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Abstract: In this paper, we investigate a nonlinear Kirchhoff type problem. By virtue of
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behavior to Kirchhoff type problem, which extend the results in [4].

Keywords: truncation method; nodal solution; mini-max method; concentration behavior

2010 MR Subject Classification: 35A01; 35A15

Document code: A Article ID: 0255-7797(2015)01-0075-10

1 Introduction

In present paper, we concern with the following semi-linear Kirchhoff type equation



−(ε2a + εb

∫

R3

|∇u|2dx)∆u + V (x)u = f(u), x ∈ R3,

u ∈ H1(R3),
(1.1)

where ε > 0 is a parameter, a, b > 0 are positive constants, V (x) is a Hölder continuous
function satisfying

(V1) V (x) ≥ α > 0, x ∈ R3 for some constant α > 0.

(V2) There exists a bounded domain Λ compactly contained in R3 such that

V0 := inf
x∈Λ

V (x) < inf
x∈∂Λ

V (x)

and f ∈ C1(R) satisfying
(f1) f(s) = o(s3) as s → 0.

(f2) lim
|s|→+∞

|f(s)|
|s|p = 0 for some 3 < p < 5.

(f3) there exists some θ > 4 such that

0 < θF (s) ≤ sf(s),∀s 6= 0,
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where F (s) =
∫ s

0

f(t)dt.

(f4)
f(s)
|s|3 is increasing for any s 6= 0.

Equation (1.1) with a = 1, b = 0 and R3 replaced by RN , reduces to the well-known
Schrödinger equation

−ε2∆u + V (x)u = f(u), x ∈ RN . (1.2)

Equation (1.2) arises in different models. For instance, they are involved with the
existence of standing waves of the nonlinear Schrödinger equations

iε∂tz = −ε2∆z + (V (x) + E)z − f(z), ∀x ∈ RN , (1.3)

where f(s) = |s|p−2s, 2 < p < 2∗ := 2N/(N − 4). A standing waves of (1.3) is a solution of
the form z(x, t) = exp(−iEt/ε)u(x), where u is a solution of (1.2).

For (1.1), if ε = 1, V (x) = 0 and R3 replaced by Ω, it reduces to the following Kirchhoff
type problem 



−(a + b

∫

Ω

|∇u|2dx)∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

(1.4)

where Ω ⊂ R3 is a smooth bounded domain.
Equation (1.4) is related to the stationary analogue of the equation





utt − (a + b

∫

Ω

|∇u|2dx)∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

(1.5)

Equations of this type were first proposed by Kirchhoff in [19] to describe the transversal
oscillations of a stretched string. Equation (1.5) began to attract much attention since the
work of Lions [18] introduced an abstract framework to the problem. More results can refer

to, for example [16–17]. Meanwhile, the presence of the term (
∫

Ω

|∇u|2dx)∆u implies that

the above two equation are no longer a point-wise identity. This phenomenon provokes
some mathematical difficulties, which make the study of such a class of problem particularly
interesting.

In recent years, a lot of work has been done by many authors related to equation (1.2)
and (1.4). We can refer to [1–3, 5–7, 9–12, 14] and their references therein.

More recently, He and Zou in [15] considered the following general equation



−(ε2a + εb

∫

R3

|∇u|2dx)∆u + V (x)u = f(u), u > 0, x ∈ R3,

u ∈ H1(R3).
(1.6)

By using Ljusternik-Schnirelmnn theory (see [13]) and mini-max methods, the multiplicity
of positive solutions, which concentrate on the minima of V (x) as ε → 0, are obtained. But



No. 1 Existence and concentration behavior of node solutions · · · 77

to the best of our knowledge, the existence and concentration behavior of the sign changing
solutions to (1.1) have not ever been studied. Moreover, as far as we know, the existence
and concentration behavior of node solutions are very interesting in both mathematicians
and physicians. Fortunately, in [4], the author studied the following equation

{ −ε2∆u + V (x)u = f(u), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.7)

Under some given conditions with V (x), f(u), the existence of node solutions was obtained
and such a solution has just one positive and negative peaks which are located around local
minimal of V (x).

