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Abstract: In this paper, we study the relation of cotorsion pairs between the graded and

ungraded cases. By using the graded theory and the relative homological algebra, we first consider

the relationship of cotorsion pairs in R-mod and S = R ∗ G-mod when R is any ring and G is a

finite group. Then we study rigid cotorsion pairs in R-gr and consider the relationship of cotorsion

pairs between R-gr and R-mod when R is a ring graded by a finite group G with |G|−1 ∈ R.
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1 Introduction

The relative homological theory for graded rings was developed in [1, 2], where Goren-

stein gr-injective, gr-projective, and gr-flat modules were introduced. Recent years, many

authors have studied the existence of envelopes and covers in the category of graded modules

and related them with the corresponding envelopes and covers in the category of modules

(see [3, 10, 11, 20]).

The theory of cotorsion pairs is very important in relative homological theory. In this

paper, we study the relation of cotorsion pairs in R-gr and R-mod when R is a graded ring by

a finite group G. Since cotorsion pairs have a close relationship with the theory of envelopes

and covers, we get a relationship of the existence of envelopes and covers between the graded

and ungraded cases.

In the Second section, we first consider the case of cotorsion pairs over strongly graded

rings of finite group. Then we give the relationship of cotorsion pairs in R-mod and S = R∗G-

mod when R is any ring and G is a finite group.

In the Third section, we give the definition of rigid cotorsion pairs in R-gr and give a

equivalent characterization of it. Then we study the relationship of cotorsion pairs between

R-gr and R-mod when R is a ring graded by a finite group G with |G|−1 ∈ R.
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In this paper, G is always a finite multiplicative group with identity 1. A G-graded ring

R is a ring with identity 1, together with a direct sum R = ⊕g∈GRg as additive subgroups,

such that RgRh ⊆ Rgh for all g, h ∈ G. It is well known that R1 is a subring of R and

1 ∈ R1. If RgRh = Rgh for all g, h ∈ G, then R is called a strongly graded ring.

A graded left R-module M is a left R-module endowed with an internal direct sum

decomposition M = ⊕σ∈GMσ, where each Mσ is a subgroup of the additive group of M sat-

isfying RσMτ ⊆ Mστ for all σ, τ ∈ G. For graded left R-modules M and N , HomR−gr(M,N)

= {f : M → N | f is R−linear and f(Mσ) ⊆ Nσ} is the group of all morphisms from M

to N in the category R-gr of all graded left R-modules. An R-linear map f : M → N is

said to be a graded morphism of degree τ, τ ∈ G, if f(Mσ) ⊆ Mστ for all σ ∈ G. Graded

morphisms of degree σ build an additive subgroup HomR(M,N)σ of HomR(M,N). Then

HomR(M,N) = ⊕σ∈GHomR(M,N)σ is a graded abelian group of type G. We will denote

Exti
R−gr and Exti

R as the right derived functors of HomR−gr and HomR.

If M = ⊕σ∈GMσ is a graded left R-module and σ ∈ G, then M(σ) is the graded left

R-module obtained by putting M(σ)τ = Mστ for all τ ∈ G, the graded module M(σ) is

called the σ-suspension of M . We can see the σ-suspension as an isomorphism of categories

Tσ : R − gr → R − gr, given on objects as Tσ(M) = M(σ) for M ∈ R − gr.

There is a number of interesting functors relating the Grothendieck categories R-gr and

R-mod (the category of all left R-modules). The forgetful functor U : R − gr → R − mod

forgets the gradiation. This functor has a right adjoint F which associated to M ∈ R−mod

the graded R-module F (M) = ⊕σ∈G(σM) (where each σM is a copy of M , σM = {σm | m ∈

M} with the structure of R-module given by r ∗σ m =τσ m for r ∈ Rτ ). Following [13],

when G is finite, (U,F ) is an Frobenius pair (i.e., (U, F ) and (F, U) are adjoint pairs). By

[15], we know that the forgetful functor U is always separable, and if n = |G| is invertible in

R, then F is a separable functor.

