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Abstract: This paper deals with a class of porous media parabolic equations coupled via
nonlinear norm-type sources, subject to nonlocal boundary conditions. We show the influences of
weighted functions and the coefficients on global existence and blow-up of solutions. Moreover, the
critical blow-up exponents are obtained by using the comparison principle, which gives some new
results for the previous published papers.
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1 Introduction

In this paper, we consider the following porous media parabolic systems

uy = Au™ + al|uPro® ||k v = Av™m2 + b||vp2u‘“||§2, x€eQ, t>0,

wwt) = [ Syl o0 = [ gloyot.ody seo2 10, (L)
Q Q

’LL(.’L‘,O) = UO(JJ), U($70) = UO(x)a HARS Qv

where m; > 1, k;,pi,q; > 0,7 = 1,2, a, 3 > 1; coefficients a,b are positive constants; € is
a bounded connected domain of RY with smooth boundary dQ; the nonlinear norm-type

sources are taken the forms,

k1/a ka2/B
||uplvq1||(l;1 — </ (uplvq1)adx> , HUquZHZZ — </(v”2u‘h)5dx> ,
Q Q

weighted functions f(z,y) and g(z,y), for the sake of the meaning of nonlocal boundary,
are nonnegative and continuous defined in 99 x Q and satisfying fQ flx,y)dy < 1 and
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fﬂ g(z,y)dy < 1; the initial data v, ug are positive and continuous, satisfying the compat-
ibility conditions wug(x) = fﬂ flx, y)uo(y)dy and vo(x) = fQ g(z,y)ve(y)dy on 99, respec-
tively.

System (1.1) can be found in the study of the flows of fluids through porous media with
integral sources, and the absorption and download infiltration of fluids into porous media
with nonlocal sources, and also in the population dynamics (see, for example, [1-4] and the
papers cited therein).

The homogeneous Dirichlet problem

wp = Au™ + |JuProd ||k vy = Av™2 + ||vp2u‘”|\22, reQ t>0,
u(z,t) = v(z,t) =0, x€ed, t>0

with my, my > 1 has been studied by Ling and Wang (see [5]). Suppose that one of the
following conditions holds:

(a) my > prki, ma > paka, 1ki1goka < (my — piki)(ma — paks);

(b) my > p1k1, ma > poka, qrkigeka > (M1 — p1k1)(ma — paks), and the initial data are
sufficiently small;

(¢) my > prki, ma > paka, q1kigeks = (mq1 — p1k1)(ma — poks), and the domain |Q] is
sufficiently small, then every nonnegative solution exists globally.

On the contrary, if one of the following conditions holds:

(a) mq > prk1, ma > poka, qik1gaks > (my — p1k1)(ma — paks), and the initial data are
sufficiently large;

(b) mq > pik1, ma > poka, q1k1goka = (my — p1k1)(mae — poks), the domain contains
a sufficiently large ball, and the initial data are sufficiently large, then the nonnegative
solutions blow up in finite time.

Ye and Xu in [6] studied the following system

Uy = Au™ + auP? / vidy, vy = Av™? + byvP? / ul?dy, xe€Q, t>0,
Q Q

u(a,t) = / F (@ y)uly, Oy, v(z,t) = / oo y)oly, t)dy, @€ o9, >0,

where m1, ms > 1 and a, b are positive constants. They obtained that:

(i) For any § > 0 such that 6 < / f(z,y)dy, /g(x,y)dy <1 on 09, and if m; > py,
Q Q
mg > po and q1go < (M1 — p1)(mg — pa), then an arbitrary nonnegative solution (u,v) exists

globally.
(ii) If/ Sz, y)dy,/ g(z,y)dy < 1 on 01, and if one of the following conditions holds:
Q Q
(A) my < D1,
(B) mo < D2,

(C) q1q2 > (my — p1)(ma — p2), then an arbitrary nonnegative solution (u,v) exists
globally for sufficiently small initial data.
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(iii) If my < p1, or my < pa, or q1G2 > (M1 —p1)(Mm2 —p2), then an arbitrary nonnegative

solution of the system blows up in finite time for sufficiently large initial data.

(iv) For any ¢ > 0 such that § < / f(z,y)dy, /g(m,y)dy <1 on 09, and if my > py,
Q Q
mgo > po, and q1q2 = (my — p1)(ma — p2), then an arbitrary nonnegative solution (u,v) exists

globally for small @ and b. For m; = mqy = 1, p1,p2 < 1, and ¢q1q2 > (1 — p2)(1 — py1), the

blow-up rates are obtained provided that / [z, y)dy, [, 9(z,y)dy <c<1.
Q
Chen, Mi and Mu in [7] studied the following system

= Au™ +uProh, vy = Av™2 + oP2u?, reQ, t>0,

u(z,t) = /Qf(x,y)u(y,t)dy, vz, t) = /Qg(x,y)v(y,t)dy, z € o, t>0,

where m;, p;,q; > 1, i = 1,2. The following results have been obtained:

(i) Suppose that / flx,y)dy > 1, /g(x,y)dy >1forany z € 9. If g > p; — 1 and
q1 > p2 — 1, then any S(?lution with positi%e initial data blows up in finite time.