Motivated by the above papers, we study the existence and concentration behavior of
nodal solutions of problem (1.1). In our present paper, we mainly employ the method used

in [4]. However, compared with [4], the term (
∫

Ω

|∇u|2dx)∆u and the lack of compactness

of the embed-ding of H1(R3) ↪→ Lp(R3), 2 < p < 6 cause us more difficulties. So we need to
find some new arguments and our work is meaningful.

Our main result is as follows:
Theorem 1.1 Suppose that V (x) satisfies (V1)− (V2) and f satisfies (f1)− (f4), then

there exists ε0 > 0 such that problem (1.1) possesses a nodal solutions uε ∈ H1(R3) for
every ε ∈ (0, ε0). Moreover, uε possesses just one positive maximum point P 1

ε ∈ Λ and one
negative minimum point P 2

ε ∈ Λ. We also obtain lim
ε→0

V (P i
ε) = V0 (i = 1, 2) and

|uε(x)| ≤ M
[
exp(−β|x− P 1

ε

ε
|) + exp(−β|x− P 2

ε

ε
|)
]
,

where M, β are some positive constants.
To verify Theorem 1.1, we mainly employ the framework used in [4]. We first exploit

the truncation method to modify the nonlinearity f(u) in order to obtain the existence of
a nodal solution. Furthermore, to show the phenomenon of concentration, we establish an
upper estimate of the energy for the solution and make a careful study of its profile obtaining
a relation between peak points, which imply that these points are concentrated around local
minimal of V .

2 Preliminaries and Notations

In this section, we introduce some notations and prove the existence of a nodal solution
to equation (1.1). Throughout this paper, we denote by H the Hilbert space given by

H = {u ∈ H1(R3) :
∫

R3

V (x)u2 < +∞}

endowed with the norm denote by ‖u‖ = (
∫

R3

(|∇u|2 + u2)dx)1/2. It is clear that solutions



78 Journal of Mathematics Vol. 35

of (1.1) are the critical points of the functional Iε : H → R given by

Iε(u) =
1
2

∫

R3

(ε2a|∇u|2 + V (x)u2)dx +
b

4
(
∫

R3

|∇u|2dx)2 −
∫

R3

F (u)dx,

where F (u) =
∫ u

0

f(s)ds. By (f1) − (f2), Iε is well defined and Iε ∈ C1(H,R). Similar to

the argument in [2], we choose k > 0 such that k > θ
θ−2

> 1. Take a1 > 0, a2 < 0 such that
f(ai)

ai
= α

k
, i = 1, 2, where α is as in (V1). Meanwhile, we set

f̃(s) =





αs

k
, s > a1 or s < a2,

f(s), a2 ≤ s ≤ a1

and define the functional

g(x, s) = χΛ(x)f(s) + (1− χΛ(x))f̃(s),

where χΛ(x) denotes the characteristic function of Λ. Using the conditions (f1)− (f4), it is
easy to verify g(x, s) is a Carethéodory function and satisfies the following conditions:

(g1) g(x, s) = o(|s|3) as s → 0, uniformly in x ∈ R3.

(g2) There exist some 3 < p < 5 such that lim
|s|→+∞

g(x, s)
|s|p = 0.

(g3) There exist some θ > 4 such that

0 < θG(x, s) ≤ sg(x, s),∀x ∈ Λ, s 6= 0,

0 < 2G(x, s) ≤ sg(x, s) ≤ 1
k
V (x)s2,∀x ∈ R3 \ Λ, s 6= 0,

where G(x, s) =
∫ s

0

g(x, t)dt.

(g4) The function
g(x, s)
|s|3 is increasing for any x ∈ R3, s 6= 0.

In the following discussion, we consider the following penalized problem



−(ε2a + εb

∫

R3

|∇u|2dx)∆u + V (x)u = g(x, u), x ∈ R3,

u ∈ H.

(2.1)

Note that if u is a nodal solution of (2.1) with a2 ≤ u(x) ≤ a1, then u(x) is indeed a nodal
solution to equation (1.1).

