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Abstract: In this paper, we consider studentized randomly trimmed means and their boot-
strap under relaxed conditions. By using empirical process approach of CG, we obtain the stu-
densized central limit theorem of randomly trimmed means whose asymptotic properties do not
depend on the underlying density under relaxed conditions, which extend the results of randomly
trimmed means by Chen and Gine [1].
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1 Introduction

It is well known that the sample mean is very sensitive to outliers in the data. As an
alternative approach, randomly trimmed means have been studied widely in statistics. We
can construct a randomly trimmed mean as follows: choose two levels a,, < b, depending
on the sample and calculate the average of the data points between a,, and b,,. Above levels
can be obtained by evaluating empirical distribution F,, of functions a(F') and b(F') where
F is the probability distribution of X. If a(F) = F~'(a/2) and b(F) = F~}(1 — a/2), we
can have the classical trimming. Let a(F) = F~!(a/2) and b(F) = F71(1 — a/2), X is
trimmed at level . Let a(F) = u(F) — ¢s(F) and b(F) = p(F) — cs(F) where p denotes
median, s denotes median absolute deviation (MAD), and ¢ is a constant of choice, we can
have trimmed mean of Hampel [2].

Trimmed means are robust and can be bootstrapped. Hall and Padmanahban [3] study
the bootstrap for the studentized classical trimmed mean. Shorack [4] provides a system-
atic study of bootstrapping to various L-statistics. In a recent paper, Chen and Gine [1]

(hence CG, 2004) present a unified, empirical process based approach to the central limit
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theorem and the bootstrap central limit theorem for the general trimmed mean under mild

assumptions on the levels a(F') and b(F'). Their basic assumption is that y/n(a, —a) can be

asymptotically linearized. It is asymptotically equivalent to > (hi(X;) — Ehy(X))/+/n for
i=1
some square integrable function h; for F. Similar conditions also hold for \/n(b, — b).

Despite their generality, the central limit theorems of CG include a complicated expres-
sion for the asymptotic variance of trimmed means that depends on the underlying density
of X. Following the empirical process approach of CG, we study studentized randomly
trimmed means and their bootstrap under relaxed conditions. We can avoid the complex
expression of variance in our central limit theorems. The results in this thesis may be used
to obtain asymptotic confidence intervals and tests for trimmed means and also goes to the
confidence intervals and tests to the usual means. We do not pursue that here.

This thesis is organized as follows. In Section 2, we introduce some definitions and major
results of CG. Section 3 studies the asymptotic properties of studentized trimmed means.

Section 4 verifies the validity of bootstrap. A simple example is introduced in Section 5.

2 Definitions and Existing Results

Before describing our findings, we will introduce some basic definitions in this section
and will review some existing results.
Let X, Xy, -+, X,,--- beindependent identically distributed real random variables with

common probability law P and, for each n € N, let P, = % > dx, be the empirical measure

corresponding to the first n observations Xi,---,X,,. F Z;;ld F,, denote the cumulative
distribution functions associated to P and P, (w) for all n € N and w € Q. In addition, we
assume a < b and s.t. F(b(P)) — F(a(P)—) # 0 and a < b. The trimmed mean of P based
on a and b is defined as

i wdF(x)

F(o(P >> F(a(P)—) ~

0 =0(P):= E(X|X € [a(P),b(P)]). (2.1)
For convenience, we denote a(P) and b(P) as a and b in the following. And a,, and b,, are for
a(P,) and b(P,). Similarly as (2.1), we can also define the empirical trimmed mean based
on a and b as follows:

ZlXJa,“ 1(X0) [P 2dF, (x)
0, = 0(P,) = = _ . (2.2)
n Fn bn n\Wn—
Z Iavubn] ( ) (a )
i=1

Given X, X;,i € N with c.d.f. F and density f. Let P, = %Z dx, be the empirical
i=1
measure and v, = \/n(P, — P) the empirical process. Let —o0o < a < b < oo and let a,, b,

be random variables such that —oco < a, < b, < oo a.s.. Following CG, we assume the

following conditions:
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(D.1) The c.d.f. F has a derivative f on an open set containing a and b and f is con-
tinuous there, hence, f is uniformly continuous on a compact set K whose interior contains

a and b.

