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Abstract: In this paper, we consider studentized randomly trimmed means and their boot-

strap under relaxed conditions. By using empirical process approach of CG, we obtain the stu-

densized central limit theorem of randomly trimmed means whose asymptotic properties do not

depend on the underlying density under relaxed conditions, which extend the results of randomly

trimmed means by Chen and Gine [1].
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1 Introduction

It is well known that the sample mean is very sensitive to outliers in the data. As an
alternative approach, randomly trimmed means have been studied widely in statistics. We
can construct a randomly trimmed mean as follows: choose two levels an < bn depending
on the sample and calculate the average of the data points between an and bn. Above levels
can be obtained by evaluating empirical distribution Fn of functions a(F ) and b(F ) where
F is the probability distribution of X. If a(F ) = F−1(α/2) and b(F ) = F−1(1 − α/2), we
can have the classical trimming. Let a(F ) = F−1(α/2) and b(F ) = F−1(1 − α/2), X is
trimmed at level α. Let a(F ) = µ(F ) − cs(F ) and b(F ) = µ(F ) − cs(F ) where µ denotes
median, s denotes median absolute deviation (MAD), and c is a constant of choice, we can
have trimmed mean of Hampel [2].

Trimmed means are robust and can be bootstrapped. Hall and Padmanahban [3] study
the bootstrap for the studentized classical trimmed mean. Shorack [4] provides a system-
atic study of bootstrapping to various L-statistics. In a recent paper, Chen and Gine [1]
(hence CG, 2004) present a unified, empirical process based approach to the central limit
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theorem and the bootstrap central limit theorem for the general trimmed mean under mild
assumptions on the levels a(F ) and b(F ). Their basic assumption is that

√
n(an− a) can be

asymptotically linearized. It is asymptotically equivalent to
n∑

i=1

(h1(Xi) − Eh1(X))/
√

n for

some square integrable function h1 for F . Similar conditions also hold for
√

n(bn − b).
Despite their generality, the central limit theorems of CG include a complicated expres-

sion for the asymptotic variance of trimmed means that depends on the underlying density
of X. Following the empirical process approach of CG, we study studentized randomly
trimmed means and their bootstrap under relaxed conditions. We can avoid the complex
expression of variance in our central limit theorems. The results in this thesis may be used
to obtain asymptotic confidence intervals and tests for trimmed means and also goes to the
confidence intervals and tests to the usual means. We do not pursue that here.

This thesis is organized as follows. In Section 2, we introduce some definitions and major
results of CG. Section 3 studies the asymptotic properties of studentized trimmed means.
Section 4 verifies the validity of bootstrap. A simple example is introduced in Section 5.

2 Definitions and Existing Results

Before describing our findings, we will introduce some basic definitions in this section
and will review some existing results.

Let X, X1, · · · , Xn, · · · be independent identically distributed real random variables with

common probability law P and, for each n ∈ N , let Pn = 1
n

n∑
i=1

δXi
be the empirical measure

corresponding to the first n observations X1, · · · , Xn. F and Fn denote the cumulative
distribution functions associated to P and Pn(ω) for all n ∈ N and ω ∈ Ω. In addition, we
assume a < b and s.t. F (b(P ))− F (a(P )−) 6= 0 and a ≤ b. The trimmed mean of P based
on a and b is defined as

θ = θ(P ) :=

∫ b(P )

a(P )
xdF (x)

F (b(P ))− F (a(P )−)
= E(X|X ∈ [a(P ), b(P )]). (2.1)

For convenience, we denote a(P ) and b(P ) as a and b in the following. And an and bn are for
a(Pn) and b(Pn). Similarly as (2.1), we can also define the empirical trimmed mean based
on a and b as follows:

θn = θ(Pn) =

n∑
i=1

XiI[an,bn](Xi)

n∑
i=1

I[an,bn](Xi)
=

∫ bn

an
xdFn(x)

Fn(bn)− Fn(an−)
. (2.2)

Given X, Xi, i ∈ N with c.d.f. F and density f . Let Pn = 1
n

n∑
i=1

δXi
be the empirical

measure and νn =
√

n(Pn − P ) the empirical process. Let −∞ < a < b < ∞ and let an, bn

be random variables such that −∞ < an ≤ bn < ∞ a.s.. Following CG, we assume the
following conditions:
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(D.1) The c.d.f. F has a derivative f on an open set containing a and b and f is con-
tinuous there, hence, f is uniformly continuous on a compact set K whose interior contains
a and b.