For equation (2.1), the corresponding energy functional Jε : H → R is defined by

Jε(u) =
1
2

∫

R3

(ε2a|∇u|2 + V (x)u2)dx +
εb

4
(
∫

R3

|∇u|2dx)2 −
∫

R3

G(x, u)dx

and for any ϕ ∈ H,

〈J ′ε(u), ϕ〉 = (ε2a + εb

∫

R3

|∇u|2dx)
∫

R3

∇u∇ϕdx +
∫

R3

V (x)uϕdx−
∫

R3

g(x, u)ϕdx.
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To prove the existence of a nodal solution, we define

Mε = {u ∈ H : u± 6≡ 0, J ′ε(u)u± = 0}
and

cε = inf
u∈Mε

Jε(u).

Lemma 2.1 cε is achieved by some uε ∈ Mε. Moreover, uε is a nodal solution of
equation (2.1).

Proof Since (g1)− (g3), there exist constants C > 0, µ > 0 such that for any u ∈ Mε,
we have

Jε(u) ≥ C‖u‖2,

∫

Λ

|u±|p+1dx ≥ µ > 0.

Take a sequence {un} ⊂ Mε such that Jε(un) → cε, then {un} is bounded in H. Thus, there
exist a subsequence, still denoted by {un} and a function u ∈ H such that un ⇀ u in H.
Thus, we have ∫

Λ

|u±|p+1dx = lim
n→+∞

∫

Λ

|u±n |p+1dx ≥ µ > 0.

Therefore, u± 6≡ 0.
Now, we claim that J ′ε(u

±)u± ≤ 0.
In fact, by the lower semi-continuous of the norm and Fatou Lemma, we derive that

∫

R3

(ε2a|∇u±|2 + V (x)|u±|2)dx + bε(
∫

R3

|∇u±|2dx)2 −
∫

R3\Λ
g(x, u±)u±dx

=
∫

R3

ε2a|∇u±|2 +
∫

Λ

V (x)|u±|2dx +
∫

R3\Λ
(1− 1

k
)V (x)|u±|2dx + bε(

∫

R3

|∇u±|2dx)2

+
∫

R3\Λ
(
1
k
V (x)|u±|2 − g(x, u±)u±)dx

≤ lim inf
n→∞

[ ∫

R3

ε2a|∇u±n |2dx +
∫

Λ

V (x)|u±n |2dx +
∫

R3\Λ
(1− 1

k
)V (x)|u±n |2dx

+bε(
∫

R3

|∇u±n |2dx)2
]

+ lim inf
n→∞

[ ∫

R3\Λ
(
1
k
V (x)|u±n |2 − g(x, u±n )u±n )dx

]

≤ lim inf
n→∞

[
(
∫

R3

(ε2a|∇u±n |2 +
∫

Λ

V (x)|u±n |2)dx +
∫

R3\Λ
(1− 1

k
)V (x)|u±n |2dx

+bε(
∫

R3

|∇u±n |2dx)2) +
∫

R3\Λ
(
1
k
V (x)|u±n |2 − g(x, u±n )u±n )dx

]

= lim inf
n→∞

[ ∫

R3

(ε2a|∇u±n |2 + V (x)|u±n |2)dx + bε(
∫

R3

|∇u±n |2dx)2 −
∫

R3\Λ
g(x, u±n )u±n dx

]

= lim inf
n→∞

[ ∫

R3

g(x, u±n )u±n dx−
∫

R3\Λ
g(x, u±)u±dx

]

= lim inf
n→∞

∫

Λ

g(x, u±n )u±n dx

=
∫

Λ

g(x, u±)u±dx.
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Thus
∫

R3

(ε2a|∇u±|2 + V (x)|u±|2)dx + bε(
∫

R3

|∇u±|2dx)2 −
∫

R3

g(x, u±)u±dx ≤ 0,

i.e., 〈J ′ε(u±), u±〉 ≤ 0. By the above statement, there exists constant t± ∈ (0, 1] such that
〈J ′ε(t±u±), t±u±〉 = 0, i.e., uε = t+u+ + t−u− ∈ Mε. In addition, by (g4), (V1), k > 1 and
Fatou lemma, then we have