(D2) f(a)+ f(b) #0.

(L) There exist measurable, P-square integrable functions h; and hs such that
Vn(a, —a) =v,(h1) +0,(1) and /n(b, —b) = vy, (he) + 0,(1). (2.3)

Based on the above framework, CG proves the following lemma and theorem:
Lemma 1 Assume (D.1) and (L). Define, for z € R,

91(x) = It (x) + f(b)ha(x) — f(a)hi(x), (2.4)
92(x) = wlja)(x) +0f (0)ha(x) — af(a)h(x), (2.5)

Then

/il / " dF () - / AF(2)] = va(g1) + 0,(1), (2.6)

n

bn b
Vil [ adb,~ [ sdb@)] = b + o1 (2.7)

n

Theorem 1 Assume (D.1), (D.2) and (L), and set

IS S [ tdF(t)
[Larw” ([P dR@)

with ¢g; and g5 as defined in Lemma 1. Let 6,, be the trimmed mean based on a,, and b,, and

g(x) : gi(z), z€R

let 6 be its population counterpart, as defined in above. Then

V(0 —0) — \/Vare(g)Z,

in distribution, where Z is standard normal.

Theorem 1 is a very general result. It includes many cases studied in previous literature
like Hample’s means (Hampel [2, 5]), Symmetrically trimmed means (Huber [6]) and Kim’s
metrically trimmed means (Kim [7]). However, the variance of randomly trimmed means,
Varg(g), in Theorem 1 has a very complicated from. Especially, it depends on the underlying
density f(a) and f(b). With these constraints, Theorem 1 may be difficult to implement
in some practice, for example, to construct tests of sample means. To overcome the above
deficiency, we prove a studentized central limit theorem of randomly trimmed means whose
asymptotic properties do not depend on the underlying density under relaxed conditions.

Furthermore, the bootstrap is also valid in our case.

3 Asymptotics of Studentized Trimmed Means
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In the similar spirit as Lemma 1, we prove the following lemma. It plays an important
role in our proof of studentized central limit theorem in the next.
Lemma 2 Assume (D.1) and (L) hold. Define, for z € R,

93(x) = L0, (2) + 0° f(D)ha(2) — a® f(a)ha(2).

Then
bn b
\/ﬁ(/ 2?dF, — / 22 dF) = v,(g3) + 0,(1). (3.1)

n

Proof We can write the left side of (3.1) as follows:

b'ﬂ b bn a bn
\/ﬁ[/ z2dF, —/ r2dF) = \/ﬁ/ 2?d(F, — F) + \/ﬁ/ z?dF + \/ﬁ/ z?dF.
a a Qan An b

n

Since z is on the compact set K, z? is bounded. Then we have that

[2*Tc.a ()] <]l 2 || = sup
zeK

is finite. Also, there is 6o > 0 such that [a — dg,a + do] U [b — g, b+ dg] € K. Therefore, by
the asymptotic equicontinuity of the empirical process, see Dudley [8], we have

lim lim sup Pr{ sup V(22104 (%)) — v (2T 1oy (2))] > €} =0
=0 p le—a|<6,|d—b| <8

for all £ > 0. Since

by,
Pr{|\/ﬁ/ 2?d(F, — F) — vp (2 Ija ) ()] > €}

< Pr{ sup Vi (2 Iie,q () — v (2% 1) (2))] > €}
c—a|<6,|d—b|<d

+Pr{|b, — b| > 6} + Pr{|a, —a| > d},

the equicontinuity condition and condition (L) give, upon taking limits first as n — oo and
then as § — 0,

bn
\/ﬁ/ 2*d(F, — F) = v, (2° 0 5 (2)) + 0p(1).
Given 0 < § < §p and M,,,n € N, such that M,, — oo and M,,/\/n — 0, set

