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Abstract: This article studies a futures hedging optimization problem with the value-at-risk

constraint. The existence of optimal hedging strategies, an augmented Lagrangian algorithm for

solving this model and its convergence are obtained by the optimal methods. The studies about

the single-variable hedging strategy with the return of futures following a normal distribution are

extended via our results with random variables following elliptical distributions to describe some

fat tail features of the market risk factors, value-at-risk to control risk of hedging strategies, the

mean-VaR portfolio hedging model and an algorithm for solving this mode.
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1 Introduction

The organized commodity futures as one of the most important kinds of derivative se-
curities not only can be used to hedge a price risk of spot commodities but also may be
selected as some assets included in an investment portfolio. Both academicians and prac-
titioners have shown great interest in the issue of hedging spot commodities with futures
because carrying costs of the spot commodities are difficult to predict, and a basis risk of
futures is uncertain. One of the main theoretical issues in hedging involves the determina-
tion of the optimal hedging ratio. There are some mathematical models for the theoretical
analysis of the futures hedging ratio in this literature. Minimum-variance hedging theory
developed by Johnson (1960) was the first theory which attempted to minimize the price risk
considered a reflection of a variance of the hedged portfolio to select the optimal number of
futures contracts necessary to hedge a certain spot position. There are much of the debate
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whether minimum-variance criterion is appropriate, because it is based on two assumptions
that investors have a quadratic utility function and returns of the spot and futures are
normal.

In practice, neither of these assumptions is likely to hold. The variance as an objective
function in the minimum-variance hedging theory is only one of many possible risk measures.
Alternative hedging objectives may be applied. For instance, Howard and D’Antonio (1984)
designed some hedging strategies to maximize the Sharpe ratio, Lien and Shaffer (1999)
minimized the mean-Gini coefficient, Lien and Tse (2000) employed the objective functions
including the generalized semivariance or higher lower partial moments. Furthermore, the
returns are not always normally distributed, may be non-normal distributions, for instance,
t-distribution which has a fat-tail feature. This has led to the emergence of alternative
measures of risk. Of these, perhaps the most widely used risk measures are value-at-risk
(VaR) and conditional value-at-risk (CVaR) evolved into risk measurement and portfolio
optimization. Harris and Shen (2006) developed minimum-VaR futures hedging model, and
showed that minimum-VaR hedging ratios are found to be significantly lower than minimum-
variance hedging ratios. Hung et al. (2006) proposed zero-VaR hedging ratio which had an
analytical solution and converged to the minimum-variance hedging ratio under a martingale
process. Lee and Hung (2007) extended the one period zero-VaR hedging ratio proposed by
Hung et al. (2006) to the multi-period case and incorporated the hedging horizon into the
objective function under VaR framework. Cao et al. (2010) developed a semi-parametric
approach for estimating VaR and CVaR under the assumption of the non-normality of futures
returns.

The bulk of research on hedging mentioned above is concerned with a single commodity,
and solely relies on minimizing the price risk as an objective function of the hedging theory
about commodity futures. Nevertheless, as to a hedging portfolio of spot commodities with
multiple commodities futures, the risk-minimizing and/or optimal positions to take in each
contract must not only reflect its own covariance with the spot position, but also its degree
of covariability wit other commodities futures. Anderson and Danthine (1980) made the
first contributions to multivariate hedging theories. Eaker and Grant (1987) and Gagnon et
al. (1998) used the variance of the portfolio including spot commodities and futures as a
risk measure of price risk to study the multivariate hedging problem. Albrecht et al. (2011)
proposed a multivariate futures hedging problem for minimizing VaR and CVaR based on
an analysis approach.