Jε(t±u±) =
1
2

∫

R3

(ε2a|t±∇u±|2 + V (x)|t±u±|2)dx +
εb

4
(
∫

R3

|t±∇u±|2dx)2 −
∫

R3

G(x, t±u±)dx

=
∫

R3

[
1
4
g(x, t±u±)t±u± −G(x, t±u±)]dx +

1
4

∫

R3

(ε2a|t±∇u±|2 + V (x)|t±u±|2)dx

≤ lim inf
n→∞

[ ∫

R3

(
1
4
g(x, t±u±n )t±u±n −G(x, t±u±n ))dx +

1
4

∫

R3

(ε2a|t±∇u±n |2 + V (x)|t±u±n |2)dx)
]

≤ lim inf
n→∞

[ ∫

R3

(
1
4
g(x, u±n )u±n −G(x, u±n ))dx +

1
4

∫

R3

(ε2a|∇u±n |2 + V (x)|u±n |2)dx
]

= lim inf
n→∞

Jε(u±n ).

Thus

cε ≤ Jε(uε) = Jε(t+u+) + Jε(t−u−)

≤ lim inf
n→∞

[Jε(u+
n ) + Jε(u−n )]

= lim inf
n→∞

Jε(un)

= cε,

i.e., cε is attained by the function uε. Furthermore, by the elliptic regularity arguments, uε

is a classical nodal solution of problem (2.1).

3 Estimate of the Energy

In this section, we turn to estimate the energy of uε. Let

f±(s) =

{
f(s), ±s ≥ 0

0, otherwise.

Suppose ω± ∈ H1(R3) are respectively the least energy nodal solutions of the following limit
equation:

−(a + b

∫

R3

|∇u|2dx)∆u + V0u = f±(u), x ∈ R3,

that is ω± satisfy c±V0
:= J±V0

(ω±) = inf
u∈H\{0}

sup
τ≥0

J±V0
(τu), where

J±V0
(ω±) =

1
2

∫

R3

(a|∇ω±|2 + V ±
0 ω±2)dx +

b

4
(
∫

R3

|∇ω±|2dx)2 −
∫

R3

F±(u)dx
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and F±(s) =
∫ s

0

f±(t)dt.

Without loss of generality, we assume ω+(0) = max
x∈R3

ω+(x), ω−(0) = min
x∈R3

ω−(x).

Lemma 3.1 Given ε > 0, the function uε satisfies

lim sup
ε→0

ε−3Jε(uε) ≤ c+
V0

+ c−V0
.

Proof Let x0 ∈ int(Λ) be such that V (x0) = V0. Choosing r > 0 such that Br(x0) ⊂
int(Λ) and η is a smooth function, 0 ≤ η ≤ 1, |∇η| ≤ C and

η(x) =

{
1, |x| ≤ r/4,

0, |x| ≥ r/2.

Denote ωε,±(x) = η(x − x0)ω±(x−x0
ε

). By condition (g1) − (g3), there exists tε,± > 0 such
that Jε(tε,±ωε,±) = max

t>0
Jε(tωε,±), then

J ′ε(tε,±ωε,±)tε,±ωε,± = 0.

Consider the function
ωε = tε,+ωε,+ + tε,−ωε,−,

then ω± = tε,±ωε,±, J ′ε(ω
±
ε )ω±ε = 0, i.e., ωε ∈ Mε, thus

cε ≤ Jε(ωε) = Jε(ω+
ε ) + Jε(ω−ε ).

On the other hand, by direct computation we conclude that

Jε(ω±ε ) = ε3(c±V0
+ o(1)),

where o(1) → 0 as ε → 0. Thus we obtain our conclusion.

4 Properties Analysis of uε

In this section, we make a careful analysis the profile of uε.
Lemma 4.1 The positive local maximum and negative local minimum points of uε are

both in Λ.
Proof Let xε be a positive local maximum of uε. Suppose by contradiction that

xε ∈ Λc. Since ∆uε(xε) ≤ 0, using the definition of g, we have

αuε(xε) ≤ V (xε)uε(xε)

≤ −(ε2a + εb

∫

R3

|∇uε|2dx)∆uε(xε) + V (xε)uε(x)

= f̃(uε(xε)) ≤ α

k
uε(xε).