(D.2) f(a) + f(b) 6= 0.
(L) There exist measurable, P -square integrable functions h1 and h2 such that

√
n(an − a) = νn(h1) + op(1) and

√
n(bn − b) = νn(h2) + op(1). (2.3)

Based on the above framework, CG proves the following lemma and theorem:
Lemma 1 Assume (D.1) and (L). Define, for x ∈ R,

g1(x) = I[a,b](x) + f(b)h2(x)− f(a)h1(x), (2.4)

g2(x) = xI[a,b](x) + bf(b)h2(x)− af(a)h1(x), (2.5)

Then

√
n[

∫ bn

an

dFn(x)−
∫ b

a

dF (x)] = νn(g1) + op(1), (2.6)

√
n[

∫ bn

an

xdFn −
∫ b

a

xdF (x)] = νb
n(g2) + op(1). (2.7)

Theorem 1 Assume (D.1), (D.2) and (L), and set

g(x) :=
1∫ b

a
dF (t)

g2(x)−
∫ b

a
tdF (t)

(
∫ b

a
dF (t))2

g1(x), x ∈ R

with g1 and g2 as defined in Lemma 1. Let θn be the trimmed mean based on an and bn and
let θ be its population counterpart, as defined in above. Then

√
n(θn − θ) →

√
VarF (g)Z,

in distribution, where Z is standard normal.
Theorem 1 is a very general result. It includes many cases studied in previous literature

like Hample’s means (Hampel [2, 5]), Symmetrically trimmed means (Huber [6]) and Kim’s
metrically trimmed means (Kim [7]). However, the variance of randomly trimmed means,
VarF (g), in Theorem 1 has a very complicated from. Especially, it depends on the underlying
density f(a) and f(b). With these constraints, Theorem 1 may be difficult to implement
in some practice, for example, to construct tests of sample means. To overcome the above
deficiency, we prove a studentized central limit theorem of randomly trimmed means whose
asymptotic properties do not depend on the underlying density under relaxed conditions.
Furthermore, the bootstrap is also valid in our case.

3 Asymptotics of Studentized Trimmed Means
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In the similar spirit as Lemma 1, we prove the following lemma. It plays an important
role in our proof of studentized central limit theorem in the next.

Lemma 2 Assume (D.1) and (L) hold. Define, for x ∈ R,

g3(x) = x2I[a,b](x) + b2f(b)h2(x)− a2f(a)h1(x).

Then
√

n(
∫ bn

an

x2dFn −
∫ b

a

x2dF ) = νn(g3) + op(1). (3.1)

Proof We can write the left side of (3.1) as follows:

√
n[

∫ bn

an

x2dFn −
∫ b

a

x2dF ] =
√

n

∫ bn

an

x2d(Fn − F ) +
√

n

∫ a

an

x2dF +
√

n

∫ bn

b

x2dF.

Since x is on the compact set K, x2 is bounded. Then we have that

‖x2I[c,d](x)‖ ≤‖ x2 ‖K := sup
x∈K

x2

is finite. Also, there is δ0 > 0 such that [a− δ0, a + δ0] ∪ [b− δ0, b + δ0] ∈ K. Therefore, by
the asymptotic equicontinuity of the empirical process, see Dudley [8], we have

lim
δ→0

lim sup
n

Pr{ sup
|c−a|≤δ,|d−b|≤δ

|νn(x2I[c,d](x))− νn(x2I[a,b](x))| ≥ ε} = 0

for all ε > 0. Since

Pr{|√n

∫ bn

an

x2d(Fn − F )− νn(x2I[a,b](x))| ≥ ε}

≤ Pr{ sup
|c−a|≤δ,|d−b|≤δ

|νn(x2I[c,d](x))− νn(x2I[a,b](x))| ≥ ε}

+Pr{|bn − b| > δ}+ Pr{|an − a| > δ},

the equicontinuity condition and condition (L) give, upon taking limits first as n →∞ and
then as δ → 0,

√
n

∫ bn

an

x2d(Fn − F ) = νn(x2I[a,b](x)) + op(1).

Given 0 < δ ≤ δ0 and Mn, n ∈ N , such that Mn →∞ and Mn/
√

n → 0, set

Tn := sup{|f(b)− f(c)| : |b− c| ≤ (δ + Mn)/
√

n)},

which tends to zero by uniform continuity of f on K. Then, on the event where |νn(h2) −
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√
n(bn − b)| ≤ δ and |νn(h2)| ≤ Mn, we have

| √n

∫ bn

b

x2dF − b2f(b)νn(h2) |

= | √n

∫ bn

b

x2(f(x)− f(b) + f(b))dx− b2f(b)νn(h2) |

≤ | √n

∫ bn

b

x2|f(x)− f(b)|dx+ | √n

∫ bn

b

x2f(b)dx− b2f(b)νn(h2) |

=
√

n

∫ bn

b

x2|f(x)− f(b)|dx+ | √n

∫ bn

b

x2dx− b2νn(h2) | f(b)

≤ √
n|bn − b|(|b|+ δ + Mn√

n
)2Tn+ | √n

∫ bn

b

x2dx−√nb2(bn − b)