However, no attempt has been made to develop the hedging strategies based on max-
imizing the expected value of the hedge portfolio with VaR as a price risk constraint. In
order to fill this gap, we derive mean-VaR multivariate hedging rules that is applied to a
very broad range of financial risk management, that is, to analyze a multivariate commodity
cross hedging problem of a portfolio consisting of long position in spot commodities by selling
short futures via numerical optimization techniques for the determination of optimal hedging
strategies. In this study, we will provide a numerical approach to obtain the optimal hedging
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strategies for a mean-VaR hedging model under assumptions on the return rates of the spot
commodities and the futures with elliptical distributions. Our contribution to the literature
is threefold. First, we develop a multivariate futures hedging theory model with an expected
return objective function and a price risk constraints to describe the hedging process of the
hedger. We particularly make use of VaR under a weak assumption on the elliptical return
distribution to control the price risk of the hedging portfolio, which allows us to capture
asymmetries in the return distribution. Second, we analyze the first order conditions for
the optimal hedging optimization problem to document the existence of the optimal hedging
strategies, and derive the corresponding dual problem implying other financial implication.
Third, we construct an augmented Lagrangian algorithm to solving the mean-VaR model in
order to get the optimal hedging portfolio satisfying the objective of the hedger under the
VaR constraint as a risk measure, and to prove the convergence of the algorithm proposed
in our study. Moreover, some numerical examples are given to illustrate the effectiveness of
both the theoretical model and the constructed algorithm.

This paper is organized as follows. A multivariate hedging model over one period is
presented in the next section. In Section 3, an optimality condition and dual problem of the
mean-VaR hedging problem are given. In Section 4, we provide an augmented Lagrangian
algorithm for solving this problem and prove its convergence. Some numerical results are
given in the last section.

2 Futures Hedging Portfolio Model

We consider a multivariate futures hedging problem in one-period world. At time t− 1
an agent purchases the spot commodities which would sold at time t, and the amount
of the ith commodity of a total of m commodities is Si at the spot price Pit−1 in the
commodity markets. Let S = (S1, · · · , Sm)T be the long position vector of spot commodities
and Pt−1 = (P1t−1, · · · , Pmt−1)T be the spot price vector of these commodities at time
t − 1, respectively. These prices may fall prior to his reselling them because there are
many uncertain factors in the spot market, which make him exposed to the price risk.
According to the short selling regulation in the futures markets and hedging theories he
would protect his long position of these commodities from the risk of such price fluctuation
by selling a sufficient number of futures contracts to reduce the price risk. Suppose that
there are a futures market for each of the commodities, the agent can take short positions
in the given futures by selling a portfolio consisting of the n commodities futures at time
t − 1. Suppose that C = (C1, · · · , Cn)T is the short position vector of the futures, to be
liquidated them at time t, a short position is represented by Ci < 0 for i = 1, · · · , n, and
Ft−1 = (F1t−1, · · · , Fnt−1)T is the price vector of the futures at time t− 1.

Furthermore, assume that the agent holds the long and short positions of the spot and
futures commodities until the time t, and the spot prices and futures prices at time t are
random. Let Pit and Fit be the ith spot price and futures price at time t, respectively. Then
the return rate of the ith spot position is RPi

= Pit−Pit−1

Pit−1
for i = 1, · · · ,m, and the return
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rate of the ith futures position is RFi
= Fit−Fit−1

Fit−1
for i = 1, · · · , n.

Since futures contracts are used to reduce the fluctuations in spot positions, the resulting
ratio between the amount of spot commodities and the amount of futures is known as a
hedging ratio. Let RP = (RP1 , · · · , RPm

)T and RF = (RF1 , · · · , RFn
)T be the return rate

vector of the spot positions and futures positions, respectively. Additionally, let hi denote
the ith hedging ratio, i.e.,

hi =
Fit−1Ci

ST Pt−1

for i = 1, · · · , n, and h = (h1, · · · , hn)T be the vector of hedging ratios.
In general, one of the most fundamental issues in hedging is how to measure the risk

and return of the hedge portfolio. In order to analyze the optimal hedge portfolio, some
formulas for the return and risk of hedge portfolio are described in order. The amount of
return gained on the hedging is expressed as the return of hedge portfolio consisting of the
spot and futures positions,

R(x, h) =
ST (Pt − Pt−1)− CT (Ft − Ft−1)

ST Pt−1

,= xT RP − hT RF , (2.1)

where

xi =
SiPi,t−1

ST Pt−1

is the weight in the ith spot position, and x = (x1, · · · , xn)T is the vector of the spot
positions.

