0



−(a + a1c3

c3
2

)ρ1ρ̄1 − a1x∗

c2
2

(ρ1 + ρ̄1)
a2c3
c2
2

ρ1ρ̄1 + a2x∗

c2
2

(ρ1 + ρ̄1)

0


 ,

from which we can get

g11
iw0

∫ 0

−1

dη(θ)q(0)eiw0τ0 − ḡ11

iw0τ0

∫ 0

−1

dη(θ)q̄(0)e−iw0τ0 + E2

∫ 0

−1

dη(θ)

= g11q(0)− ḡ11q̄(0)− τ0



−2(a + a1c3

c3
2

)ρ1ρ̄1 − 2a1x∗

c2
2

(ρ1 + ρ̄1)
2a2c3

c2
2

ρ1ρ̄1 + 2a2x∗

c2
2

(ρ1 + ρ̄1)

0


 ,

which is equivalent to



−c 0 − r2(D+r1)
D

−c2 −(D + r1) −a1
a2

r2(D+r1)
D

0 −D −r2


M2 =



−(a + a1c3

c3
2

)ρ1ρ̄1 − a1x∗

c2
2

(ρ1 + ρ̄1)
a2c3
c2
2

ρ1ρ̄1 + a2x∗

c2
2

(ρ1 + ρ̄1)

0


 .

From the above calculation, we can get the vector M1 and M2 and put them in the equations
(14) and (15), we can also obtain the terms

W 1
11(0), W 3

11(0), W 1
11(−1), W 3

11(−1),W 1
20(0), W 3

20(0), W 1
20(−1), W 3

20(−1), (16)

and achieve the quantity g21 . For this propose, we express each gij in terms of the parameters
and delay. and then, we can evaluate the following values:

C1(0) =
i

2ω0τ0

(g11g20 − 2|g11|2 − 1
3
|g02|2) +

g21

2
,

µ2 = −ReC1(0)
Reλ′(τ0)

, β2 = 2Re{C1(0)},

T2 = − ImC1(0) + µ2Imλ′(τ0)
ω0τ0

.