We recall from [7] ([1]) that a (graded) left R-module M is called Gorenstein (gr-)

injective if there exists an exact sequence

E = · · · // E−2 // E−1 // E0 // E1 // · · ·

of (gr-)injective modules such that M = ker(E0 → E1) and which remains exact whenever

HomR(E,−) (HomR−gr(E,−)) is applied for any (gr-)injective module E. Dually we have

the definition of Gorenstein (gr-)projective modules.

A (graded) left R-module M is called Gorenstein (gr-)flat [8] ([2]) if there exists an

exact sequence

F = · · · // F−2 // F−1 // F 0 // F 1 // · · ·

of (gr-)flat modules such that M = ker(F 0 → F 1) and which remains exact whenever E⊗R−

is applied for any (gr-)injective R-module E.

A cotorsion pair (or cotorsion theory) in an abelian category A (see [9]) is a pair of

classes (F , C) of objects of A if the following properties are satisfied:

(1) Ext1A(F, C) = 0 for every F ∈ F , C ∈ C.
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(2) Ext1A(F, C) = 0 for every F ∈ F , implies C ∈ C.

(3) Ext1A(F, C) = 0 for every C ∈ C, implies F ∈ F .

We use C⊥ (resp. ⊥C) denote the the class of all objects such that Ext1
A(C, M) = 0

(resp. Ext1A(M, C) = 0) for every C ∈ C. A cotorsion pair (F , C) of objects of A is called

complete (see [9, Corollary 1.2.7]) if every object has a special C-preenvelope (and a special

F -precover). Throughout this paper, we denote add(F)={M | M is a direct summand of

⊕i=n
i=1 Fi, where n is any nonnegative integer and each Fi ∈ F}, where F is any class of

modules closed under isomorphisms.

2 Cotorsion Pairs Over Strongly Graded Rings of Finite Group

We first consider the case of strongly graded ring. When R is a strongly graded ring,

R − gr and R1 − mod are equivalent categories. By [6, Theorem 2.8], we know that the

equivalence is given by the functors (−)1 : R − gr → R1 − mod, (M)1 = M1 and R ⊗R1
− :

R1 − mod → R − gr. Using these functors, we can easily get the following proposition, but

for the completeness, we give a proof here.

Proposition 2.1 Assume that R is a strongly graded ring.

(1) (F , C) is a cotorsion pair in R1-mod if and only if (R⊗R1
F , R⊗R1

C) is a cotorsion

pair in R-gr.

(2) (F , C) is a cotorsion pair in R-gr if and only if ((F)1, (C)1) is a cotorsion pair in

R1-mod.

Proof We only prove (1), the proof of (2) is similar to that of (1).

For any M ∈ F and N ∈ C, we have that

Ext1R−gr(R ⊗R1
M, R ⊗R1

N) ∼= Ext1R1
(M, (R ⊗R1

N)1) ∼= Ext1R1
(M, N) = 0

since (R⊗R1
, (−)1) is an Frobenius pair. Then R ⊗R1

F ⊆⊥ (R ⊗R1
C) and R ⊗R1

C ⊆

(R ⊗R1
F)⊥.

Next we prove that ⊥(R ⊗R1
C) ⊆ R ⊗R1

F . Let X ∈ ⊥(R ⊗R1
C), we get that

0 = Ext1R−gr(X, R ⊗R1
N) ∼= Ext1R1

((X)1, N)

for any N ∈ C. Hence (X)1 ∈ ⊥C = F . Then R⊗R1
(X)1 ∈ R⊗R1

F . Since X ∼= R⊗R1
(X)1,

X ∈ R ⊗R1
F .

Finally, we can prove that (R ⊗R1
F)⊥ ⊆ R ⊗R1

C. Hence (R ⊗R1
F , R ⊗R1

C) is a

cotorsion pair in R-gr.