But the above estimate is impossible by the fact k > θ
θ−2

> 1. A similar argument implies
that every negative local minimum of uε is also in Λ.
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Lemma 4.2 Let P 1
ε be a local maximum of u+

ε and P 2
ε a local minimum of u−ε , then

(1) uε(P 1
ε ) ≥ a1, uε(P 2

ε ) ≤ a2,
(2) |P 1

ε−P 2
ε

ε
| → +∞ as ε → 0.

Proof By Lemma 4.1, then P 1
ε , P 2

ε ∈ Λ. Moreover, from the definition of g, then for
i = 1, 2, we have

(ε2a + εb

∫

R3

|∇uε|2dx)∆uε(P i
ε) = V (P i

ε)uε(P i
ε)− f(uε(P i

ε))

= (V (P i
ε)−

f(uε(P i
ε))

uε(P i
ε)

)uε(P i
ε).

Meanwhile, as ∆uε(P 1
ε ) ≤ 0,∆uε(P 2

ε ) ≥ 0, uε(P 1
ε ) > 0 and uε(P 2

ε ) < 0, it follows that

V (P i
ε)−

f(uε(P i
ε))

uε(P i
ε)

≤ 0, i = 1, 2,

which together with (V1) imply

f(uε(P i
ε))

uε(P i
ε)

≥ α > 0, i = 1, 2.

Consequence, if a2 < uε(P i
ε) < a1, i = 1, 2, then

α

k
=

α
k
uε(P i

ε)
uε(P i

ε)
≥ f(uε(P i

ε))
uε(P i

ε)
≥ α > 0,

which is a contradiction, thus uε(P 1
ε ) ≥ a1, uε(P 2

ε ) ≤ a2. Item (1) is proved. The proof of
item 2 is similar to Lemma 3.2 in [4], here we omit it.

Lemma 4.3 If εn ↓ 0 and xi
n ∈ Λ̄, i = 1, 2 are such that

uεn
(x1

n) ≥ b > 0, uεn
(x2

n) ≤ −b < 0,

then
lim

n→∞
V (xi

n) = V0 (i = 1, 2).

Proof The proof is similar to Proposition 4.1 in [4].
Lemma 4.4 If m+

ε = max
x∈∂Λ

u+
ε (x), m−

ε = min
x∈∂Λ

u−ε (x), then

lim
ε→0

m±
ε = 0.

Moreover, for every ε > 0 small enough, uε possesses at most one positive local maximum
P 1

ε ∈ Λ and one negative local minimum P 2
ε ∈ Λ. Meanwhile, we have

lim
ε→0

V (P i
ε) = V0 = min

x∈Λ̄
V (x), i = 1, 2.

Proof The proof is similar to Corollary 4.1 in [4].
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5 Proof of Theorem 1.1

To conclude the proof of Theorem 1.1, we only need to show that a2 < uε(x) < a1, ∀x ∈
Λc. By Lemma 4.4, there exists ε0 > 0 such that for all 0 < ε < ε0, we have

|uε(x)| ≤ A = min{a1,−a2}, ∀x ∈ ∂Λ.

Using the same arguments in [2], the above inequality follows for uε and x ∈ Λc. Moreover,
the arguments explored by [14], we can prove the following estimate

|uε(x)| ≤ M
[
exp(−β|x− P 1

ε

ε
|) + exp(−β|x− P 2

ε

ε
|)
]

for some constant β > 0. So we complete the proof of Theorem 1.1.
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R3 中一类Kirchhoff 型方程变号解的存在性及集中性

彭艳芳

(贵州师范大学数学与计算机科学学院,贵州贵阳 550001)

摘要: 本文研究了一类Kirchhoff 型方程. 利用极大极小原理及惩罚函数方法, 证明了上述方程变号解

的存在性及集中性, 我们的结果推广了文献[4]的结果.
关键词: 惩罚函数; 变号解; 极大极小方法; 集中性
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