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Abstract: This paper investigate the stability and Hopf bifurcation of a delayed predator-prey
model with Holling type-III response function and stage-structure for the predator. By applying
the norm form of differential dynamic system and the center manifold theorem, we determined the
stability of the interior equilibrium the direction of the period solution. Obviously, the result of
Tian and Xu is promoted in this paper.
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1 Introduction

The predator-prey systems play an important and fundamental role among the rela-
tionships between the biological population. There exists a strong interest during the last
few decades to study predator-prey system in population dynamics by mathematicians and
biologists. It has turned out that many researches in mathematical models contribute to un-
derstanding the interactions of predator and prey in these systems. Then various dynamics
behaviors are achieved, such as steady states, oscillations, bifurcations and chaos depending
on the model parameters, see [1-5].

Recently, the models governed by the ordinary and partial differential equations involv-
ing delays attracted people’s attention and were successfully applied to many problems in
many research areas (such as biology, population dynamics, neural networks, feedback con-
trolled mechanical systems and so on, see [6-7]). In delayed differential equations, period
solutions can arise through the Hopf bifurcation. Several methods for analyzing the nature
of Hopf bifurcation had been proposed by many authors. Thereinto, the center manifold
theory is one of the rigorous mathematical tools to study bifurcations of delay differential
equations, see [13-20].

From the view of biology, many species have a life history that take them through an

immature and mature stage, and the predator in the first stage often has no ability to attack
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prey and reproduce. Many author have investigated the models with stage-structure and
obtained varies dynamics behaviors, see [4-12]. In [4], a predator-prey model with stage-

structure and Holling type II response is considered as follow:

z(t) = z(¢) (r —az(t) — 1‘113;58)) ,

(1) = 25080 — iy (1) — Dy (b), (1.1)

(
92(t) = Dy1(t) — raya(t),

<

where x(t), y1(t), y2(t) represent the densities of prey, immature and mature predator,
respectively, ax(t), r1, 7o represent the death rate of prey, immature and mature predator,

axr
14+max

response function of the mature predators’ capture. The stability of model (1.1) was studied
by Xu et al. [4] in detail.
Consider the time-delay due to the pregnant of the mature predator for advanced ani-

respectively. D is the convert rate from immature predator to mature predator. is

mals influences the stability of the equilibrium in delayed differential equations, we establish

a delayed Holling Type III response predator-prey system as follows:

1+max2(t)
u(8) = BDR0=0) )~ Dy (1), (12)

1+ma?(t—T)

Ua(t) = Dys(t) — raya(t).

x(t) = x(t) (r —az(t) — 7‘1”(01’2(”) ,

The rest of this paper is organized as follows: in the next section, by analyzing the
corresponding characteristic equations, the local stability of each of the feasible equilibrium
of system (1.2) is discussed and the existence of a Hopf bifurcation at the coexistence equi-
librium is established. The stability and the direction of periodic solutions bifurcating from
Hopf bifurcations are investigated by using the normal form theory [23] and the center man-
ifold theorem [24] in Section 3. The numerical simulations are carried out to support the
theoretical analysis of the research in Section 4. Finally, a brief discussion is given in Section
5.

2 Equilibrium Analysis

In this section, we analysis the local stability of each of feasible equilibria of system (1.2)
1.2)

always has a trivial equilibrium Ey(0, 0, 0) and a predator-extinction equilibrium E;(%,0,0).

a

and the existence of Hopf bifurcations at the coexistence equilibrium. Obviously, system (

If the following condition holds:
Hy : ashr? > ro(a® + mr?) (D +ry),

then system (1.2) has a unique coexistence equilibrium E*(x*, y7, y3) , where

. ro(D +11) . Ta . (r—az®) (1 +m(z*)?)
r = 9 yl y27 y2 = * '
asD — mry(D + 1) D a1z

(2.1)
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The characteristic equation of system (1.2) at the trivial equilibrium FEy(0, 0, 0) is of the
form
A=r)A+D+r)(A+r2) =0. (2.2)

It is apparently to see that the trivial equilibrium Fy(0, 0, 0) is always unstable.
The characteristic equation of system (1.2) at the trivial equilibrium E;(Z, 0, 0) takes

a

the form
A1) 4 (ra £ D+ 1A+ 1o(D 1) — ~2P@° xey (2.3)
2 1 2 1 T+ m(zo)? . )
Clearly, (2.3) has a negative real root A = —r , other roots are determined by the follow
equation:
axr’D
N+ PA+Py+Qoe ™ =0,Py=ry(D+r1),Pr=D+r +72,Q0 = —
a? +mr?