It is obvious that these vectors RP and RF are random because at time t the spot price
Pjt ( for j = 1, · · · ,m) and the futures price Fit( for i = 1, · · · , n ) are random. Therefore,
the return of the hedging portfolio R(x, h) is a function with respect to the two vectors x

and h. With many uncertain factors in the spot and futures market, it is difficult for the
hedger to predict the results of the R(x, h) which is treated as a random variable. In view
of the hedging practice, it seems be hopeful for the hedger to know the expectation of the
return of the hedging. Hence, we will analyze the expected value of the return of the hedge
portfolio. Furthermore, the expected value of the random vector RP and RF are denoted
as µS = (E(RP1), · · · , E(RPm

))T and µF = (E(RF1), · · · , E(RFm
))T , where the symbol E(·)

represents the expectation of a random variable, respectively.
Given these notations and the equation(2.1), the expected return of the hedge portfolio

can be written as

M(x, h) = E(R(x, h)) = xT µS − hT µF . (2.2)

Therefore, the expected return function M(x, h) is an objective function which the
hedger will maximize by choosing the spot weight vector x and the hedging ratio vector h.

Hedging activities appear to be motivated by the desire to reduce risk, as described in
risk management theory, the hedger should control the downside risk of the hedging. VaR
is probably the most widely used risk measure in financial institutions. To develop our
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hedging model, we introduce VaR and use it to measure a downside risk of the spot and
futures portfolio.

Definition 2.1 Given some confidence levels α ∈ (0, 1), the VaR of the portfolio over
the time period ∆ at the confidence level α is given by the smallest number such that the
probability that the loss L exceeds l is no larger than 1− α. Formally,

VaRα = inf{l ∈ R : Pr(L > l) ≤ 1− α} = inf{l ∈ R : F(l) ≥ α}, (2.3)

where Pr(·) and F(·) are a cumulative probability function and a loss distribution function
with respect to the random variable L, respectively.

In probabilistic terms, VaR is thus simply a quantile of the loss distribution, and depends
on the time period and the confidence level. Some typical values for ∆ are usually 1 or 10
days in market risk management, and α = 0.95 or α = 0.99. If the probability density
function of the loss distribution is given, then the value of VaR is obtained by computing
quantile in certain case. To take an example about a normal loss distribution (see, McNeil
et al., 2005), suppose that the loss distribution F (·) is normal with mean µ and variance σ2.
Fix α ∈ (0, 1). Then

VaRα = µ + σΦ−1(α), (2.4)

where Φ denotes the standard normal distribution function(df) and Φ−1(α) is the α-quantile
of Φ. Of course, similar results may be obtained for the multivariate normal loss distribution.

As a generalization of the normal distribution, the family of elliptical distributions
exhibits many favorable properties, which are important for financial modeling, especially
able to capture fat-tails features of return series in financial market, such as the Student’s
t-loss distribution(see, McNeil et al., 2005). Suppose (L−µ)/σ has a standard t distribution
with v degrees of freedom, and mean µ and variance vσ2/(v − 2) when v > 2, so that σ is
not the standard deviation of the distribution. We get

VaRα = µ + σt−1
v (α), (2.5)

where tv denotes the distribution function of the standard t-distribution, which is available
in most statistical computer package along with its inverse.

Since the returns of the spot commodities and futures contract are all random multivari-
ates, we limit our analysis to multivariate elliptical distributions. Although there are several
equivalent definitions of elliptical distributions, we use the following one for elliptical distribu-
tions to study our multivariate hedging problem. If the random vector X = (X1, · · · , Xm)T

is elliptically distributed with mean µ and correlation matrix Σ when its probability density
is given by

JX(x) = |Σ|−1/2g((x− µ)Σ−1(x− µ)T),

where |Σ| stands for the determinant of Σ, and g is a scalar function referred as the density
generator.
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On the technical side, we thus assume that the return vector of the spot and futures
position, RP and RF , are elliptically distributed, respectively. We will calculate the VaR of
the return of hedge portfolio, R(x, h), and the VaR at a confidence level of 1−α is given by
the solution of the following equation,

Pr(R(x, h) < −VaRα) = α. (2.6)

Here we follow the usual convention to record portfolio losses by negative numbers, and
to start the VaR as a positive quantity of money.

