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A NOTE ON THE APPROXIMATED INVERSE OF A
NON-NEGATIVE SYMMETRIC MATRIX
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Abstract: This paper studies the issue of the approximated inverse of nonnegative symmetric
matrices. By using the matrix S = (s;,;) to approximate its inverse, an explicit bound on the
approximation error is obtained, and one conclusion that the inverse is well approximated to the
order 1/(n — 1)? uniformly for large n is also proved.
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1 Introduction

When solving the solution for a large system of linear equations, a good approximate
inverse of the coefficient matrix is crucially important in establishing fast convergence rates
for iterative algorithms. See the extensive reviews [1, 5, 7, 20]. Here, we are concerned with

a n x n symmetric diagonally dominant matrices T' = (¢; ;) with positive elements, i.e.,

tiJ = tj’i >0 and ti,i > Z tl‘,j, 7 = 1, cee M. (11)
Jj=1,j#i

It is easy to show that T must be positive definite. This kind of diagonally dominant
nonnegative matrices has received wide attention [6, 8, 10]. In [2, 7, 9], the problems on
inverses of nonnegative matrices have been investigated. Markham [13] and Martinez et
al. [14] studied the sufficient conditions that the inverses of nonnegative matrices are M-
matrices. We propose to approximate the inverse of T, T~', by the matrix S = (s;;),

where

Sig =

andt = Y (1—90;;)t;;. In a special case that t;; = > t; ; for all ¢, Yan and Xu [19] have
ij=1 j#i
obtained the upper bound of the approximation errors when using S to approximate the
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inverse of T', which is crucially used to establish the asymptotical normality of an estimated
vector in the B-model for undirected random graphs with a growing number of nodes. In

this paper, we derive an explicit upper bound on the approximation error for general cases

(1.1).
2 An Explicit Bound on the Approximation Error

max A;}, and for a

Let m = mln ti,j7 Al = ti,i - Zti7j7 M = max{ max ti,j7 .
1<i<j<n i 1<i<j<n 1<i<n
matrix A = (a; ), define ||A|| := max; ; |a; ;|. We have the following theorem.

Theorem 2.1 If

2(n—2)m M (n—2)Mm

C(m, M) = nM + (n —2)m B m(n—1) B [(n —2)m + M][(n — 2)m + 2M]

>0, (2.1)

then
1 1 M 4M n—1

T - 9| < — +—
] = (n—1)2 % C’(m,]W)(mzerQn)Jr mn

Proof Let I,, be the n x n identity matrix. Define F' = (f;;) =T ' =S,V = (v;;) =
I, — TS and W = (w;;) = SV. We have the recursion

F=T"'-S=(T"'-8){I,-TS)+ S, -TS)=FV +W. (2.2)
Note that
Vij = Oij— Zti,ksk,j
k=1
. or; 1
5 i — . Jo_
I th(ik k t.‘>
k=1 ’
= (0 )+ ——, (2.3)
. t.
and
. “~ Sip 1 te; 2t — Ay
wi; = SikUk, = (== 0k = 1) 2L+ — ]
) . 7, ..
k=1 k=1
(B — ) + TS LS T(A - 1)+ A2
k=1 ’ > k=1 ?
Oij —1) tijy 2t —Ai 1 —(t;; —Aj) >k Ak
— AT VA D) i il I R oL B VAN DU, R
[ ti,i (tj’j> + ti’it” ] t. [ tj’j Tt t. ]
D, 1 A A, A
CGuvn 1A A SA i

tiit; t. tiat. it 2
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Furthermore, when i # 7,

1 1
0<—< ,
t. ~ mn(n—1)
t; M
0< ——< — 27
tiiti; — m*(n—1)
0 < A, M
tiit m2n(n —1)2’

and it is easy to show, when i, j, k are different from each other,

] < max{—— M,
A mn(n —1)" m2n(n —1)2"’
lw; ;] < max{ ! M + M }
= mn(n—1)"m2(n—1)2  m?n(n—1)2"
M M
lwij —wir| < 2 (n—1)2 + m2n(n —1)2’
M M

s < ’
|wii —wip| < m2(n — 1)2 + m2n(n —1)2

It follows that

M 3SM

max(|wg ; |, [wi; —wix]) < m2(n—12 | min(n 1)

for all 4, 7, k. (2.5)