Denote )
azD(zo)*  _ 5,

f()\):)\2+(T2+h+’r1)/\+7’2(D+7‘1)—H_T(IO)Z

)

if (H1) holds, it is easy to show that, for A real,

_azDr? —ry(a® +mr?) (D + 1)
a? + mr?

f(0) =

< O,/\lim f(A) = oc.

Hence, f(A\) = 0 has at least one positive real root. Therefore, if (H1) holds, the equilibrium
Ei(Z, 0, 0) is unstable. If as Dr? < ro(a® + mr?)(D + rq), it is readily seen from (2.3) that

Ei(%, 0, 0) is locally asymptotically stable when 7 = 0 . In this case, it is easy to show that
P} —2Py=(D+m)*+1r; >0,
ayDr? _ ro(ry + D)(a? +mr?) — ay Dr?

P —Qf = (r2(ri + D) + )(

a? + mr? ) >0.

a? +mr?
By Theorem 3.4.1 in Kuang [30], we see that, Ei(%, 0, 0) is asymptotically stable for all
T>0.

The characteristic equation of system at the coexistence equilibrium E*(z*, i, v3) is
of the form

N pa X+ pid+po + (A4 qo)e™ =0, (2.4)

where

2a1x* Y3 .
5 +2ar" — 1),

po =12(D + Tl)(m

2a1x%y; .
p1 = Tz(D + 7“1) + (D +7ry+ TZ)(W + 2azx™ — 7"),
2a12* Y5
=D — — 72 ___ 1 2az"
D2 +7ry+ 1 T+(1+m($*)2)2+ ar”,
(D4 711)(r — 2ax") __TQ(D+T1)
o= 1+ m(z*)? & 1+ m(z*)?
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When 7 =0, (2.4) becomes A\* + paA? + (p1 + q1)A + po + qo = 0. Clearly, by calculation we
derive that

3(r — 2az*) .
Po+ qo = r2(D + Tl)(m + 2az" —r),
2012 y; . m(z*)?
p1 +q1 = (D+T1 +T2)(W +2a$ - 7") +r2(D+T1)(H_T(:L,*)2)

Hence, by the Routh-Hurwitz theorem, the equilibrium E*(z*, y7, y3) is locally asymptoti-
cally stable when 7 = 0 if the following holds: pa(p1 +q1) — (po+ qo) > 0 and E*(z*, yi, v3)
is unstable if the inequality in (H2) is reversed.

If iw(w > 0) is a solution of (2.4) , separating real and imaginary parts, we have
—w? + prw = qosinwT — uw coswT , Paw? — Py = o COSWT + qrw sin wT . (2.5)
Squaring and adding the two equations of (2.5) , it follows that
W® + (p3 = 2p1)w’ + (T — 2pop2 — 47)w? +pg — g5 =0, (2.6)

it is easy to show that

ps—2p1 = (D4r)’+7r3+ (—(1 ia;i;y})z)z + 2az* —r)?,
e R R T Wlb(x*))z) +r(g iaigjf)),z + 202" —1)?
+(D + rl)z(m + 2az* — 1),
Po—qo = 72(D Jr7"1)(17’+;ﬂf(€;:§)2 +2azx* —71).

Hence, if pg > qo , (2.6) has no positive real roots. Accordingly, if (H2) and pg > ¢o holds,
then the equilibrium E*(z*, y, y;) is locally asymptotically stable for all 7 > 0. If py < qo,
then (2.6) has a unique positive root wy, that is, (2.5) has a pair of purely imaginary roots
of the form +wgy . Denote

1 qo(p2wg — po) + rwo (Wi — prwo) n 2nm

Ton = — arccos
wo 4 + G;wh wo

., n=0,1,2,--- . (2.7)

Noting that if (H2) holds, E*(x*, yi, y5) is locally stable when 7 = 0, by the general
theory on characteristic equations of delay differential equations from [21] (Theorem 3.4.1),
E*(z*, y¥, y5) remains stable for 7 < 7y , where 79 = 7gg.