Based on equation (2.6), the VaR depends on the two vectors x and h, that is, the VaR
is a function with respect to the vectors x and h. In the hedging term, the agent can change
the value of the VaR by choosing the linear portfolio of the spot wights x and the hedging
radios vector h based on his expectation. In equation (2.6), it is important to derive a closed
form of the VaR when the cumulative probability distribution of the two random vectors
RP and RF are multivariate elliptically distributed. Kamdem (2005) got a formula used to
compute VaR for linear portfolio with elliptically distributed risk factors, and the special
attention is given to the particular case of a multivariate t-distribution. In the following, we
limit our analysis to the elliptical distribution of the spot and future return, and take use of
the computing results about VaR (see, Kamdem (2005)).

Lemma 2.2 [14] Suppose that the loss function of the portfolios over the time window
of interest is, to good approximation, given by ∆X = δ1X1 + · · · + δnXn, with constant
portfolio weights δj . Suppose moreover that the random vector X = (X1, · · · , Xm)T of
underlying risk factors follows a continuous elliptic distribution, with probability density
given by JX(x), where g(s2) is integrable over R, continuous and nowhere 0. Then the
portfolio’s Delta-elliptic VaR at confidence level 1− α is given by

VaRα(δ) = −δT µ + cg
α,n

√
δΣδT , (2.7)

where cα = cg
α,n is the unique positive solution of the transcendental equation α = G(cg

α,n),

G(x) =
π

n−1
2

Γ(n−1
2

)

∫ −∞

x

∫ +∞

z2

(u− z2)
n−3

2 g(u)dudz

and Γ(·) is a Gamma function.
The value of cg

α,n in the lemma is obtain by the Matlab (see, Kamdem (2005)) as follows:

Table 1: The value of cg
α,n

n 2 3 4 5 6 7 8 9
cg
0.01,n 5.5722 5.9309 5.7879 5.4555 5.0799 4.7160 4.3819 4.0818

cg
0.025,n 8.6113 7.6777 6.8216 6.0676 5.4326 4.9032 4.4601 4.0862
cg
0.05,n 11.7123 9.0750 7.4966 6.3797 5.5457 4.9007 4.3880 3.9711

By the definition of VaR as maximum loss with a given confidence level, we can express
the downside risk of the hedge portfolio over a given time period and confidence level 1− α

as a risk constraint function.
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According to Lemma 2.2, we obtain a closed formula for the VaR of the hedge portfolios,
that is,

VaRα(x, h) = −xT µS + hT µF + cg
α,n(xΣSSxT + hΣT

FS + xΣSF hT + hΣFF hT )1/2, (2.8)

where ΣSS is the covariance matrix for RP , ΣSF is the covariance matrix between RP and
RF , ΣFS is the covariance matrix between RF and RP , and ΣFF is the covariance matrix of
RF .

Let y = (xt hT )T , µ = (µS − µF )T . Then equation (2.2) is changed into

xT µS − hT µF = yT µ̃.

Furthermore, denote the covariance matrix of the random vector (RP RF ) by

Σ̃ =

(
ΣSS ΣSF

ΣFS ΣFF

)
. (2.9)

Then VaRα(x, h) can be expressed in the matrix term,

VaRα(x, h) = −yT µ̃ + cg
α,n(yT Σ̃y)1/2. (2.10)

Hence, we would consider the VaRα(x, h) as the constraint for controlling the hedging
risk, which is given by

VaRα(x, h) ≤ γ, (2.11)

where γ ∈ R+.
Submitting the express of the VaR in equation (2.10) into equation (2.11), the risk

constraint for VaR can be written as

−yT µ̃ + cg
α,n(yT Σ̃y)1/2 ≤ γ. (2.12)

We thus can use equation (2.12) as a risk constraint to find the hedging policies of the hedger
in the following section.

In view of the above analysis of the expected return treated as the objective function
and the VaR denoted as a risk constraint function, suppose that the hedger can select x and
h so as to maximize the expected return under the downside risk constraint. Our analysis of
the futures hedging is called as mean-VaR hedging classified as the mean-risk hedging. Thus,
according to equations (2.2) and (2.12), the mean-VaR hedging problem under assumption
that the hedger is risk aversion, is given by

max
y

yT µ̃,

s. t. −yT µ̃ + cg
α,n(yT Σ̃y)1/2 ≤ γ,

xi ≥ 0, i = 1, · · · ,m,

hj ≥ 0, j = 1, · · · , n.