Next we use the recursion (2.2) to obtain a bound of the approximate error ||F||. By (2.2)

and (2.3), for any 4, we have

| +wiy, j=1,---,n (2.6)

- thi 2ur — Ag
i = : O —1 »J It L —
Jij kE_l finl(Or; —1) L + T

Thus, to prove Theorem 2.1, it is sufficient to show that |f; ;| < C(M,m)/(n — 1)? for any

i,7. Fixing any 4, let f; , = max f;, and f; 3 = min f;.
) g y 1, fz,a 1§k§nfl’k fl,ﬁ 1§kgnfz,k

First, we will show that f; 5 <1/t < 1/(m(n —1)?). A direct calculation gives that

_ -1 _ i,k - )
S firtes = > (T (t“- t“))tk,z
k=1 k=1 ’
b b
= 1 — 1 — 4 = : . 2.
( t,,) 7 (2.7)
k=1 k=1

Thus, fig Y. tk: < D, fiktki = D tf It follows that f; 3 < 1/t and, similarly, f;, >
k=1 k=1 k=1
1/t .
Note that (1 — Ag/tan)fis=— 3. fis(Oka — 1), Thus,
k=1 “

ta,

n

A, tho w— Uk — A
. 1— =Y, = . f — 1) Y il L —— o 2.
Jia +( fon ) fip kE_l(fz,k fi.8) (0.0 )tw + kE_l fi( i )+ Wia-  (2.8)
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Similarly, by (1 — Ag/tg ) fips = — Z fi3(0kg — 1) =, we have that

n n

A t 2tk — A
fig+(1— é}f@ﬁ = Z(fi,k — fi.p)(On,p — 1)% + Zfzk(%) +wig  (2.9)
’ ' k=1 -

k=1

Combining the above two equations, it yields

fia fzﬁ+( = ) fis

ts,8 tcva

= ; [(5ka_ )a

(2.10)

(5kﬂ_1) ]—lea U)l"g.

Let Q ={k: (1=0kp)trs/tss > (1=0k.a)tk.a/taa} and let | = A. Note that 1 < X\ <n-—1.
Then,

n

St = B = 1 — (5 — 1) 2]

P aa ts.p
¢ tea
< D U= Fio)l (0= )2 = (1= Ga) 2
keQ 3.8 a,o
Scates  Dorca(l —0ka)tia
< (fia = fip)l ktGQ — kel ; ]
3.8 oo
AM A—1)m
< (foa— gl A-1)

MM+ (n—1—Xm (/\—1)m+(n—)\)M+M]'
(2.11)

Let
AM A=1)m

F) = MM+ n—1-Nm OA—Lm+mn—NM
There are two cases to consider the maximum of f(\) in the range of A € [1,n — 1].
Case I When M = m, it is easy to show f(A)=1/(n—1).
Case Il If M # m, since

_ (n—1)Mm (n—1)Mm
f/(/\) — DPM+m—1-Nm]2  [(—1L)m+(n—A)M]?

(n=1)Mm[(n—2\)(M-—m)][[AM+(n—1-N)m+A—-1)m+(n—\) M]
AM+(n—1=X\)m]?2[(A—1)m~+(n—X)M]?

and

") = =2(M —m)Mm(n — 1) ([AM+(n—11—)\)m]3 + [(A—l)m-‘,—l(n—)\)M]S) J

f(X) takes its maximum at A = n/2 when 1 < A <n — 1. A direct calculation gives that

n, _ nM—(n—2)m
f(§) - naM+(n—2)m’ (2.12)
Moreover, denote
(A=1)m A —1)m

90 = A=Dm+m-XNM A=Dm+(n—-ANM+M’
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therefore

() = Mm[M?((n—X)2+2(n—X)(A—1)+n—1)+(2Mm—m?2)(A—1)2]
g\ = [O—D)m+ (n—NM[(A—1)m+(n—N\ M+ M]?2