Using a proof similar to the above, we can easily prove that if (R ⊗R1
F , R ⊗R1

C) is a

cotorsion pair in R-gr, then (F , C) is a cotorsion pair in R1-mod.

Let R be any ring and S = R∗G the skew group ring, as well known that S is a strongly

graded ring. By [16, 8] and [12, Example 2.2], if G is a finite group and |G|−1 ∈ R, S is an

excellent extension of R. Now we recall the definition of excellent extension ([16, 8]). Let R

be a subring of the ring S and they have the same identity. The ring S is called an excellent

extension of R if the following two conditions are satisfied:



230 Journal of Mathematics Vol. 35

1. SR and RS are free modules with a basis (1 = a1, a2, · · · , an) such that aiR = Rai

for i = 1, · · · , n.

2. S is left R-projective, that is, if SM is a submodule of SN and RM is a direct

summand of RN , then SM is a direct summand of SN .

Now, we study the relationship of cotorsion pairs between R-mod and S-mod. Let

i : R → S be the inclusion map, then we have the induction functor S ⊗R − : R − mod →

S −mod and restriction of the scalars functor R(−) : S-mod→ R-mod. If M ∈ S-mod, then

RM will denote the image of M by the restriction of the scalars functor.

Proposition 2.2 Let R be any ring, S = R∗G be the skew group ring and |G|−1 ∈ R.

(1) If (F , C) is a cotorsion pair in R-mod and R(S ⊗R F) ⊆ F , then (add(S ⊗R

F), add(S ⊗R C)) is a cotorsion pair in S-mod.

(2) If (F ′, C′) is a cotorsion pair in S-mod and S⊗RRF
′ ⊆ F ′, then (add(RF

′), add(RC
′))

is a cotorsion pair in R-mod.

Proof (1) Assume that (F , C) is a cotorsion pair in R-mod and R(S ⊗R F) ⊆ F , we

will prove that (add(S ⊗R F), add(S ⊗R C)) is a cotorsion pair in S-mod.

For any M ′ ∈ add(S ⊗R F) and N ′ ∈ add(S ⊗R C), if we want to prove that

Ext1S(M ′, N ′) = 0,

we only need to prove that Ext1S(S ⊗R M,S ⊗R N) = 0 for any M ∈ F and N ∈ C. By [4,

III,Proposition 4.14], we know S ⊗R − ∼= HomR(S,−) (In fact, the condition R is artinian

in [4, III, Proposition 4.14] is not necessary). By the definition of excellent extension, S is

projective as right R-module. Then by [17, Excercise 9.21], we have that

Ext1S(S ⊗R M,S ⊗R N) ∼= Ext1S(S ⊗R M,HomR(S, N))

∼= Ext1R(HomS(S, S ⊗R M),N) ∼= Ext1R(S ⊗R M, N) = 0,

since R(S ⊗R F) ⊆ F . Thus

add(S ⊗R F) ⊆⊥ (add(S ⊗R C))

and

add(S ⊗R C) ⊆ (add(S ⊗R F))⊥.

Next we prove that ⊥(add(S ⊗R C)) ⊆ add(S ⊗R F). Let X ∈ ⊥(add(S ⊗R C)), then

Ext1S(X, S ⊗R N) = 0 for any N ∈ C. We get that

0 = Ext1S(X, S ⊗R N) ∼= Ext1S(X, HomR(S,N)) ∼= Ext1R(RX, N)

for any N ∈ C. Hence RX ∈ ⊥C = F . Then S⊗R RX ∈ S⊗R F . Since S is left R-projective,

by [19, Lemma 1.1], X is a direct summand of S ⊗R RX ∈ S ⊗R F . Thus X ∈ add(S ⊗R F).