+b2[
√

n(bn − b)− νn(h2)] | f(b)

≤ √
n|bn − b|(|b|+ δ + Mn√

n
)2Tn + (| √n

∫ bn

b

(x2 − b2)dx |

+b2 | √n(bn − b)− νn(h2) |)f(b)

=
√

n|bn − b|(|b|+ δ + Mn√
n

)2Tn + (
√

n | b3
n − b3

3
− b2(bn − b) |

+b2 | √n(bn − b)− νn(h2) |)f(b)

≤ √
n|bn − b|(|b|+ δ + Mn√

n
)2Tn + (

√
n | (bn − b)(b2

n − bnb + b2)− b2(bn − b) |

+b2 | √n(bn − b)− νn(h2) |)f(b)

≤ √
n|bn − b|(|b|+ δ + Mn√

n
)2Tn + (

√
n | bn − b || b2

n + bnb |

+b2 | √n(bn − b)− νn(h2) |)f(b)

≤ √
n|bn − b|(|b|+ δ + Mn√

n
)2Tn + (

√
n | bn − b || (δ + Mn√

n
)2+ | b | (δ + Mn√

n
) |

+b2 | √n(bn − b)− νn(h2) |)f(b)

=
√

n|bn − b|b2Tn+ | √n(bn − b)− νn(h2) | b2f(b) + op(1).

We get the last equation above since δ+Mn√
n

→ 0. Based on the above results, we have the
following equation, for any ε > 0:

Pr{| √n

∫ bn

b

x2dF − b2f(b)νn(h2) |> ε}

≤ Pr{√n|bn − b|b2Tn+ | √n(bn − b)− νn(h2) | b2f(b) > ε}
+Pr{|νn(h2)−

√
n(bn − b)| > δ}+ Pr{|νn(h2)| > Mn} → 0.

Then we have
√

n

∫ bn

b

x2dF = b2f(b)νn(h2) + op(1).
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Similarly, we can prove

√
n

∫ a

an

x2dF = −a2f(a)νn(h1) + op(1).

Then the lemma is proven.
Based on above lemma, we can prove the following result:
Lemma 3 Assume conditions (D.1), (D.2) and (L) hold. Denote

S2
n =

∫ bn

an
(x− θn)2dFn∫ bn

an
dFn

=

∫ bn

an
x2dFn∫ bn

an
dFn

− (θn)2,

where θn =
∫ bn

an
xdFn∫ bn

an
dFn

. Then we have S2
n = S2 + op(1), where

S2 =

∫ b

a
(t− θ)2dF
∫ b

a
dF

=

∫ b

a
t2dF

∫ b

a
dF

− (
∫ b

a
tdF )2

(
∫ b

a
dF )2

.

Proof

S2
n =

∫ bn

an
x2dFn∫ bn

an
dFn

−
∫ bn

an
xdFn∫ bn

an
dFn

∫ bn

an
xdFn∫ bn

an
dFn

=

∫ b

a
dF

∫ bn

an
dFn

∫ bn

an
x2dFn∫ b

a
dF

−
∫ b

a
dF

∫ bn

an
dFn

∫ bn

an
xdFn∫ b

a
dF

∫ bn

an
xdFn∫ b

a
dFn

∫ b

a
dF

∫ bn

an
dFn

.

Since
√

n[
∫ bn

an
dFn −

∫ b

a
dF ] = νn(g1) + op(1),

|
∫ bn

an
dFn∫ b

a
dF

− 1 |= 1∫ b

a
dF

|
∫ bn

an

dFn −
∫ b

a

dF |→ 0 in Pr .

We can write
∫ b

a
dF∫ bn

an
dFn

= 1 + τn where τn → 0 in probability. Then we have

S2
n =

∫ bn

an
x2dFn∫ b

a
dF

(1 + τn)−
∫ bn

an
xdFn∫ b

a
dF

∫ bn

an
xdFn∫ b

a
dF

(1 + τn)2

= (

∫ bn

an
x2dFn∫ b

a
dF

−
∫ bn

an
xdFn∫ b

a
dF

∫ bn

an
xdFn∫ b

a
dF

) +

∫ bn

an
x2dFn∫ b

a
dF

τn

−
∫ bn

an
xdFn∫ b

a
dF

∫ bn

an
xdFn∫ b

a
dF

2τn +

∫ bn

an
xdFn∫ b

a
dF

∫ bn

an
xdFn∫ b

a
dF

τ2
n

=

∫ bn

an
x2dFn∫ b

a
dF

−
∫ bn

an
xdFn∫ b

a
dF

∫ bn

an
xdFn∫ b

a
dF

+ op(1).
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Based on Lemma 1 and Lemma 2, we have

S2
n =

∫ bn

an
x2dFn∫ b

a
dF

−
∫ bn

an
xdFn∫ b

a
dF

∫ bn

an
xdFn∫ b

a
dF

+ op(1)