T, = sup{|f(8) — ()| : |b - c| < (5 + M) /v/n)},

which tends to zero by uniform continuity of f on K. Then, on the event where |v,(hy) —
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Vn(b, —b)| < 6§ and |v,(ha)| < M, we have

bn
o / 2dF — B f(b)wa(ha) |

NG / D)+ F(8)dz — B F(b)vn(ha) |
< v / 221 (2) — FO)|da+ | / 2 f(B)dz — B F (B)vn (ko) |
_ f/ 221 f(2) |dx+|f/ 2 — Vo (ha) | 1)
< \/ﬁrbn—bubﬂ*ﬁ T+|f/ d — /b (b, — b)
R (Vlba — b) — va(ha)] | £(B)
< Vb, = bi(b]+ ST M/ o ¥)da |
| Vb — B) — va(n) (D)
=Vl = U+ TP, 4 (| =8, ) |
P | /(b — ) — va(ha) (D)
< Vlby = WO+ T (V] (= D~ bt 1) = B, )|
P | V(b — ) — va(ha) (D)
< Vb = (B + T+ (Vi =8 b
P | V(b — ) — va(ha) (D)
§+ M, 5+ M, , 5+ M,
< Vb, = 00l + TR (L= R ) (R

+b° | V/n(by, — b) — v (ha) |) f(b)
= Vnlb, — BT+ | V(b, —b) — vy (ha) | B*£(b) + 0,(1).

0+M

We get the last equation above since N 0. Based on the above results, we have the

following equation, for any & > 0:

by,
Pr(| Vit [ 2 =¥ fO () [> ¢}
< Pr{\/mbn - b|b2Tn+ | \/?l(bn - b) - Vn(h2> | be(b) > 5}
+Pr{|vn(h2) — V/n(b, — b)| > 6} + Pr{|v,(hs)| > M, } — 0.

Then we have

ﬁ/b " 22dF = B (0)vn(ha) + 0,(1).
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Similarly, we can prove

\/ﬁ/a 22dF = —a®f(a)v,(hy) + 0,(1).

n

Then the lemma is proven.
Based on above lemma, we can prove the following result:
Lemma 3 Assume conditions (D.1), (D.2) and (L) hold. Denote

[P (@ — 0,)%dF, [ a?dF,

S’I'2L =" = - (en)2v
[ ar, [ ar,
o dr, 9 9
where 0,, = jlfﬁ Then we have S, = S° + 0,(1), where
g Lt —0PAF _ [PdF ([, tdF)?
[raF [raF  ([TdF)?
Proof

[ a?dF, [ wdF, [ xdF,
frdE, [ dF, [ dF,

An

LR [y atdE,  [dF [ B, [ edF, ['dF

S2 =

[V dF,  [YdF [ dE, [JdF - [VdE, [ dF,

Since /[ [" dF, — [\ dF) = v,(g1) + 0,(1),

[ dF, 1 bn b
| == —1]=— |/ an—/ dF |- 0 in Pr.
[ dF [ dF Ja, a

1

177 d,

We can write =1+ 7, where 7,, — 0 in probability. Then we have

¢ _ S bm2an Lim) o ff:bxdpn ff:bxan
J, aF J,aF [, dF
Sl atdE, [ adF, [V adF, [0 a?dF,
= | [PaF [TdF [TdF " IR
i adF, [\ xdF, Sl adF, [ xdF,
S far far T flar fPar
JiratdE, [0 wdF, [ adF,

dn — +o0,(1).
R RTINS

(1+ 7'n)2
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Based on Lemma 1 and Lemma 2, we have

JiratdE, [0 dF, [ adF,

52 = A Tl T o)
Far e flae
1 Vi [CRAF +v,(gs) 1/ [ tdF + va(go) Vi [ tdF + v,(g2) rol)
- = _Z 0
Vn [PdF n [raF [rdr ’
LPAE 1 va(ge) L [n(f ) + 290 [ tdF vlge) +vi(2) | "
— - = 0
[ VAT ) A ([ dF)? "
b b
t2dF ([ tdF)* 1 v, 2 tdF 1 v
_ fa - _ fab + (gd) f n(92) (92) + 017(1)
[Par ([Papz Vi fPdE o V([ dR) n(ffdr)?
b b
t*dF tdF)?
fab - (fab ) +0,(1) = S% + 0, (1).
[ dF ([, dF)?
The lemma is proven.
Based on above lemmas, we can obtain the following theorem.
Theorem 2 Assume conditions (D.1), (D.2) and (LS) hold:
(LS) v/n(an, —a) = 0,(1) and /n(b, —b) = 0,(1).
2 bn T—Un 2 n . . n —
Define 02 = =7 :;2 = 'f“"'; — Z F) )ZF , we have the studentized trimmed mean W —
N(0,1) in distribution, where 6 is the population randomly trimmed mean 6 = [f tjﬁ .