(2.13)
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In order to solving problem (2.13), we will develop a duality theory and optimal condi-
tion of the primal problem in the next section.

3 Duality and Optimal Condition

In this section, we analyze the theory of problem (2.13) including its duality theory and
optimal conditions.

To start with the duality theory of problem (2.13), let f(y) = −yTµ̃, g(y) = −yT µ̃ +
cg
α,n(yT Σ̃y1/2 − γ and X = {yi = (xi, hj)|xi ≥ 0, i = 1, · · · ,m;hj ≥ 0, i = 1, · · · , n}. Then

problem (2.13) can be written as
min
y∈X

f(y),

s. t. g(y) ≤ 0.
(3.1)

We will analyze the Lagrangian duality problem and corresponding properties of prob-
lem (3.1). The Lagrangian duality problem is denoted as

max q(λ),

s. t. λ ≥ 0,
(3.2)

where q(λ) = inf{L(y, λ)|y ∈ X} and L(y, λ) = f(y) + λg(y).
It is possible that the value of the function q(λ) = −∞ for some λ, so the domain of

the duality problem is defined as

D = {λ|q(λ) > −∞}.

Proposition 3.1 The domain D is convex, and the function q(λ) is concave in D.
Proof For any y, λ1 > 0, λ2 > 0 and a ∈ [0, 1], we have

L(y, aλ1 + (1− a)λ2) = aL(y, λ1) + (1− a)L(y, λ2).

Taking the infinimum of both sides of the above equation, we get

inf
y∈X

L(y, aλ1 + (1− a)λ2) ≥ a inf
y∈X

L(y, λ1) + (1− a) inf
y∈X

L(y, λ2)

or
q(aλ1 + (1− a)λ2) ≥ aq(λ1) + (1− a)q(λ2).

It is easy to obtain aλ1 + (1− a)λ2 ∈ D when λ1 ∈ D and λ2 ∈ D. Thus, the set D is
convex, and the function q is concave.

Theorem 3.2 q∗ ≤ f∗.
Proof For each λ ≥ 0 and y ∈ X satisfying g(y) ≤ 0, we have

q(λ) = inf
y∈X

Ly, λ) ≤ f(y) + λg(y) ≤ f(y).

So, we get
q∗ = sup

λ≥0
q(λ) ≤ inf

y∈X,g(y)≤0
f(y) = f∗.
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Theorem 3.3 y∗ is the optimal solution of the primal problem (3.1) and λ∗ is the
Lagrangian multiplier if and only if

y∗ ∈ X, g(y∗) ≤ 0, (3.3)

λ∗ ≥ 0, (3.4)

y∗ = arg min
y∈X

L(y, λ∗), (3.5)

λ∗g(y∗) = 0. (3.6)

Proof First, to analyze the sufficiency. If (y∗, λ∗) is the optimal solution of the
primal problem and the Lagrangian multiplier, then equations (3.3) and (3.4) are satisfied.
Furthermore, the following condition can be obtained

f∗ = f(y∗) ≥ f(y∗) + λ∗g(y∗) = L(y∗, λ∗) ≥ inf
y∈X

L(y, λ∗).

According to the definition of the Lagrangian multiplier, λ∗ ≥ 0, and the feasibility of
y∗, that is, g(y∗) ≤ 0, the first inequality is satisfied. Moreover, one has f∗ = inf

y∈X
L(y, λ∗)

by the definition of the Lagrangian multiplier. So the equality in the above equation is true.
That implies λ∗g(y∗) = 0 and y∗ = arg min

y∈X
L(y, λ∗).

Then we consider the necessity of the theorem. Using these equations from (3.3) to
(3.6), one has

f∗ ≤ f(y) = L(y, λ∗) = min
y∈X

L(y, λ∗) = q(λ∗) ≤ q∗. (3.7)

The equality in the over equation (3.7) is obtained by the weak dual theorem. Thus, y∗

and λ∗ are the optimal solution of the primal problem and the one of the dual problem,
respectively, and there does not exist the duality gap between the the primal problem and
dual one.