We claim that@ > 0, this will show that there exists at least one eigenvalue
with positive real part fo;_;0> To . Moreover, the conditions for the existence of a Hopf
bifurcation [23] are then satisfied yielding a periodic solution. To this end, differentiating

(2.4) with respect 7 , it follows that

d\ dX\ dA\
(3A% + 2pa X +p1)$ + (h@*’\TE —7( A+ (Jo)ef’\TdfT =M@ A +q)e 7,
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which yield

<dA>_1 322 4 2po ) + 1 ¢ T
AN+ X2 A+ o) Mad+q) N

- _
Hence, it can be calculated that

d 1
: { (ReA)} - { e (dA) }
dr i dr }
0 A=iwg

— sgn {_ (p1 — 3wd) (wg — p1) + 2p2(Po — Pawi) it } ' (2.8)

(Wi — p1wo)? + (po — pawi)? 45 + 7w

We derive from (2.5) that (wj — p1wo)? + (po — paw?)? = @2 + qiw?. Hence, it follows that

d(Re) 3wt +2(p2 — 2 2 2_2 — 2
n{ (Re )} _ Sgn{ wy +2(p3 p;)wojfl DoP2 (.71} < 0.
A—iwo g5 + qiws

Therefore, the transversal condition holds and a Hopf bifurcation occurs at w = wg, 7 = 79.

We have the following theorem on stability and Hopf bifurcation.

Theorem 2.1 For system (1.2), we have the following:

(i) The equilibrium E(0, 0, 0) is always unstable;

(ii) The predator-extinction equilibrium F;(Z, 0, 0) is locally asymptotically stable if
asDr? < ry(D 4+ r1)(a® + mr?); Ei(%, 0, 0) is unstable if a;Dr* < ro(D +r1)(a® + mr?);

(iii) Let (H1) and pa(p1+q1) > po+qo holds. If pg > qo, then the coexistence equilibrium
E*(x*, yi, y3) is locally asymptotically stable for all 7 > 0; if py < qo, then there exist a
positive number 7y such that E*(z*, y7, y3) is locally asymptotically stable if 0 < 7 < 75 and
is unstable if 7 > 7. Futher, system (1.2) undergoes a Hopf bifurcation at E*(z*, y;, y3)

when 7 =179 .

3 Direction and Stability of Hopf Bifurcation

In the following part, we will investigate the direction of these Hopf bifurcations and
stability of bifurcated periodic solutions arising through Hopf bifurcations based on the
normal form theory and center manifold theorem introduced by Hassard et al. [24]. We
have achieved the conditions under which a family of periodic solutions bifurcated from the

positive equilibrium of system (1.2) when the delay crosses through the critical value 7g,,.

Which determine the direction of Hopf bifurcation and stability of bifurcated periodic
solutions of system (1.2) at the critical value 7,,:

920 = 270Gg20, g11 = 210Gg11, Goz = 270G go2, go1 = 270G g1,
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where
~ a1\ o 2(11.13 —x 2 C3 7210.)07'0 2 —x 2(12 7210.)07'0
g0 = —(a+ T)P1P1 Tz PPt 5 PiP2+ — 3 P10,
2 2 c3 2
~ aicCs R — a z* a’263 — 24w T z* —24wQ T — \ =%
gu = —(a+ 3 )P1P1PT — 2 (p1 + p1)pT + 2 ¢ 20t ¥ iy +2 0T (py + 1)
2 c3 2 c5
. o 0103 5,  201T" iworo <2 x| 202T" _oi
G2 = —apipl =~ PPl — 3 p1p1+76 ST PPy + = e T s,
2 2 Co 2
~ 6mx*(03 + C2y*)P2ﬁ1 —x —iwo T dma* —k _ — w0 T —x
g21 = cg S (a1p] — azpye”"°™) + T(m +2p1p1)(azpse” "™ — a1py)
a19€ pi 3) 3 1 3 asx” P 3) _ jwoT
L (Wz(o ( )P2 + W:)(o)(()) + 2W1(1)(0)P2 + 2W1(1)<0)) + 2 2 (Wz(o (_ )p16 oo
5 2

FWgy) (= 1) + 2W) (~1)pre™o™ + 20 (< 1)) + p1 i (Way' (0)

ac a5 ¥ Qa2C TWO T
L2 (0)(—a — U52) + pup (WA (—1) + 2w (—1)) 2 etenm,
2 2

where the terms C_J, Wlll(o)a ngl(o)v Wlll(_l)a W131(_1)7W210(0)7 W230(0)v Wzlo(_l)7 Wgo(_l)

are calculated in Appendix. Now, we exhibit these coefficients we can evaluate the following

values
1
€1(0) = 5 —(gngmn — 2gu* = glowl®) + %2,
ReCl( ) ImC (0) 4 poImN (79)
= - = 2 T = .
He2 Re/\/(To)’ 52 Re{Cl(O)}, 2 oo

Now using the quantities above, the properties of the Hopf bifurcation is determined by the
following results.