Proof According to conditions (L) and (LS), hy = hy = 0. We have

g1(z) = Iy (x) + f(D)ha(z) — fa)hi(x) = Tjap)(z)

and
g2(x) = xljq ) (x) + 0f (b)ha(x) — af(a)hi(x) = a1 (x).
Then
1 N [P tdF(t) o wlun(@) [P tdF(t) i
g(x) = r,dF(t)gz( ) 7(fde(t))2gl( )= T dF() (f:dF(t))QI[a’b]( ). (3.2)
Since Er(g) = jf;j;ﬂ ((tt)) — Jff:}f ((:)) =0, we have
Varp(g) = Er(g®) — (Br(9))?

_ [ledF() [PtdF(t) [ (J2 tdF()* [*
- fa g -2 fa IFD) /tdF(t)+ (f;’dF(t))4 / dF(t)

[ #2dR() () tdF(1))?
(JLdF () ([) dF(t)?
5
a0
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Since S2 = 5% + 0,(1),

L S S fb ()
IRTZ0 RECIRG
= UTQL(l +0p(1)) +0p(1) = 0721 + 0p(1).

Varp(g) = +0,(1)

According to Theorem 1, we have w — N(0,1) in distribution.

n

4 Bootstrap of Studentized Trimmed Means

In the above section, we study the asymptotic properties of studentized trimmed means.
But with a small sample data, the estimators and tests based on those asymptotic properties
may not be accurate. In this case, bootstrap may provide some efficient improvement. In
the case of the mean, Hall [9] proved that if Exz® < co then the bootstrap approximation is
better than the normal. Although we do not know if this is the case for the trimmed mean, it
is interesting to know that the studentized CLT in the trimmed mean can be bootstrapped.

With the sample Xy, .-, X, we take n samples from it with replacement. We denote
. Xfl,'fl
and 1% respectively the empirical c.d.f, the empirical measure and the empirical process

based on this sample: P}(A) = = 3 dx1 (A), Fi(x) = P(—o00,z] and v}, = /n(p}, —pn). In
i=1 "'

Xb

ST as the nth bootstrap sample. Following the notion of CG, we write F?, P?

addition, we denote by Pr, = Pr,(w) the conditional probability given the sample X, -+, X,
(its dependence on w will not be displayed for convenience). Also, L® will denote conditional
X17 e 7Xn>

is 0p, (1) a.s if a.s. Pry{|V,| > e} — 0 for every € > 0. This is also equivalent to: in almost

law given the sample. The symbol o,,(1) means the following: V,, (X2, X}

n,1’» “*n.mn>

every w, every subsequence of V,,(w,w’) has a subsequence that converges w’ — a.s..

(D.3) P has a density f on R, the set By = {f > 0} is open and f is continuous on By.

CG proves a central limit theorem which can be considered as the bootstrap version of
Theorem 1. Under the similar conditions, the bootstrap is also valid for the studientized
trimmed means CLT in Theorem 3. To show this result, we need prove the following lemma
at first.

Lemma 4 Assume (D.2), (D.3), (L), a,b € By, a,, — a a.s. and b, — b a.s.. Assume
also that a? and b°, defined respectively as a’ = a(F?) and ab, = a(F?), satisfy

vn(al —a,) = vi(hy) +op,(1) and n(b2 —b,) = vE(hs) +op, (1) as..
Define, for x € R,

g1(x) = Tap(@) + f(D)ha(z) = fa)ha(z),
92(x) = aliap(z) +0f(b)ha(z) — af(a)h(z),
g3(z) = 2™ Lay(z) + 0" f(b)ha(z) — a*f(a)ha(x).
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We have

bb b,
\/ﬁ(/ de;—/ dF,) = v} (1) + o (1) as., (4.1)