=
1√
n

√
n

∫ b

a
t2dF + νn(g3)∫ b

a
dF

− 1
n

√
n

∫ b

a
tdF + νn(g2)∫ b

a
dF

√
n

∫ b

a
tdF + νn(g2)∫ b

a
dF

+ op(1)

=

∫ b

a
t2dF

∫ b

a
dF

+
1√
n

νn(g3)∫ b

a
dF

− 1
n

[
n(

∫ b

a
tdF )2 + 2

√
n

∫ b

a
tdF · νn(g2) + ν2

n(g2)

(
∫ b

a
dF )2

]
+ op(1)

=

∫ b

a
t2dF

∫ b

a
dF

− (
∫ b

a
tdF )2

(
∫ b

a
dF )2

+
1√
n

νn(g3)∫ b

a
dF

− 2√
n

∫ b

a
tdF

(
∫ b

a
dF )2

νn(g2)− 1
n

ν2
n(g2)

(
∫ b

a
dF )2

+ op(1)

=

∫ b

a
t2dF

∫ b

a
dF

− (
∫ b

a
tdF )2

(
∫ b

a
dF )2

+ op(1) = S2 + op(1).

The lemma is proven.
Based on above lemmas, we can obtain the following theorem.
Theorem 2 Assume conditions (D.1), (D.2) and (LS) hold:
(LS)

√
n(an − a) = op(1) and

√
n(bn − b) = op(1).

Define σ2
n = S2

n∫ bn
an

dFn
=

∫ bn
an

(x−θn)2dFn

(
∫ bn

an
dFn)2

, we have the studentized trimmed mean
√

n(θn−θ)
σn

→
N(0, 1) in distribution, where θ is the population randomly trimmed mean θ =

∫ b
a

tdF∫ b
a

dF
.

Proof According to conditions (L) and (LS), h1 = h2 = 0. We have

g1(x) = I[a,b](x) + f(b)h2(x)− f(a)h1(x) = I[a,b](x)

and
g2(x) = xI[a,b](x) + bf(b)h2(x)− af(a)h1(x) = xI[a,b](x).

Then

g(x) :=
1∫ b

a
dF (t)

g2(x)−
∫ b

a
tdF (t)

(
∫ b

a
dF (t))2

g1(x) =
xI[a,b](x)∫ b

a
dF (t)

−
∫ b

a
tdF (t)

(
∫ b

a
dF (t))2

I[a,b](x). (3.2)

Since EF (g) =
∫ b

a
tdF (t)∫ b

a
dF (t)

−
∫ b

a
tdF (t)∫ b

a
dF (t)

= 0, we have

VarF (g) = EF (g2)− (EF (g))2

=

∫ b

a
t2dF (t)

(
∫ b

a
dF (t))2

− 2

∫ b

a
tdF (t)

(
∫ b

a
dF (t))3

∫ b

a

tdF (t) +
(
∫ b

a
tdF (t))2

(
∫ b

a
dF (t))4

∫ b

a

dF (t)

=

∫ b

a
t2dF (t)

(
∫ b

a
dF (t))2

− (
∫ b

a
tdF (t))2

(
∫ b

a
dF (t))3

=
S2

∫ b

a
dF (t)

.
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Since S2
n = S2 + op(1),

VarF (g) =
S2

n∫ b

a
dF (t)

+ op(1) =
S2

n∫ bn

an
dFn(t)

∫ bn

an
dFn(t)

∫ b

a
dF (t)

+ op(1)

= σ2
n(1 + op(1)) + op(1) = σ2

n + op(1).

According to Theorem 1, we have
√

n(θn−θ)
σn

→ N(0, 1) in distribution.

4 Bootstrap of Studentized Trimmed Means

In the above section, we study the asymptotic properties of studentized trimmed means.
But with a small sample data, the estimators and tests based on those asymptotic properties
may not be accurate. In this case, bootstrap may provide some efficient improvement. In
the case of the mean, Hall [9] proved that if Ex3 < ∞ then the bootstrap approximation is
better than the normal. Although we do not know if this is the case for the trimmed mean, it
is interesting to know that the studentized CLT in the trimmed mean can be bootstrapped.

With the sample X1, · · · , Xn, we take n samples from it with replacement. We denote
Xb

n,1, · · · , Xb
n,n as the nth bootstrap sample. Following the notion of CG, we write F b

n, P b
n

and νb
n respectively the empirical c.d.f, the empirical measure and the empirical process

based on this sample: P b
n(A) = 1

n

n∑
i=1

δXb
n,i

(A), F b
n(x) = P b

n(−∞, x] and νb
n =

√
n(pb

n−pn). In

addition, we denote by Prb = Prb(ω) the conditional probability given the sample X1, · · · , Xn

(its dependence on ω will not be displayed for convenience). Also, Lb will denote conditional
law given the sample. The symbol opb

(1) means the following: Vn(Xb
n,1, X

b
n,n, X1, · · · , Xn)

is opb
(1) a.s if a.s. Prb{|Vn| > ε} → 0 for every ε > 0. This is also equivalent to: in almost

every ω, every subsequence of Vn(ω, ω′) has a subsequence that converges ω′ − a.s..