Theorem 3.1 For system (1.2) , we have the following:

(i) If po > 0 (2 < 0) , then the Hopf bifurcation is supercritical (subcritical) and the
bifurcating periodic solutions exist for 7 > 7 (7 < 79) .

(ii) P2 determines the stability of the bifurcating periodic solutions: the bifurcating
solutions on the center manifold are stable (unstable) if B2 < 0 (82 > 0).

(iii) And T, determines the period of the bifurcating periodic solutions: the period
increase (decrease) if 7o > 0 (75 < 0). From the discussion in Section 2, we know that
Re(N(19)) > 0, therefore we have the following result.

Theorem 3.2 The direction of the Hopf bifurcation of system (1.2) at the origin when
T=1;(j=0,1,2,---) is supercritical (subcritical) and the bifurcating periodic solutions on
the center manifold are stable (unstable) if Re{C;(0)} < 0(> 0); particularly, when 7 = 7,

the stability of the bifurcating periodic solutions is the same as that on the center manifold.

4 Numerical simulations

We now give an example to illustrate algorithm for determining the existence of Hopf

bifurcation in Section 2 and the direction and stability of Hopf bifurcation in Section 3. Let
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Figure 1: When 7 = 2.2 < 19 and with the initial condition 2° = 0.6, y{ = 12, y§ =42,
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r=251r = =2 r =16,a1 =4,a, =

l\?\\l

16, D = = , it is easy to show that

19072 = 19’

asDr? — ry(a® + mr?)(D + ry) = 440.3206 > 0.
Hence, system (1.2) has a unique coexistence equilibrium

92 3325 2128 63175 10108
1055 105 ~1055° 368 105 1055

By calculation, we have

Po— qo ~ —0.3258 < 0, p2(p1+q1) — (po + qo) = 1.6236 > 0,
7~ 23040, Cy1(0) ~ —14.3078 + 2.49644,
fiy ~ 1.6612, By ~ —28.6155, T ~ 24.9693.

By Theorem 3.1 , we obtain the result that the Hopf bifurcation of system (1.2) occurring
at 79 = 2.3940 is subcritical and the bifurcating periodic solution exist when 7 cross 7y to
the left and the bifurcating periodic solution is stable, and the equilibrium E* is locally
asymptotically stable if 0 < 7 < 7y as is illustrated by computer simulations in Fig.1 and is
unstable if 7 > 7 as is illustrated by computer simulations in Fig. 2. System (4.1) will show
the complicated dynamical behaviors, here, we choose the initial condition z° = 0.6, 3 =

12, y9 = 42 in our simulations.

5 Conclusions

In this paper, we conclude the stability properties of this system based on the improve-
ment of a stage structure predator-prey system proposed in [7]. By deriving the equation
describing the flow on the center manifold, we determine the direction of the Hopf bifur-
cations and the stability of the bifurcating periodic solutions. It shows that under some
conditions, the time delay due to the gestation of the mature predator may destabilize the
coexistence equilibrium of the system and cause the population to fluctuate.

In addition, with the development of the society, the ordinary differential equations of
the ecosystem is no longer satisfy mankind’s significance. Correspondingly, the economic
profit is becoming a important factor for governments, merchants and even every citizen.
Therefore, it is necessary that we should study the differential-algebraic system centered on
economic profit and commercial harvesting, and investigates the efforts of economic profit

on the dynamics of the predator-prey system.
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Appendix

We denote Z(t) = x(t) —x*, 41 (t) = y1(t) —yi, 92(t) = y2(t) —y5 . By the transformation,
the system (1.2) can be taken the form of

r2D4r) g 2% — ayh(T, §2)

=Tt -7)+ w 2B g (t — 1) — (D + r1)gs + ash(2(t = 7),32(t = 7)), (1)