Finally, let Y ∈ (add(S ⊗R F))⊥, Ext1S(S ⊗R M, Y ) = 0 for any M ∈ F . Then we

know that Ext1S(S⊗R M, Y ) ∼= Ext1R(M,HomS(S, Y )) ∼= Ext1R(M,R Y ). Thus RY ∈ F⊥ = C,

S ⊗R RY ∈ S ⊗R C. Therefore Y ∈ add(S ⊗R C).
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Hence (add(S ⊗R F), add(S ⊗R C)) is a cotorsion pair in S-mod.

(2) Assume that (F ′, C′) is a cotorsion pair in S-mod and S⊗R RF
′ ⊆ F ′, we will prove

that (add(RF
′), add(RC

′)) is a cotorsion pair in R-mod.

If we want to prove that Ext1
R(M,N) = 0 for any M ∈ add(RF

′) and N ∈ add(RC
′), we

only need to prove that Ext1
R(RM,R N) = 0 for any M ∈ F ′ and N ∈ C′. By [17, Exercise

9.21] we have

Ext1R(RM, RN) ∼= Ext1R(RM,HomS(S,N)) ∼= Ext1S(S ⊗R RM,N).

By hypothesis S ⊗R RF
′ ⊆ F ′, we know that Ext1R(RM, RN) ∼= Ext1S(S ⊗R RM,N) = 0.

Thus add(RF
′) ⊆ ⊥(add(RC

′)), add(RC
′) ⊆ (add(RF

′))⊥.

Next we prove that
⊥(add(RC

′)) ⊆ add(RF
′).

Let X ∈ ⊥(add(RC
′)), then

Ext1R(X, RN) = 0

for any N ∈ C′. By [17, Excercise 9.21], we get that

Ext1R(X, RN) ∼= Ext1R(X, HomS(S, N)) ∼= Ext1S(S ⊗R X, N)

for any N ∈ C′. Hence S ⊗R X ∈ ⊥C′ = F ′. Then R(S ⊗R X) ∈ RF
′. By the definition of

excellent extension, X is a direct summand of R(S ⊗R X), X ∈ add(RF
′).

Finally, let Y ∈ (add(RF
′))⊥, then Ext1R(RM, Y ) = 0 for any M ∈ F ′. By [17, Exercise

9.21] we know that

0 = Ext1R(RM, Y ) ∼= Ext1R(S ⊗S M,Y ) ∼= Ext1S(M, HomR(S, Y )) ∼= Ext1S(M,S ⊗R Y )

for any M ∈ F ′. Thus S ⊗R Y ∈ F ′⊥ = C′, R(S ⊗R Y ) ∈ RC
′ and Y ∈ add(RC

′).

Hence (add(RF
′), add(RC

′)) is a cotorsion pair in R-mod

3 Cotorsion Pairs Over Finite Group Graded Rings

Lemma 3.1 Let (F , C) be a cotorsion pair in R-gr. The following statements are

equivalent:

(1) If M ∈ F , then M(σ) ∈ F for every σ ∈ G.

(2) If N ∈ C, then N(τ) ∈ C for every τ ∈ G.

Proof (1) ⇒ (2) For any M ∈ F , N ∈ C and any τ ∈ G, by hypothesis we have

Ext1R−gr(M,N(τ)) ∼= Ext1R−gr(M(τ−1), N) = 0.

Then N(τ) ∈ F⊥ = C for any τ ∈ G.

(2) ⇒ (1) is similar to that of (1) ⇒ (2).

Remark 3.2 (1) A cotorsion pair satisfying the equivalent conditions in Lemma 3.1

is said to be a rigid cotorsion pair.
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(2) (gr − P(R), R − gr) and (R − gr, gr − I(R)) are rigid cotorsion pairs in R-gr,

where gr−P(R) (resp. gr −I(R)) denotes the class of gr-projective (resp. gr-injective) left

R-modules.

Proposition 3.3 Let (F , C) be a cotorsion pair in R-gr, then (F , C) is a rigid cotorsion

pair if and only if EXT1
R(M,N) = 0 for all M ∈ F and N ∈ C.