(D.3) P has a density f on R, the set Bf = {f > 0} is open and f is continuous on Bf .

CG proves a central limit theorem which can be considered as the bootstrap version of
Theorem 1. Under the similar conditions, the bootstrap is also valid for the studientized
trimmed means CLT in Theorem 3. To show this result, we need prove the following lemma
at first.

Lemma 4 Assume (D.2), (D.3), (L), a, b ∈ Bf , an → a a.s. and bn → b a.s.. Assume
also that ab

n and bb
n, defined respectively as ab

n = a(F b
n) and ab

n = a(F b
n), satisfy

√
n(ab

n − an) = νb
n(h1) + oPb

(1) and
√

n(bb
n − bn) = νb

n(h2) + oPb
(1) a.s..

Define, for x ∈ R,

g1(x) = I[a,b](x) + f(b)h2(x)− f(a)h1(x),

g2(x) = xI[a,b](x) + bf(b)h2(x)− af(a)h1(x),

g3(x) = x2I[a,b](x) + b2f(b)h2(x)− a2f(a)h1(x).
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We have

√
n(

∫ bb
n

ab
n

dF b
n −

∫ bn

an

dFn) = νb
n(g1) + opb(1) a.s., (4.1)

√
n(

∫ bb
n

ab
n

xdF b
n −

∫ bn

an

xdFn) = νb
n(g2) + opb(1) a.s., (4.2)

√
n(

∫ bb
n

ab
n

x2dF b
n −

∫ bn

an

x2dFn) = νb
n(g3) + opb(1) a.s.. (4.3)

Proof We provide the complete proof for (4.1) in the following. (4.2) and (4.3) can
be proven in the similar spirit. Let us denote

√
n(

∫ bb
n

ab
n

dF b
n −

∫ bn

an

dFn) =
√

n(
∫ bn

an

d(F b
n − Fn) +

∫ an

ab
n

dF b
n +

∫ bb
n

bn

dF b
n). (4.4)

According to Gine [10], the class of functions

F = {I[a,b](x), xI[a,b](x), x2I[a,b](x) : −∞ < c1 ≤ a < b ≤ c2 < ∞}

is uniform P-Donsker. We have

{νb
n(f) : f ∈ F} →Lb {Gp(f) : f ∈ F} a.s.,

where →Lb denotes convergence in law conditionally on the sample and Gp is a centered
Gaussian process. Then νb

n(I[a,b](x)) →Lb Gp(I[a,b](x)).
Since

√
n

∫ bn

an

d(F b
n − Fn) = νb

n(I[an,bn](x)) = νb
n(I[an,bn](x))− νb

n(I[a,b](x)) + νb
n(I[a,b](x)).

To prove
√

n
∫ bn

an
d(F b

n − Fn) →Lb Gp(I[a,b](x)) a.s., we only need show

νb
n(I[an,bn](x))− νb

n(I[a,b](x)) → 0 in pb a.s.. (4.5)

According to Gine [10],

lim
δ→0

lim
n→∞

supPrb{ sup
g,h∈F,Ep(g−h)2≤δ

| νb
n(g)− νb

n(h) |> ε} = 0 ∀ε > 0 a.s., (4.6)

where the class of functions F is uniform P -Donsker. In addition,

lim
n→∞

Ep(I[an,bn](x)− I[a,b](x))2 = 0. (4.7)

Based on (4.6) and (4.7), we have

lim
n→∞

Prb

{| νb
n(I[an,bn](x))− νb

n(I[a,b](x)) |> ε
}

= 0 ∀ ε > 0 a.s..
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Then (4.5) is proven.
Next, we will prove

√
n

∫ bb
n

bn

dF b
n − f(b)νb

n(h2) = opb(1) a.s.. (4.8)

We can write

| √n

∫ bb
n

bn

dF b
n − f(b)νb

n(h2) |

= | √n

∫ bb
n

bn

dF b
n −

√
n

∫ bb
n

bn

dFn +
√

n

∫ bb
n

bn

dFn −
√

n

∫ bb
n

bn

dF +
√

n

∫ bb
n

bn

dF − f(b)νb
n(h2) |

≤ | √n

∫ bb
n

bn

dF b
n −

√
n

∫ bb
n

bn

dFn | + | √n

∫ bb
n

bn

dFn −
√

n

∫ bb
n

bn

dF |

+ | √n

∫ bb
n

bn

dF − f(b)νb
n(h2) |

= γ1 + γ2 + γ3.