b
n n

b?x bn
\/ﬁ(/ rdF? / zdF,) = 12(g2) + o, (1) as., (4.2)

b
n n

b bn
\/ﬁ(/ r2dF? — / 22dE,) = 12(g3) + o (1) ass.. (4.3)
ab a

n

Proof We provide the complete proof for (4.1) in the following. (4.2) and (4.3) can
be proven in the similar spirit. Let us denote

be b by an v,
\/ﬁ(/ dFb — / dF,) = \/ﬁ(/ d(F! - F,) +/ dF? +/ dE?).  (4.4)
ab, a a ab b

n n n

According to Gine [10], the class of functions
F =Ty (@), 2l (), 2* e () : —00 <1 <a<b< ey < oo}
is uniform P-Donsker. We have
{vn(f) € Fy =0 {Gy(f) - f € F} as,

where —» denotes convergence in law conditionally on the sample and G, is a centered
Gaussian process. Then v (Ijq5)(2)) —1v Gp(Iap)(2)).
Since

\/ﬁ/ Cd(Ft - F,) = Vp(Tia 0,1 () = v (Tjay 0,1 (@) — Vi (T () + V) (L0 (2)).

To prove \/ﬁfab" d(F? — F,) = s Gp(Ijap(x)) a.s., we only need show
Vo (Tan 5 () = V2 (Ilay () — 0 in p° as. (4.5)
According to Gine [10],

lim lim sup Pry{ sup | 2(g) — V2 (R) |[> e} =0 Ve >0 as., (4.6)
d—0n—oo g,hE€F,Ep(g—h)2<6

where the class of functions F is uniform P-Donsker. In addition,
Jim By (Tja,, ,)(%) = a1 (2))* = 0. (4.7)

Based on (4.6) and (4.7), we have

lim Pry {| v} (Ija, 5,1 (2) = Vo (Iapy(z)) [> €} =0V >0 as..
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Then (4.5) is proven.

Next, we will prove

b,
\/ﬁ/ dF? — f(b)vl(hy) = 0, (1) as.. (4.8)
b

n

We can write
b'lr)z
i [ arL - pkn)
bn

by, by, by, by, by,
= |\/ﬁ/ dFj;—ﬁz/ an+\/ﬁ/ an—\/ﬁ/ dF+\/ﬁ/ dF — f(b)v’(hy) |
b b b [ b

n n n n

IN

v bt v, by,
|\/ﬁ/ de;—\/ﬁ/ an|+|\/ﬁ/ an—\/ﬁ/ dF |
bn bn bn bn

+|va / "dF — f)L(hy) |

= Y1+ 72 +3-

In the following, we will prove the convergence of above three terms separately. At first, we

can write
no= |vp(=00,b}) = v (=00,by) |
< sup | 2(—o0,A\) — vi(—00,by) | if B —b,| < 6.
b —A| <5

Then given ¢,

by, by,
Pl’)r{| \/ﬁ/ dF? — \/ﬁ/ dF, |>¢} < Pr{ sup |vi(—00,s] —1vl(—00,t]|> ¢}
b b

b s—t]<s

n

+Pr{[t}, — by| > 6} for all 4. (4.9)

According to conditions in the lemma, we know that /n(b% — b,) — v2(hs) — 0 in Pr, a.s.

and we also know 12 (hy) —4 N(0, Var,(hz)). So, we have

Pl’)r(\/mbfl —b,| > M,) — 0 as. for any M, — oc.

Let M, = -t — o0, P, (\/ﬁlbﬁ —bn| > ﬁ) — 0 a.s.. Then

1
Pr( | —b,] > —-— 0 as.
o <| M | > (lglgn)2> — a.s

We have b’ —b,, — 0 in p® a.s.. Similarly, we can prove a® —a,, — 0 in p® a.s.. Then we have

a, — a and b, — b in p® a.s.. According to above equations, lim |Pry{b’ —b,| > 6} — 0
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a.s. for any § > 0. Since E,(I(—oo,s) — (—oot))® < |s — t| sup f(z), we have the following
zeK
equation according to (4.6),

lim lim Pr{ sup [v%(—o0,s]—v’(—o0,t]| >} — 0.
§—0n—oo b |s—t|<é

Then taking limits first as n — oo and then as § — 0, we can obtain the following result
based on (4.9):

b, o,
7 =| \/ﬁ/ dF? — \/ﬁ/ dF, |= op(1)a.s.. (4.10)
b b

n n

Next, we focus on v,.

bi’b b'E:L
P;r{| \/ﬁ/ dF, — \/ﬁ/ dF |> e} (4.11)
b7l b'n/

= Pr{| va(—00,bu] = vu(=00,8) |> £}
1

b
< Brl o swp[walmoob] w00, X] > ) 4 Prlb =01 > o)

b b, =A<
= & +&.