T =cI —

az

Yo = Dy — r2¥a,

where
crxy(z + 22*) + 2%(c3 — 2ma*yiT)
h(:ﬂ,y) = P 2 . 2 s
(er +m(x? + 2za*))
2 *, %
i =1+m(z*)? co= Cb1c$2 y2, cs =ys(1 —3m(z*)?), c=r—2ax" —c;.
1

Then we imitate [25] to do the presentations as follow.
Let t = s7,%(sT) = Z(s), 41(s7) = §1(5), Y2(sT) = G2(s), T = To + p, p € R, 79 is defined
by (2.7), then system (1.2) can be transformed as an FDE in C = C([—1,0], R?), we will

denote x = &, y1 = 91, Y2 = Va2,

i(t) = (ro + o) (ca(t) = 25y (t) — aa?(t) — anh(w, ) )
t) = (10 +p) | cow(t —1) — & %92@ —1) = (D + 7))y (t) + axh(z(t — 1), y2(t — 1)>7
92(t) = (10 + p) ( Dyr — T2y2)~

(2)
For ¢ = (¢1, ¢o, ¢3)T € C([—1,0], R3), system (1) is equivalent to the following operator

equation

U(t) = L(n)Us + F(u)Us, (3)
where U = (z, y1, y2),U; = U(t + 0) for § € [-1, 0].
fi —a¢?(0) — a1h(¢1(0), ¢3(0))

Flp, ) =1 fo | =(m0o+p) ash(¢1(=1), ¢3(=1))
0 0
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We define
c 0 — () 0 0 0

Lyg=(ro+p) | 0 —(D+r) 0 PO0)+(ro+p) [ e 0 LB | g(—1).
0 D —Ty 0 0 0

By the Riesz representation theorem, there exists a 3 x 3 matrix functions (6, ) : [—1, 0] —

R3*3 whose elements are of bounded variation such that

0

LN¢ = [dn(e, U)]¢(9) for ¢ € C([_la OLRS)a (4)

-1

in fact, we chose n(0, p) = Bo(0) + K6(0 + 1), then (3) is satisfied.
For ¢ € C([—1, 0], R?), define

o) a), ~1<6<0,
A(p, 9) = 0
[ s, ot oo
1
Riu, ¢) = 0, -1<6<0,
T o 0, 6 =0.

Then system (2) is equivalent to the following operator equation:
U(t) = A(w)Us + R(w)U, .
For ¢ € C([-1, 0], (R3)*) , the adjoint operator A* of the A is defined as

— dlg(:) , -1 <s< 0,

A*Y(s) = 0
o) / AT (t, 0)p(—t),  s=0.

For ¢ € C([—1, 0], R?) and ¥ € C([—1, 0], (R®)*) , define a bilinear form

(6.4) = BT (0)(0) — / e oo

where n(6) = n(0, 0). Then A(0) and A* are adjoint operators.

From the discussion in Section 2, we know that ¢(f) and ¢*(s) are eigenvectors of A and
A* corresponding to iwgmy and —iwgTy, respectively. We defined q(0) = (p1, pa, 1)Te™ w00
then A(0)q(0) = twotoq(P), it follows the above definition that

¢ — iwgTo 0 —7”(DD+“) 0
(To) 0 —(D+T1) —inTo 0 Q(O) = 0 5

0 D —T9 — inTQ 0
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then, we can easily get q(8) = (p1, p2, 1)Te™00 = ¢(0)e0™? where p; = B((C’D_Zg§,
P2 = %. Similarly, by definition of A*,
c+ iono 0 _77*2(DD+7’1) 0
(7'0) 0 —(D+T1> + 1wo Ty 0 q*(O) = 0
0 D —T9 + 1WoToy 0
and ¢*(0) = G(pi, p3, DTe o™ = g (0)e™™", where p} = By = 5P

in order to have (¢*(s), ¢(f)) = 1, we evaluate the value G , By the definition of the bilinear

inner product, we have

(q7(0), q(0)) ,
/=% —% 0 N[ =% =% —twp (E— iwo
= G(,Ol, P25 1)(1017 P2, 1>T - f—l G(pl; P25 1)6 € G)dn(ﬁ, 0)(p17 P2, 1)6 §d§
=0