In the following, we will prove the convergence of above three terms separately. At first, we
can write

γ1 = | νb
n(−∞, bb

n)− νb
n(−∞, bn) |

≤ sup
|bn−λ|<δ

| νb
n(−∞, λ)− νb

n(−∞, bn) | if |bb
n − bn| < δ.

Then given ε,

Pr
b
{| √n

∫ bb
n

bn

dF b
n −

√
n

∫ bb
n

bn

dFn |> ε} ≤ Pr
b
{ sup
|s−t|<δ

| νb
n(−∞, s]− νb

n(−∞, t] |> ε}

+Pr
b
{|bb

n − bn| > δ} for all δ. (4.9)

According to conditions in the lemma, we know that
√

n(bb
n − bn) − vb

n(h2) → 0 in Prb a.s.
and we also know νb

n(h2) →db N(0,Varp(h2)). So, we have

Pr
b

(
√

n|bb
n − bn| > Mn) → 0 a.s. for any Mn →∞.

Let Mn =
√

n
(lg lg n)2

→∞, Prb

(√
n|bb

n − bn| >
√

n
(lg lg n)2

)
→ 0 a.s.. Then

Pr
b

(
|bb

n − bn| > 1
(lg lg n)2

)
→ 0 a.s..

We have bb
n− bn → 0 in pb a.s.. Similarly, we can prove ab

n−an → 0 in pb a.s.. Then we have
an → a and bn → b in pb a.s.. According to above equations, lim

n→∞
|Prb{bb

n − bn| > δ} → 0
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a.s. for any δ > 0. Since Ep(I(−∞,s) − I(−∞,t))2 ≤ |s − t| sup
x∈K

f(x), we have the following

equation according to (4.6),

lim
δ→0

lim
n→∞

Pr
b
{ sup
|s−t|<δ

|νb
n(−∞, s]− νb

n(−∞, t]| > ε} → 0.

Then taking limits first as n → ∞ and then as δ → 0, we can obtain the following result
based on (4.9):

γ1 =| √n

∫ bb
n

bn

dF b
n −

√
n

∫ bb
n

bn

dFn |= opb(1)a.s.. (4.10)

Next, we focus on γ2.

Pr
b
{| √n

∫ bb
n

bn

dFn −
√

n

∫ bb
n

bn

dF |> ε} (4.11)

= Pr
b
{| νn(−∞, bn]− νn(−∞, bb

n) |> ε}

≤ Pr
b
{ sup
|bn−λ|< 1

(log log n)2

| νn(−∞, bn]− νn(−∞, λ] |> ε}+ Prb{|bn − bb
n| >

1
(log log n)2

}

= ξ1 + ξ2.

ξ2 → 0 in P b has been proven before. ξ1 → 0 in P b can be validated by the following
theorem, see Gine [10].

Since the functions

F = {I[a, b](x), I[ −∞, a](x), xI[a,b](x) : −∞ < c1 ≤ a < b ≤ c2 < ∞}
is uniform P -Donsker, we have

lim
n→∞

sup
g,h∈F ;Ep(g−h)2<1/(log log n)2

| νn(g)− νn(h) |= 0 a.s..

Then we have

γ2 =| √n

∫ bb
n

bn

dFn −
√

n

∫ bb
n

bn

dF |= 0P b(1) a.s.. (4.12)

At last, we focus on γ3:

γ3 = | √n

(∫ bb
n

bn

dF

)
− f(b)νb

n(h2) |

= | √n(F (bb
n)− F (bn))− f(b)νb

n(h2) |
= | √n(F (bb

n)− F (bn))− f(b)
√

n(bb
n − bn) + f(b) · oP b(1) | .

Since f(b) is bounded, γ3 =| √n(F (bb
n)−F (bn))− f(b)

√
n(bb

n− bn) | +oP b(1). Recall the set
we defined before. bb

n will locate in K as n becomes big enough with Prb → 1 a.s.. Then
there exists a point denoted ηn between bb

n and bn such that

γ3 = | √n(bb
n − bn)f(ηn)− f(b)

√
n(bb

n − bn) | +oP b(1)

= | √n(bb
n − bn)(f(ηn)− f(b)) | +oP b(1)

= (νb
n(h2) + oP b(1))|f(ηn)− f(b)|+ oP b(1).
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Since f is continuous, |f(ηn)− f(b)| → 0 in P b a.s.. And νb
n(h2) is Opb(1) a.s.. We have

γ3 = oP b(1) a.s.. (4.13)

Based on (4.9), (4.12) and (4.13), we have

√
n

∫ bb
n

bn

dF b
n − f(b)νb

n(h2) = oP b(1) a.s.. (4.14)

Similarly, we can prove

√
n

∫ an

ab
n

dF b
n + f(a)νb

n(h1) = oP b(1) a.s.. (4.15)

Combine above results, we can prove (4.1). In the same spirit, we can also prove (4.2) and
(4.3). Finally, Lemma 4 is proven.