(ii) Suppose that /f(a;,y)dy < 1, /g(x,y)dy < 1 for any x € 0Q. If my > py,
ma > po, and qiqo > (msl2 — p1)(ma2 — p2), t%en every nonnegative solution is global; while
if my < p1, or my < pa, or q1q2 > (M1 — p1)(ma — p2), then the nonnegative solution exists

globally for sufficiently small initial data and blows up in finite time for sufficiently large

initial data.

(iii) If/ flx,y)dy > 1, /g(:v,y)dy > 1 for any x € 92, q1 > ma, g2 > my and satisfy
Q Q
g2 > p1 — 1 and ¢; > pe — 1, and some assumptions on ug(x), vo(z), blow-up rates are given.

There are also some good works on the nonlocal parabolic equations with nonlocal
boundary conditions (see [8-12], and the papers cited therein).

This paper is arranged as follows: In the next section, we show the main results and
some remarks of the paper. The global existence and blow-up of solutions will be proved in

Sections 3 and 4, respectively.

2 Main Results and Remarks

It is well-known that the porous media parabolic equations need not posses local classical
solutions. We give a precise definition of a weak solution of (1.1).

Definition 2.1 A function (u(x,t),v(z,t)), (z,t) € Qx[0,T] is called a sub- (or super)
solution of (1.1), if the following conditions hold:

u(z,t),v(z, ) € L°°(Q x [0,T7);

(ul, 1), vl 1) / F(y)uly, t)dy, / oz, y)o(y, t)dy) on 92 x [0,T):

(u(z, 1), v(z, )) < (2)(u(=,0),v(x,0)) on Q x [0, T7;
For any t € [0,7] and test function ¢(x,t) € C(Q x [0,T], RY), satisfying ¢;, A¢ €
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C(Q2x[0,T)) N L*(2 x [0,7]) and ¢(x,t) > 0 on Q x [0,T],

/Qu(x,t)gb(a:,t)darg (Z)/u(x,O)qS(a:,O)dx

Q

t
+/ /(ung+um1A¢>+¢a||up1vq1||§l)dxd7'
0 JQ

— t 6‘1)/ Td)mlclSdT
[ [ Se( [ samutnnian)  asa

/Qv(x,t)gb(a:,t)dxg (2)/§lv(:v,0)¢(x,0)dx

t
+/ /(Ung+vm2A¢+¢b||vp2uqz||§“)dxd7
0o JOQ

_/Ot /mg;‘: </Qg(x,y)v(y,7)dy>m2 dSadr.

A weak solution is both a sub-solution and a super solution of (1.1).
The local existence of weak solution and the comparison principle of (1.1) can be ob-
tained by [14, 15]. We omit the detail here. Our main results are stated as follows.

Theorem 2.1 If one of the following conditions holds, then the nonnegative solution
of system (1.1) is global.

(i) m1 > pik1, mo > pako and q1kigoka < (mq — piki)(me — paks), and / [z, y)dy,
Q

/ g(x,y)dy <1, x € O
Q

(ii) my < p1ky or mo < paka or q1ki1qaks > (M1 — p1k1)(ma — paks), the initial data are

small enough, and / f(z,y)dy, /g(m,y)dy <1,z e
Q Q
(iii) my > pik1, ne > paka, qikigaks = (M1 — p1k1)(mae — paks) and, for any constant

0 > 0 such that § < /f(m,y)dy,/ g(z,y)dy < 1 on 02, moreover, a, b are sufficiently

Q Q
small.

Theorem 2.2 If one of the following conditions holds, then the nonnegative solution
of system (1.1) blows up in finite time.

(i) my < p1ky or mo < paks or qi1k1qaks > (my — prky1)(ma2 — p2ks), and the initial data
are sufficiently large;

(ii) my > p1k1, ma > poks and qrk1gaka = (my — p1ky)(ma — p2ks), the initial data are
large enough, and the domain §2 contains a sufficiently large ball.

Remark 2.1 It can be checked from Theorems 2.1 and 2.2 that all of the classifications
of the ten exponents in the equations of (1.1) are complete. All of the solutions remain global

if and only if max {p1k1 —may, paka —ma, qrkigaks > (my — prky)(me —pgkg)} < 0. For

max {plkl —my, poke—ma, qik1gaks > (mq—p1ki)(mo —pgk‘g)} > 0, both blow-up solutions
and global solutions may exist under different assumptions.
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Remark 2.2 One can find out from the proofs of the main results that some of the
results can be extended to [5-7], which are not obtained there.