& — 0 in P® has been proven before. & — 0 in P’ can be validated by the following

1
(log log n)?2

theorem, see Gine [10].
Since the functions
F = {lja,b)(x),I| — 00, al(x), xljqp(x) : —00 <c1 <a<b< ey <oo}
is uniform P-Donsker, we have

lim sup | vn(9) —vn(h) =0 as..
N—=00 g he F;Ep(g—h)2<1/(loglog n)?

Then we have

bt by,
72 =| \/a/ dF, — \/ﬁ/ dF |[=0ps(1) as.. (4.12)
b, bn

n

At last, we focus on ~s:

vy = wa( / "dF) — fO)A(ho) |

bn
= | V(E®,) = F(ba)) = f(0)v, (he) |
= | Va(F(b,) = F(ba)) = f0)v/n(by, = ba) + f(b) - 0ps (1) |
Since f(b) is bounded, v3 =| /n(F(b2) — F(b,)) — f(b)y/n(b’ —b,) | +0pv(1). Recall the set
we defined before. b® will locate in K as n becomes big enough with Pr, — 1 a.s.. Then

there exists a point denoted 7, between b° and b,, such that

3 o= | \/ﬁ(bﬁ —bn) f(nn) — f(b)\/ﬁ(bf; —b,) | +ops(1)
= | Vb, = b.)(f () = F() | +ops(1)
(V5 (ha) + opr (1)) f () — f(B)] + 0ps(1).
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Since f is continuous, |f(n,) — f(b)] — 0 in P’ a.s.. And v2(hs) is O, (1) a.s.. We have
73 =o0p(l) as. (4.13)

Based on (4.9), (4.12) and (4.13), we have

o,
\/ﬁ/ dE? — f(b)vt (hy) = ope(1) a.s.. (4.14)

b n

Similarly, we can prove
\/ﬁ/ dF? + f(a)vt(hy) = ops(1) a.s.. (4.15)

Combine above results, we can prove (4.1). In the same spirit, we can also prove (4.2) and
(4.3). Finally, Lemma 4 is proven.

Based on above lemma, we can prove that following theorem.

Theorem 3 Assume conditions (D.2), (D.3) and (LS) hold. Suppose a,b € By, a, — a
a.s. and b, — b a.s.. Assume also that a’ and b’, defined respectively as a’ = a(F?) and
b = b(E?), satisfy

(Lb) vn(a® —a,) = op, (1), Vn(b’ —b,) =op,(1) as..

3 Xl (X0)
Define 6 as the bootstrap trimmed mean, §° = Zfln ,  n € N, where 6,

; Tian 051 (X0 )

and @ are as in Theorem 3. Define
3 (ah, — 04T, W)t

Z Tiay,, 03] (2, ;)

(S)* =

b2
Denote (02)2 = —92)_ We have
[ ary

V() — 6n)

o —» N(0,1) as.. (4.16)

Proof In the proof in above section, we have shown Varg(g) = where S? =

S2
A0

% and 6 = JjarddF Denote o2 = m We have
At~ 0,) A —0,)  Varely) o a6 o i
ab Varp(g) o ab Varrg(g) ab

Under more general conditions, CG has proven

Vn(0h —0,) —r, \/Varp(9)Z. (4.18)
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To prove (4.16), we only need show o’ —p,, o a.s.. Based on Lemma 4, we have