@

0
= <plﬁ’{ +p2ps + 1 —/ (01, p5, Ve ™%0n(0)(p1, pa, 1)T>

—1
=G (1 + p1p7 + p2ps + (c2p1 + %)%67””@) :

Thus, we can choose G as

1
1 —x —x arra(D4ry) —iworo g
+ p1p7 + p2ps + (capr + asD )Toe P2

G =
such that (¢*(s), ¢(0)) = 1,(¢"(s), q(0)) =0 .
According to the algorithms given in [22] and utilizing a computation process akin to
that of Wei and Ruan [25] , we compute the coordinates to describe the center manifold Cy
at © =0 . We define

2(t) = (g%, xe),  W(t,0) = 4(0) — 2Rez(t)q(0), ()

Wa'O)\ ;[ W) W) \
W(a(t), 2(), 0) =W (2, 2) = | Wy (6) | 5+ | WiP(O) |22+| We'(0) | 5+,

3 3 3

Wao (6) Wiy (0) W (0)

in fact, z and Z are local coordinates for center manifold Cy in the direction of ¢* and ¢* .
Noting that W is also real if x; is real, For solution z; € Cy of (3.4),

2(t) = iwoToz+q"(0)F (0, W (2(t), Z(t), 0))+2Rezq(0) := iwoToz+q"(8) Fo = iwoTo2+9(2, 2).

By using (5), we have x; = (¢1, ¢a, ¢3) = W (t, 0)+2q(0)+2q(0) and q(0) = (p1, p2, 1)Te'0m
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then we achieve

$1(0) = prz + p1Z + Wi(0)5 + Wiy (0)2Z + Wh(0) 5,

¢2(0) = P22 + P2z + W20 22 + W121( )ZZJF Wo22( )%

03(0) = 2+ 2+ Wi + Wi (0)22 + W§(0) 3, (©)
$1(—1) = Plzeﬂwome + p1 Z‘EWOTOQ + Wzlo( ) + Wlll(* )2Z + Woz( 1)%7

$a(—1) = pw + przeemod 4 W2 (~1)5 < WE (—1)22 + Wi (-1)5,

$3(—1) = ze~ ool 4 Feworod B (—1)5 + wa@l)zz +WeH(-1)5

From the above presentation, we have

_ 22 _ z2 2%z L, - T
9(z,2) = 92054-91122-#9025-1-92174-”' = q"Fo(0,2¢) = Gro(py, p3, V)(f1, f2, 0)7, (7)
where

i = —ad3(0) = arh($1(0), 65(0))

= —(a+ 2*)¢3(0) — 247 91(0)65(0) — “2FTIG2(0)¢3(0) + O((|61.(0)] + |¢3(0)])*),
fo = ash($1(=1), ds(~1))

= 2262 93(0) + 297 1 (0) 3 (0) + “2L 21 62(0)65(0) + O((| 1 (=1)| + [ds(~1)])?).

(8)
Thus, By comparing the coefficients, we obtain gog = 270G 20, g11 = 270G 11, goo = 270G G2,
go1 = 279G §21, where

~ a1C3 —% 2(111‘ 2 3 — 24w T * 2 IL'* —2iwo T —%
g = —(a+—=32)pIpt — —5—pipy + —5-€ PPy + 20T ) b
5 3 3 c
~ a1C3 — a z* A2C3  _9i0T * — 24w T — o\ =%
gn = —(a+ 3 )p1p1pT — 2 (p1 + p1)pT + 2 ¢ om0 i + 2 2070 (py 4 1) P
2 c3 2 c5
~ ~2 % 163 o 2a1$ = — 203 _2iwore =2 =* 2&2.’13 — 21w T
Joo = —apipy — —5- PPy — —5 PP+ —ae T s 4 29070 5y P,
(5 (5 Co 5
“ 6mx*(cs + cays 25 . —%  —iwoT dmaz* —k _ —iWo T =k
go1 = (e ! 23)PiP (a1p] — azpze™"7) + 67(:01 + 2p1p1)(azpze” "7 — a1py)
2 2
alx pPi 3) 3 1 3 a2$ P> 3) iwoT
L (Wz(o (0)p2 + WQ(O)(0> + 2W1(1)(0)P2 + 2W1(1)(0)> + 2 (Wz(o (=1)pre™rm
5 5

W(3)< ) WO To +2W1(11)(_1)p eiono _|_2w(3)( ) ZUJOTO)