Proof Since HomR(−, N)σ = HomR−gr(−, N(σ)) for every σ ∈ G, we get that

Ext1R(M,N)σ
∼= Ext1R−gr(M,N(σ))

for any σ ∈ G.

Let M ∈ F and N ∈ C, if (F , C) is a rigid cotorsion pair, then N(σ) ∈ C for any σ ∈ G.

Thus Ext1R(M,N)σ = 0 for any σ ∈ G, and hence Ext1
R(M,N) = 0.

Conversely, for any M ∈ F and N ∈ C, we have Ext1
R−gr(M, N(σ)) ∼= Ext1R(M,N)σ = 0

for any σ ∈ G. Then for any N ∈ C and any σ ∈ G, we know N(σ) ∈ F⊥ = C. Hence (F , C)

is a rigid cotorsion pair.

By [5], we know when R is a graded ring by a finite group G, R#k[G]∗ is the free right

and left R-module with basis {pg|g ∈ G}, and there is a category isomorphism between

R-gr and R#k[G]∗-mod given by the functors (−)gr : R#k[G]∗ − mod → R − gr, (−)# :

R − gr → R#k[G]∗ −mod. In [5], Cohen and Montgomery also proved the duality theorem

for Coactions. The Duality Theorem for Coactions says that if R is graded by G, then there

is an action of G on R#k[G]∗, and (R#k[G]∗) ∗ G ∼= Mn(R) the n × n matrix ring over R,

where n = |G|.

Theorem 3.4 Let R be a ring graded by a finite group G with |G|−1 ∈ R.

(1) If (F , C) is a cotorsion pair in R-mod and U(F (F)) ⊆ F , then (add(F (F)), add(F (C)))

is a cotorsion pair in R-gr.

(2) If (F ′, C′) is a cotorsion pair in R-gr and F (U(F ′)) ⊆ F ′, then (add(U(F ′)), add(U(C′)))

is a cotorsion pair in R-mod.

(3) If (F , C) is a rigid cotorsion pair in R-gr, then (add(U(F)), add(U(C))) is a cotorsion

pair in R-mod.

Proof (1) By [15], the functor ColG(−) : R − mod → Mn(R) − mod is an category

equivalent functor, then (ColG(F),ColG(C)) is a cotorsion pair in Mn(R) − mod. Let i :

R#k[G]∗ → Mn(R) ∼= (R#k[G]∗) ∗ G be inclusion map, we have the restriction functor

i∗ : Mn(R) − mod → R#k[G]∗ − mod and the induction functor

i∗ : R#k[G]∗ − mod → Mn(R) − mod.

Since (R#k[G]∗) ∗G ∼= Mn(R) is a skew group ring of R#k[G]∗, by Proposition 2.2, we

know if i∗(i∗(ColG(F))) ⊆ ColG(F), then (add(i∗(ColG(F)), add(i∗(ColG(C))) is a cotorsion

pair in R#k[G]∗−mod. Since (−)gr : R#k[G]∗−mod → R−gr is an category equivalent func-

tor, we get that if i∗(i∗(ColG(F))) ⊆ ColG(F), then (add((i∗(ColG(F))gr), add((i∗(ColG(C))gr))

is a cotorsion pair in R-gr.
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Let H = (−)gr ◦ i∗ ◦ ColG(−), then (add(H(F)), add(H(C))) is a cotorsion pair in

R-gr. By [15, Lemma 3.2], we know that the functors F and H are isomorphic. Since

H = (−)gr◦i∗◦ColG(−), we know that H ′ = ColG
−1(−)◦i∗◦(−)# is the left adjoint functor of

H, where ColG
−1(−) : Mn(R)−mod → R−mod is the inverse of the functor ColG(−). Hence

the functor H ′ is isomorphic to U . Since ColG(−) : R−mod → Mn(R)−mod is an equivalent

functor, we can prove that U(F (F)) ⊆ F if and only if i∗(i∗(ColG(F))) ⊆ ColG(F). Hence

(add(F (F)), add(F (C))) is a cotorsion pair in R-gr.