4 An Algorithm

In this section an augmented Lagrangian algorithm is constructed to solve problem
(2.13), and its convergent analysis is investigate. The constraint function g̃(y) is defined as

g̃(y) = (g0, g1, · · · , gn, gn+1, · · · , gn+m)T,

= (−yTµ̃ + cg
α,n(yTΣ̃y)1/2 − γ,−x1, · · · ,−xm,−h1, · · · ,−hn)T.

Then problem (2.13) is written as
min

y
f(y),

s. t. g̃(y) ≤ 0.
(4.1)

An augmented Lagrangian function of the problem (4.1) is denoted by

Lc(y, λ) = f(y) +
1
2c

n+m∑
j=1

{(max{0, λj + cjgj})2 − λ2
j}, (4.2)



No. 2 The optimal futures hedging strategies with VaR 223

where cj > 0 and c > 0 are called penalty parameters, and λj ≥ 0 is the Lagrangian
multipliers, j = 1, · · · , n + m. So the augmented Lagrangian algorithm is given as follow.

Begin of Algorithm
Step 1 Initialization
Input parameters, s > 0, β ∈ (0, 1), σ ∈ (0, 1/2), µ > 0, ck

j > 0(j = 1, · · · , n + m), λk
j =

(λ0, · · · , λn+m), and initialized points y0 = (x0
1, · · · , x0

n, h0
1, · · · , h0

m), the end parameter, εk.
Let k = 0.

Step 2 Stopping criterion
If ‖∇yLc(yk, λk)‖ ≤ εk, then the algorithm stop. Otherwise, to begin the next step.
Step 3 Parameter calibration
For j = 0, · · · , n + m, to calibrate the augmented Lagrangian parameter λk+1

j =
max{0, λk

j + ck
j gj} and ck+1

j such that ck+1
j > ck

j .
Step 4 Iterative point calibration
Using the Armijo linear search to find the step length αk = βmks satisfying

Lc(yk − αk∇yLc(yk, λk), λk)− Lc(yk, λk) ≤ −σαk‖∇yLc(yk, λk)‖2, (4.3)

where mk is the minimum positive integer number satisfying the above inequality. The next
iterative point is yk+1 = yk − αk∇yLc(yk, λk).

Step 5 Let k = k + 1, and go back to Step 1.
End of Algorithm The above algorithm is called as the steepest descend augmented

Lagrangian algorithm with the non-exact Armijio search method, and its convergence is
discussed as follow.

Theorem 4.1 If the function f and g are continues, for each k the sequence {εk} and
{ck} satisfying 0 < ck < ck+1 and ck →∞, and there exist the sequence {yk} satisfying

‖∇yLc(yk, λk)‖ ≤ εk,

and converging to y∗, where 0 ≤ εk, and εk → 0, such that ∇g(y∗) has a rank n, and the
sequence {λk} is bound, then

{λk+1} → λ∗,

where λ∗ and h∗ satisfying the following first order necessary condition and effective con-
straint

∇f(y∗) +∇g(y∗)λ∗ = 0, g(y∗) = 0.

Proof Without loss of generality, if the sequence {yk}k converges to the y∗, then for
all k, we have

∇yLc(yk, λk) = ∇f(yk) +∇g(yk)λ̄k, (4.4)

where λ̄k = max{0, λk + ckg(yk)}.
Similarly, suppose that ∇g(yk) has a rank n for each k, then to multiple

(∇g(yk)T∇g(yk))−1∇g(yk)T
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on the both sides of the equation(4.4), we get

λ̄k = (∇g(yk)T∇g(yk))−1∇g(yk)T(∇yLc(yk, λk)−∇f(yk)). (4.5)

According to ∇yLc(yk, λk) → 0 when k → ∞, the equation (4.5) implies λ̄k → λ∗ when
k →∞, where

λ∗ = −(∇g(y∗)T∇g(y∗))−1∇g(y∗)T∇f(y∗).

Using again ∇yLc(yk, λk) → 0 when k →∞, and the equation (4.5), we get

∇f(y∗) +∇g(y∗)λ∗ = 0.

Furthermore, since {λk} are bound, and max{0, λk +ckg(yk)} → λ∗, ckg(yk) are bound.
Thus g(yk) → 0 because ck →∞, that is, g(y∗) = 0. The proof is end.