Based on above lemma, we can prove that following theorem.
Theorem 3 Assume conditions (D.2), (D.3) and (LS) hold. Suppose a, b ∈ Bf , an → a

a.s. and bn → b a.s.. Assume also that ab
n and bb

n, defined respectively as ab
n = a(F b

n) and
bb
n = b(F b

n), satisfy

(Lb)
√

n(ab
n − an) = oPb

(1),
√

n(bb
n − bn) = oPb

(1) a.s..

Define θb
n as the bootstrap trimmed mean, θb

n =

n∑
i=1

Xb
n,iI[ab

n,bb
n](Xb

n,i)

n∑
i=1

I[ab
n,bb

n](Xb
n,i)

, n ∈ N, where θn

and θ are as in Theorem 3. Define

(Sb
n)2 =

n∑
i=1

(xb
n,i − θb

n)2I[a
b
n, bb

n](xb
n,i)

n∑
i=1

I[ab
n, bb

n](xb
n,i)

.

Denote (σb
n)2 = (Sb

n)2

∫ bb
n

ab
n

dF b
n

. We have

√
n(θb

n − θn)
σb

n

→Lb N(0, 1) a.s.. (4.16)

Proof In the proof in above section, we have shown VarF (g) = S2
∫ b

a
dF (t)

where S2 =
∫ b

a
(x−θ)2dF∫ b

a
dF

and θ =
∫ b

a
xdF∫ b

a
dF

. Denote σ2 = S2
∫ b

a
dF (t)

. We have

√
n(θb

n − θn)
σb

n

=
√

n(θb
n − θn)√

V arF (g)
×

√
VarF (g)

σ
× σ

σb
n

=
√

n(θb
n − θn)√

VarF (g)
× σ

σb
n

. (4.17)

Under more general conditions, CG has proven
√

n(θb
n − θn) →Lb

√
VarF (g)Z. (4.18)
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To prove (4.16), we only need show σb
n →Prb

σ a.s.. Based on Lemma 4, we have

(Sb
n)2 =

∫ bb
n

ab
n

x2dF b
n

∫ bb
n

ab
n

dF b
n

−
∫ bb

n

ab
n

xdF b
n

∫ bb
n

ab
n

dF b
n

∫ bb
n

ab
n

xdF b
n

∫ bb
n

ab
n

dF b
n

=

∫ bn

an
dFn

∫ bb
n

ab
n

dF b
n

∫ bb
n

an
x2dF b

n∫ bn

an
dFn

−
∫ bn

an
dFn

∫ bb
n

ab
n

dF b
n

∫ bb
n

ab
n

xdF b
n∫ bn

an
dFn

∫ bb
n

ab
n

xdF b
n∫ bn

an
dFn

∫ bn

an
dFn

∫ bb
n

ab
n

dF b
n

. (4.19)

According to (4.1),
∫ bb

n

ab
n

dF b
n −

∫ bn

an

dFn =
1√
n

(νb
n(g1)) + oP b(1) = oP b(1) a.s., where νb

n(g1)

is bounded in P b. We can write ∫ bn

an
dFn

∫ bb
n

ab
n

dF b
n

= 1 + τn, (4.20)

where τn → 0 in P b a.s.. Substitute (4.20) to (4.19):

(Sb
n)2 =

∫ bb
n

ab
n

x2dF b
n∫ bn

an
dFn

(1 + τn)−
∫ bb

n

ab
n

xdF b
n∫ bn

an
dFn

∫ bb
n

ab
n

xdF b
n∫ bn

an
dFn

(1 + τn)2

= (

∫ bb
n

ab
n

x2dF b
n∫ bn

an
dFn

−
∫ bb

n

ab
n

xdF b
n∫ bn

an
dFn

∫ bb
n

ab
n

xdF b
n∫ bn

an
dFn

) +

∫ bb
n

ab
n

x2dF b
n∫ bn

an
dFn

τn

−
∫ bb

n

ab
n

xdF b
n∫ bn

an
dFn

∫ bb
n

ab
n

xdF b
n∫ bn

an
dFn

2τn +

∫ bb
n

ab
n

xdF b
n∫ bn

an
dFn

∫ bb
n

ab
n

xdF b
n∫ bn

an
dFn

τ2
n

=

∫ bb
n

ab
n

x2dF b
n∫ bn

an
dFn

−
∫ bb

n

ab
n

xdF b
n∫ bn

an
dFn

∫ bb
n

ab
n

xdF b
n∫ bn

an
dFn

+ oP b(1) a.s..