(2) By a proof similar to that of (1), we get the desired results.

(3) Since G is finite, by the remark following [14, I.2.12], we have

EXT1
R(M,N) ∼= Ext1R(M,N)

for any M ∈ F and N ∈ C. By Proposition 3.3, we know that Ext1R(M,N) = 0. Hence

add(U(F)) ⊆ ⊥add(U(C))

and

add(U(C)) ⊆ (add(U(F)))⊥.

The rest of the proof is similar to that of Proposition 2.2, but for the completeness, we

give a proof here. Next we prove that ⊥(add(U(C))) ⊆ add(U(F)). Let X ∈ ⊥(add(U(C))),

then Ext1R(X, U(N)) = 0 for any N ∈ C. Since (U,F ) is an Frobenius pair, we get that

Ext1R(X, U(N)) ∼= Ext1R−gr(F (X), N)

for any N ∈ C. Hence F (X) ∈ ⊥C = F , U(F (X)) ∈ U(F). Since F is separable, by [11,

Proposition 5], X is a direct summand of U(F (X)), X ∈ add(U(F)).

Finally, let Y ∈ (add(U(F)))⊥, then Ext1R(U(M), Y ) = 0 for any M ∈ F . Since

Ext1R(U(M), Y ) ∼= Ext1R−gr(M,F (Y ))

for any M ∈ F , F (Y ) ∈ F⊥ = C, U(F (Y )) ∈ U(C). Since Y is a direct summand of

U(F (Y )), Y ∈ add(U(C)).

Corollary 3.5 Let R be a ring graded by a finite group G with |G|−1 ∈ R.

(1) If (F , C) is a complete cotorsion pair in R-mod and U(F (F)) ⊆ F ,

then (add(F (F)), add(F (C))) is a complete cotorsion pair in R-gr.

(2) If (F ′, C′) is a complete cotorsion pair in R-gr and F (U(F ′)) ⊆ F ′,

then (add(U(F ′)), add(U(C′))) is a complete cotorsion pair in R-mod.

Proof By a proof similar to that of [21, Theorem 3.7], we get the desired results.

From Corollary 3.5, we get a relationship of the existence of envelopes and covers be-

tween the graded and ungraded cases.

Lemma 3.6 Let R be a ring graded by a finite group G, M a graded left R-module

and N a left R-module.
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(1) If N is a Goreinstein injective left R-module, then F (N) is Gorenstein gr-injective.

If M is Gorenstein gr-injective, then U(M) is Gorenstein injective.

(2) If N is a Goreinstein projective left R-module, then F (N) is Gorenstein gr-projective.

If M is Goreinstein gr-projective, then U(M) is Gorenstein projective.

(3) Suppose that R is an n-FC ring. If M is Gorenstein gr-flat, then U(M) is Gorenstein

flat. If N is a Gorenstein flat left R-module, then F (N) is Gorenstein gr-flat.

Proof (1) By [1, Proposition 3.6], we know that if N is a Gorenstein injective left R-

module, then F (N) is Gorenstein gr-injective. Since G is finite, (U, F ) is an Frobenius pair.

Using a proof similar to that of [1, Proposition 3.6], we can prove that if M is Gorenstein

gr-injective, then U(M) is Gorenstein injective.

(2) By [1, Proposition 4.5], we know that if N is a Gorenstein projective left R-module,

then F (N) is Gorenstein gr-projective. Since (U,F ) is an Frobenius pair, we can similarly

prove that if M is Gorenstein gr-projective, then U(M) is Gorenstein projective.

(3) By [2, Proposition 3.1 and Theorem 3.3], we get the results.