5 Numerical Experiment

In the numerical analysis, the price risk of the China sugar index (i.e., CSI) is hedged by
six sugar futures contracts with the DCE (i.e. Dalian Commodity Exchange) codes SR1109,
SR1111, SR1201, SR1203, SR1205 and SR1207, respectively. The daily price data of each
futures contracts was taken from Wind database over the period December 2009 through
August 2011. Using the statistic software SAS, the covariance matrix Σ̃ in the equation
(2.10) and the means µ̃ of the CSI and six futures are given as follows



0.00020041 0.00018769 0.00019247 0.00020451 0.00013485 0.00010641 0.00004071
0.00018769 0.00018578 0.00018679 0.00020049 0.00013164 0.00011003 0.00004211
0.00019247 0.00018679 0.00020382 0.00021674 0.00014315 0.00011626 0.00004027
0.00020451 0.00020049 0.00021674 0.00024732 0.00013472 0.00011453 0.00005772
0.00013485 0.00013165 0.00014315 0.00013472 0.00014316 0.00011557 0.00002047
0.00010641 0.00011004 0.00011626 0.00011454 0.00011557 0.00018791 0.00002995
0.00004072 0.00004212 0.00004028 0.00005773 0.00002048 0.00002995 0.00004535




and
µ̃ = (0.2230 0.4658 0.0489 0.1024 0.4473 0.7821 0.4321)T,

respectively.
It is found that the return rates of the China sugar index and six futures are all not

normal distributed, but approximately elliptical distribution with a fat-tail feature. However,
it is difficult to determine what kind of of elliptical distribution the return of the seven futures
follows. Therefore, the simulation method is used to get the value of cg

α,n and γ, and for
cg
0.01,6 = 5.0799 the algorithm proposed in the section of the article is executed by Matlab

programming to solve e problem (2.13), and the corresponding optimal hedging ratio of each
futures are given in the Table 2 with some different values of γ.



No. 2 The optimal futures hedging strategies with VaR 225

Table 2: Optimal hedging ratios
γ SR1109 SR1111 SR1201 SR1203 SR1205 SR1207

0.5 0.1068 0.1068 0.5056 0.1728 0.7153 0.6550
0.7 0.1765 0.1765 0.3837 0.0224 0.0161 0.7531
1 0.3304 0.3304 0.4231 0.1183 0.4854 0.2416

1.5 0.2109 0.2109 0.4133 0.1129 0.0977 0.5757
2 0.2931 0.2931 0.5938 0.3045 0.1341 0.3313

2.5 0.1708 0.1708 0.0030 0.0115 0.1238 0.2061
3 0.1144 0.1144 0.1275 0.0308 0.0445 0.1818

The hedger can make use of the optimal hedging ratios in the Table 2 to decide the
number of six futures contracts and China sugar index, and the maximal mean return of the
portfolio and the VaR.

6 Conclusions

In this paper we consider a one-period mean-VaR multivariate futures hedging model
at one period, in which the value-at-risk with elliptically distributed risk factors is used to
measure the risk of portfolio consisting of some spot and futures positions. This model is
a special kind of constrains optimization problems. An argument Lagrangian algorithm is
proposed by analyzing the optimal condition of this problem in order to obtain the optimal
hedging, and its convergence is proved. Furthermore, as a numerical experiment in which the
hedger chooses the portfolio including six sugar futures contracts and a China sugar index,
the solving method proposed in this paper is carried out to obtain the optimal hedging ratios.
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带有风险价值的最优期货套期保值策略

张茂军1, 南江霞2, 袁功林3

(1.桂林电子科技的大学数学与计算科学学院, 广西桂林 541004)

(2.桂林电子科技大学广西高校数据分析与计算重点实验室, 广西桂林 541004)

(3.广西大学数学与信息科学学院, 广西南宁 530004)

摘要: 本文研究了带有风险价值约束的期货套期保值优化问题. 用最优化方法获得了套期保值策略的

存在性、求解模型的增广拉格朗日算法及其收敛性. 文中的结果推广了期货收益率服从正态分布的单变量套

期保值策略的研究, 表现为用服从椭圆分布的随机变量刻画市场风险因子的厚尾特征、用风险价值控制套期

保值的风险、构建了均值-VaR组合套期保值理论模型并给出了求解算法.
关键词: 期货合约; 风险价值; 套期保值; 增广拉格朗日算法
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