AT, b _— ,
Sy = Jup @dF [ wdFy [, wdFy
YT T Mare [Sare [dE

[0 B [ a2 [ ap, [ P [ adr? [ ar,

b b 2 (419)
N N e M L R
bl bn, 1
According to (4.1), dF? — / dF, = T(VZ(gl)) +opv(1) = 0pv(1) a.s., where v2(g;)
ab, an n
is bounded in P°. We can write 1
[ dF,
" 147, (4.20)
[ dF?
where 7, — 0 in P’ a.s.. Substitute (4.20) to (4.19):
by 2 31b by, b [bh b
[ a?dF} [ xdFY [ xdF)
(S'Z)2 = nb (1 + Tn) - Z Z (1 + Tn)z
Jiar, Jiak, Jiar,
br 2 g1b by, bo[On b by 2 b
W TRdFy fab zdF? fab xdF) o THdFY
= 5 I b b T
[, dF, [, adF, [T dF, [, dF,
by, b b b by, b [On b
fab xdF? fab xdF? fab xdF? fab xdF? ,
— n n Tn n n .
[rmar, [ dF, [rmar, ['dF,
by 2 7o by bo[On b
o THdF fab xdF) fab xdF)
= - - = 7 +ops(l) as..
[, dF, [, aF, ["dF,
Based on Lemma 4, we have
. o @?dFy [ 2dFY [\ adFY
(Sn) = b - b b +0Pb(1) a.s.
fa " dF, fa" dF, fa "dF,
bn b’Vl
1 V[, @?dF, +vi(gs) 1 (V[ wdFy v (g2))°
= — "b - = o : +ope(1) as.
vn [ dFE, n [ dE, [ dF,
by by by
7 fan 22dF, (Jo m2an)2 N 1 12(gs) 2 fan xdF, V2 (02)
= - —= — = Vnl92
[ ar, [ ar, Vo ftrar, ViR,

1 ke
" ([ )
bn o b
_ fanb _ fafg )2 + on(l) a.s.
Jor dFw [,rdF,
= S’r27, =+ OPb(l) a.s..

+opr(1) a.s.
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Under the assumption a,, — a a.s. and b, — b a.s., we can prove S2 — S? a.s. in the
similar spirit as Lemma 3. Then we have (S2)? = S? + 0ps(1) a.s.. We can also prove
f;" dF, — fab dF a.s..

Based on the definition of 0%, we have

b bn
oy (SR _ 8 L, dF [ dF

= = =0’ +op(l) as.
Jordre  [TdF [ dF, [ dF b

Then the theorem is proven.

5 An Example

To examine the application of above theorems, we consider the following simple example
in order statistics. Let X, X1, -+, X,,,--- be independent identically distributed real random
variables on support [a,b]. Suppose f is their density function, with f(X) # 0, X € [a,].
Let a,, = X(j,), by = X(n—j,). Then, if j, = o(y/n), we have

Vvn(a, —a) — 0, +/n(b, —b) — 0. (5.1)

To prove above equations, we may assume, without loss of generality that a = 0. F(X)
is uniform on [0, 1] and (F(X))(;,) = F(X(,)) by monotonicity. Also,
£ oy
Vn vn
and F(ﬁ) R~ f(O)% Hence we may also assume that the law of X is uniform on [0,1]. It

is well known that the law of X, ) in this case is L(X(;,)) = L(H), where w; are

P(X,) > —=) = P(F(X,)) > F(

i.i.d exponential with A =1 (e.g. Breiman [11]). Then

P<X(jn)>5> :P(w1+"'+wj"_‘7” > (w1+~~-+wn—n)+5\/ﬁ—\/jn>.

\/ﬁ V ]n V n]n \% ]n
and assuming j, — 00, by the central limit theorem, this probability tends to zero if and
only if % — \/Jn — 00, which happens in all € > 0 if and only if j, = o(y/n).

In this case, we can define the trimmed mean

n n_jn
D XiI( X,y < Xi < Xney)) Z X()
0 — i=1 _ Jj=jn+1
" n n—25,
;I(X<jn+1) < Xi £ X)) J

which is the average of the data with the smallest j, and the largest j, data removed
(outliers). Let 8(P) = F(X). According to Theorem 3, we have

n—Jn

> (X —0n)?
Viln — E(X)) —q4 N(0,1), where o2 = I=intl

On (n—24,)?
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