Let gr−GP(R), gr−GI(R) and gr−GF(R) denote the class of Gorenstein gr-projective,

Gorenstein gr-injective and Gorenstein gr-flat graded left R-modules respectively. As a

application, we have the following proposition:

Proposition 3.7 If R is a ring graded by a finite group G with |G|−1 ∈ R, then we

have

(1) (GP(R),GP(R)⊥) is a (complete) cotorsion pair in R-mod if and only if (gr −

GP(R), gr − GP(R)⊥) is a (complete) cotorsion pair in R-gr.

(2) (⊥GI(R),GI(R)) is a (complete) cotorsion pair in R-mod if and only if (⊥gr −

GI(R), gr − GI(R)) is a (complete) cotorsion pair in R-gr.

(3) Suppose that R is an n-FC ring, then (GF(R),GF(R)⊥) is a (complete) cotorsion

pair in R-mod if and only if (gr − GF(R), gr − GF(R)⊥) is a (complete) cotorsion pair in

R-gr.

Proof (1) Let (GP(R), GP(R)⊥) be a cotorsion pair in R-mod, by Theorem 3.4 and

Lemma 3.6, (add(F (GP(R))), add(F (GP(R)⊥)) is a cotorsion pair. So we only need to prove

that add(F (GP(R))) = gr − GP(R) and add(F (GP(R)⊥)) = gr − GP(R)⊥.

Since F (GP(R)) ⊆ gr − GP(R) and gr − GP(R) is closed under finite direct sums and

direct summands, add(F (GP(R))) ⊆ gr−GP(R). Let M ∈ gr−GP(R), since M is a direct

summand of FU(M), M ∈ add(F (GP(R))) (since U(M) ∈ GP(R) by Lemma 3.6). Hence

add(F (GP(R))) = gr − GP(R).

Then we prove that add(F (GP(R)⊥)) = gr − GP(R)⊥.

Let N ∈ GP(R)⊥ and M ∈ gr − GP(R), since U(M) ∈ GP(R), we have

Ext1R−gr(M, F (N)) ∼= Ext1R(U(M),N) = 0.

Then F (N) ∈ (gr − GP(R))⊥, and add(F (GP(R)⊥)) ⊆ gr − GP(R)⊥ since gr − GP(R)⊥ is

closed under finite direct sums and direct summands.
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Let N ′ ∈ gr − GP(R)⊥ and M ′ ∈ GP(R), we have

Ext1R(M ′, U(N ′)) ∼= Ext1R−gr(F (M ′),N ′) = 0

and then FU(N ′) ∈ F (GP(R)⊥). Since N ′ is a direct summand of FU(N ′), we know that

N ′ ∈ add(F (GP(R)⊥)). Thus add(F (GP(R)⊥)) = gr − GP(R)⊥, we get the desired results.

Conversely, let (gr−GP(R), gr−GP(R)⊥) be a cotorsion pair in R−gr. Since FU(gr−

GP(R)) ⊆ gr − GP(R), (add(U(gr − GP(R)), add(U(gr − GP(R)⊥)) is a cotorsion pair in

R-mod. Using Lemma 3.6 and a proof similar to the above, we can prove that

add(U(gr − GP(R)) = GP(R).

Next we prove that

add(U(gr − GP(R)⊥)) = GP(R)⊥.

For any M ∈ GP(R) and N ∈ gr − GP(R)⊥, we have the following isomorphisms

Ext1R(M, U(N)) ∼= Ext1R−gr(F (M), N) = 0,

since add(F (GP(R))) = gr − GP(R). Hence add(U(gr − GP(R)⊥)) ⊆ GP(R)⊥ since

GP(R)⊥ is closed under finite direct sums and direct summands. Similarly, we can prove

that GP(R)⊥ ⊆ add(U(gr − GP(R)⊥)). Thus add(U(gr − GP(R)⊥)) = GP(R)⊥. Hence

(GP(R),GP(R)⊥) is a cotorsion pair in R-mod.

By Corollary 3.5, we get the desired results.

Using Theorem 3.4, Corollary 3.5, Lemma 3.6 and a proof similar to that of (1), we get

(2) and (3).
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