)

g’ (A) >0 when 1 <X <n—1such that for 1 <A <n-—1,

(n—2)Mm

09 <90 =1 = 55 30— 2)m 1 200

(2.13)

By (2.12) and (2.13), we have

x| AM (A= 1)m |
X _
1A<n-1AM+(n—1=X)m A=1m+n-ANM+M
<
S AR g o)
1 nM — (n—2)m (n—2)Mm
< I(M = I(M
s oM =m) e =2y M 7 ) G T2 M0 = 2m = 2]
M—-(n-2 —2)M
_n (n—2)m N (n—2)Mm ’ (2.14)
nM+ (n—2)m  [(n—2)m+ M][(n — 2)m + 2M]
where I(-) is an indictor function. Since fi o — fi g + i+ > |fipl, we have
fi,a - fi,ﬂ + (% - ti:; )fz,[j
> fia— fip = (fia = fis+ S5 — o= (2.15)

> (1- %)(ﬁ,a — fip) — m

Combining (2.10), (2.11), (2.14) and (2.15), it yields

(1 - m(ﬁﬂl))(fi,a - fi”@)

nM—(n—2)m (n—2)Mm M 4M
(nM+(n—2)m + [(n—2)m+M][(n—2)m+2M]) X (fi,a B fz,ﬁ) + m?2(n—1)2 + m2n(n—1)2"

so that
M 4M

m2(n — 1)2 * m2n(n —1)2’

where C'(m, M) is defined in (2.1). Consequently, if the condition (2.1) holds, then

C(va)(fi,a - fi’ﬁ) <

max |f; ;] < fi,oé*fi,ﬁ+tL
j=l,eeym :

1 M AM 1
< C(m,M) X |:m2(n—1)2 + m2n(71,—1)2:| + mn(n—1)
_ 1 1 M AM n—1
T (n—1)2 X [C(m,M)(W + m2n) + Wj| )
where the first inequality holds by max; |f; ;| < fia—fip+figl(fizg > 0)and 0 < f; gI(fip >

0) < 1/t... This completes the proof.
Remark If M and m are constants, C'(m, M) ~ 2m/(M + m) when n is large enough.

Therefore the condition (2.1) is very week.
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3 Discussion

Our proposed matrices S could be used as preconditioners for solving linear systems with
diagonally dominant and non-negative matrices just as [18, 20] concerned with M-matrices.
The bound on the approximation error in Theorem 2.1 depends on m, M and n. When m
and M are bounded by a constant, all the elements of 7~ — S are of order O(1/(n — 1)?)
as n — oo, uniformly.

Finally, we illustrate by an example that the bound on the approximation error in
Theorem 2.1 is optimal in the sense that any bound in the form of C'(m, M)/ f(n) requires
f(n) = O((n —1)?) as n — oo. Assume that the matrix 7' consists of the elements: ¢;; =
m—1)M,i=1,--- ,n—1;t,,, =(n—1)mandt,; =m,i,j=1,---,n;i# j, which satisfies

(1.1). By the Sherman-Morrison formula, we have

0; ; m
Y = ! - =1 . n—1
(T )i m—DM-m [n-)M-—mp ") =075
5 ; 1
(T Y0y = d__ j=1,---,n.

m—2ym (n—2)[(n—1)M —m]’

In this case, the elements of S are

6 1
Si' = = - 7.7‘:17"'7 _17 ‘7
7 (n—1)M n(n-—1)m nJ " i
On,;j 1

Sn.j

_ =1, .n.
(n—1)m n(n-—1)m’ J o n

It is easy to show that the bound of ||T~! — S|| is O(+~—+—). This suggests that the rate

(n—1)2m
1/(n — 1)? is optimal. On the other hand, if M and m are constants, the upper bound of

M
2(n—1)2m?"

two bounds that implies there might be space for improvement. It is interesting to see if the

[T~ — S|| approximately equal to (1+ ) Therefore there is a gap between these
bounds in Theorem 2.1 can be further relaxed.
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