Based on Lemma 4, we have

(Sb
n)2 =

∫ bb
n

ab
n

x2dF b
n∫ bn

an
dFn

−
∫ bb

n

ab
n

xdF b
n∫ bn

an
dFn

∫ bb
n

ab
n

xdF b
n∫ bn

an
dFn

+ oP b(1) a.s.

=
1√
n

√
n

∫ bn

an
x2dFn + νb

n(g3)∫ bn

an
dFn

− 1
n

(
√

n
∫ bn

an
xdFn + νb

n(g2))2∫ bn

an
dFn

∫ bn

an
dFn

+ oP b(1) a.s.

=

∫ bn

an
x2dFn∫ bn

an
dFn

− (

∫ bn

an
x2dFn∫ bn

an
dFn

)2 +
1√
n

νb
n(g3)∫ bn

an
dFn

− 2√
n

∫ bn

an
xdFn

(
∫ bn

an
dFn)2

νb
n(g2)

− 1
n

(νb
n(g2))2

(
∫ bn

an
dFn)2

+ oP b(1) a.s.

=

∫ bn

an
x2dFn∫ bn

an
dFn

− (

∫ bn

an
xdFn∫ bn

an
dFn

)2 + oP b(1) a.s.

= S2
n + oP b(1) a.s..



250 Journal of Mathematics Vol. 35

Under the assumption an → a a.s. and bn → b a.s., we can prove S2
n → S2 a.s. in the

similar spirit as Lemma 3. Then we have (Sb
n)2 = S2 + oP b(1) a.s.. We can also prove∫ bn

an
dFn →

∫ b

a
dF a.s..

Based on the definition of σb
n, we have

(σb
n)2 =

(Sb
n)2∫ bb

n

ab
n

dF b
n

=
S2

∫ b

a
dF

∫ b

a
dF

∫ bn

an
dFn

∫ bn

an
dFn

∫ bb
n

ab
n

dF b
n

= σ2 + oP b(1) a.s..

Then the theorem is proven.

5 An Example

To examine the application of above theorems, we consider the following simple example
in order statistics. Let X, X1,· · · , Xn,· · · be independent identically distributed real random
variables on support [a, b]. Suppose f is their density function, with f(X) 6= 0, X ∈ [a, b].
Let an = X(jn), bn = X(n−jn). Then, if jn = o(

√
n), we have

√
n(an − a) → 0,

√
n(bn − b) → 0. (5.1)

To prove above equations, we may assume, without loss of generality that a = 0. F (X)
is uniform on [0, 1] and (F (X))(jn) = F (X(jn)) by monotonicity. Also,

P (X(jn) >
ε√
n

) = P (F (X(jn)) > F (
ε√
n

))

and F ( ε√
n
) ≈ f(0) ε√

n
. Hence we may also assume that the law of X is uniform on [0, 1]. It

is well known that the law of X(jn) in this case is L(X(jn)) = L(w1+···+wjn

w1+···+wn
), where wi are

i.i.d exponential with λ = 1 (e.g. Breiman [11]). Then

P

(
X(jn) >

ε√
n

)
= P

(
w1 + · · ·+ wjn

− jn√
jn

>
ε√
njn

(w1 + · · ·+ wn − n) +
ε
√

n√
jn

−
√

jn

)
.

and assuming jn → ∞, by the central limit theorem, this probability tends to zero if and
only if ε

√
n√

jn
−√jn →∞, which happens in all ε > 0 if and only if jn = o(

√
n).

In this case, we can define the trimmed mean

θn =

n∑
i=1

XiI(X(jn+1) ≤ Xi ≤ X(n−jn))

n∑
i=1

I(X(jn+1) ≤ Xi ≤ X(n−jn))
=

n−jn∑
j=jn+1

X(j)

n− 2jn

,

which is the average of the data with the smallest jn and the largest jn data removed
(outliers). Let θ(P ) = E(X). According to Theorem 3, we have

√
n(θn − E(X))

σn

→d N(0, 1), where σ2
n =

n−jn∑
j=jn+1

(X(j) − θn)2

(n− 2jn)2
.
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随机切尾均值及其自举的统计分析

罗 葵1 ,马学敏2 ,马志伟3 , 周 旋1

(1. 深圳职业技术学院工业中心, 广东深圳 518055)

(2. 武汉大学数学与统计学院, 湖北武汉 430072)

(3. 清华大学中国企业研究中心, 北京 100084)

摘要: 本文研究了松弛条件下学习随机切尾均值及其自举的统计性质. 利用CG的经验过程方法, 本

文证明了在松弛条件下, 学习随机切尾均值的中心极限定理, 其渐进性质不依赖密度函数. 进一步, 得到了该

性质对于学习切尾均值的自举依然成立, 推广了Chen和Gine[1]随机切尾均值的相关研究结果.
关键词: 切尾均值; 中心极限定理; 自举
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