— — a1C — —x Aa2C WO T
+105 (W30 (0) + 2W (0) (—a = =252) 4 pup (Wi (—1) + 27y (=1)) 5™ €™,
2 2

Next, we calculate the Wi (0), W}, (0), Wiy (=1), Wi, (=1) (i =1, 2, 3; j = 1,2) in ga.
From (4) and (5), it is easily to derive:

, AW — 2Req*(0)Fq(0), —-1<#6<0, ~
W = ~ =AW + H(z, z, 0),
AW — 2Req*(0)Fq(0), 0 =0,

where
2

H(z, %, 0) = Hoo(0)% + Hy1(0)27 + Hya(0)5 + -+ . (9)
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Substituting (6) to (5), we obtain
(A = 2iwgy) Wag = —Ha(0), (10)
AW11(0) = —H11(0) . (11)
According the previous definition, we know that for § € [—1, 0),
H(z, z, 8) = =7 (0) Foq(0) — ¢*(0) Fog(8) = —g(z, 2)q(0) — g(2,2)d(0) - (12)
Comparing the coefficients of (6) with (8) gives that
Hao(0) = —g20q(0) — g02q(0) , (13)
Hy1(0) = —g119(0) — §11q(0) - (14)
It follow from (7) and (10) that
Wao(0) = 2iwyoWao(0) + g204(6) + Go2G(6).
By the previous definition, we denote ¢(0) = q(0)e™°™% and by solving Wag, we obtain
Wao(6) = t920 g(0)e o™ 4 920 g(0)e=™0m 4 M e2iwomof
WoTo 3&)07’0
We can also obtain the follow result by utilizing the same method.
Wii(0) = g11(0)a(0) + g1 (0)2(0) , Wis(8) = — 2 g(0)e™o™ + Lg(0)e=" o™ + M, .
WoTo WoTo
Now, we will try to find E; and F,. From the definition of A and (7), we obtain that
0
/ dn(H)WQO(G) = 2inW20 — HQ()(O)
-1
and
0
[ an@wa(o) = ~t1,00),
-1
where dn(0) = n(6, 0).
Substituting (13) and (14) and noticing that
o o
(st = [ i) a0) =0, (<twmi— [ emano)) ) <0, (15)

-1 —1

we obtain

aic 2 2a;x”
—(a+25*)pi — =5-p

€2

(—inoTOI + fi)l eZinToedn(9)> M, = —279 age’%”“m(%p% + %m)

o
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which is equivalent to

; D 2 2aiz*
2iwg — ¢ 0 _w _(a + aécs)pl _ aclgz o
—92; . D o9 Yy *
—Co€ 2iw 220)0 — (D + rl) —%we 24w Ml _ ase szom(cs P% + %,01)
O _D 22&)0 — T2 O

Similarly, from (13) and (15), —AW3,(0) = Hy1(6) and for § = 0,

0 —(a+ alc3),01/51 - m* (p1+p1)
/ dn(0)W11(0) = 9119(0) — §11G(0) — 7o oo+ (,01 +p1) ,
1
0

from which we can get

0 _ 0
. / dn(6)q(0)ei oo — I / dn(0)g(0)e~ "m0 + By / dn(0)
1 1 -1

Z’LU()’TQ

—2(a+ “5*)p1p1 — 2””7* (p1+ p1)
= 9119(0) — 114(0) — 7o 2a203 p1p1+ 2‘129; (01 +p1) )
0
which is equivalent to

—c 0 _T‘Q(D-‘r?"l) _(a+ CL1'C3> = alx*( + — )
5 3 P1P1 2 P11

—ez —(Dr) - | My= | e (ot 1)

0 —-D —T9 0

From the above calculation, we can get the vector M; and M, and put them in the equations

(14) and (15), we can also obtain the terms
W111<0)7 W131(0)7 Wlll(_l)a Wf’l(—l),WQIO(O), W230<0)7 W210(_1)7 W230(_1)’ (16)

and achieve the quantity g»; . For this propose, we express each g;; in terms of the parameters

and delay. and then, we can evaluate the following values:

1
C1(0) = (911920 —2|gu1]* — §|902\2) + %,
ReC
o = Re;(( ), = 2RelC1 O]
~ ImC(0) + proIm) (7'0)
TQ -

WoTo