The criteria of Theorem 2.1 (ii) and Theorem 2.2 (i) can be used directly to [5].

By using the methods in the proof of Theorem 2.2 (ii), one can obtain the same results
for [6].

By using the methods in Theorem 2.1 (iii) and Theorem 2.2 (ii), the same results hold

for the main systems in [7].

3 Global Solutions

Compared with the traditional null Dirichlet boundary, the weight functions f(z,y) and
g(z,y) play an important role in the global existence results for system (1.1).
Proof of Theorem 2.1 (i) Let ¥;(z) be the positive solution of the linear elliptic

problem

—AU(z)=¢1, x€Q; Ty /fx y)dy, x € 98; (3.1)
Let W5(x) be the positive solution of the linear elliptic problem

—AUy(z) =9, z€Q; Vy(z)= /Qg(x,y)dy, x € 09, (3.2)

where €1, e, are positive constants such that 0 < ¥y(z) < 1, 0 < W¥y(x) < 1. We remark

that f(x y)dy < 1, / g(z,y)dy < 1 ensure the existence of such &1, &5.
Q
Denote that

max¥; = K;, min¥; = K;; max ¥, = Ky, mln\IJQ K. (3.3)
Q Q Q
We define the functions
iz, t) = u(z) = MLUY™  (a,t) = o(z) = MRU™, (3.4)

where M is a constant to be determined later. Then, we have

Lgy1/m ! 1/ma
w(z,t)|peon = MW 1—]\41 fJ:ydy)

(3.5)
Mll/ffﬁydy>M“/fxy Wy ( dy—/fxy y)dy.
In a similar way, we can obtain that
ol Dloean > [ gl p)o()dy (36)
Q

Here, we used 0 < ¥y (z) < 1,0 < Uy(z) <1, / flx,y)dy < 1 and / g(z,y)dy < 1.
Q Q
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On the other hand, we have

o ki/a
Uy — AT — a”ﬂ?l@%”il _ Mmlllé‘l o a|:/ (Mp1l1+q1l2\1111)1/m1q]g1/m2> d.ﬁE]
Q

> Mm1l1€1 . aMk}1(p1l1+qll2)Kf1k'1/m1Kglkl/m2|Q|k}1/a’ (3_7)
Ty — AT = bl at | > Mg, — pMR(eltaty) ke frdike/me ke /5 (3.8)

Let

1
aRP1RL/™1 gaik/me gk /o ) myly—k1(P1l1+a1l2)
Y

€1

=

e < (3.9)

1
pROF2/ ™ aika/ma |Q\k2/5> maly—ka(aal2Fp2l1)
15p) :

If my > pik1, ma > poks and qi1k1qoks > (my — p1ky)(mae — p2ks), then there exist positive
constants [y, Iy such that

pikils + gkl <maly,  gokala + pakaly > mols. (3.10)

Therefore, we can choose M sufficiently large such that

{ M > max{ M, Ms}, (3.11)

MOwY™ > ug(z), M20Y™ > vy(x).

Now, it follows from (3.5)—(3.11) that (u,v) defined by (3.4) is a positive super-solution of
system (1.1). By the comparison principle, we conclude that (u,v) < (@, ), which implies
(u,v) exists globally.

(i1) If my < piky, or my < paoka, or q1ki1qaks > (my — prky)(mo — poks), there exist
positive constants Iy, I such that

pikily + qikily > maly,  qokaly 4 pakals > mals. (3.12)

So we can choose M = min{M;, M>}. Furthermore, assume that ug(z), vo(x) are small
enough to satisfy M WL/™ > yo(z), M2WLY™ > vy(z). It follows that (@, ?) defined by
(3.4) is a positive super-solution of system (1.1). Hence, (u,v) exists globally.

(iii) If my > p1k1, ma > poka, (M1 — p1k1)(ma — paks) = p1k1paks, then there exist two

positive numbers [y, s < 1 satisfying mlqi’;?lkl = %2 = Wq;ii’;k?, maly, maly < 1.

We define the following elliptic boundary value problems:

—Ad(x) = m, zeQ,
(x) = / o1(z,y)dy, z € 09, (3.13)
Q
—AyY(z) = g, x € Q,
(3.14)

w(iﬂ):/wz(ﬂmy)dy, r € 09,
Q
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where 71, 12 are both positive constants such that § < ¢(x),1(z) < 1. We have

4 < / @1(.T,y)dy7/ (pQ(x7y)dy < 17
Q Q
which guarantee the existence of ¢(x) and ¥ (z). We define

Ky =max¢(z), Ko =mind(z), L1 =maxy(z), L»=miny(z).
€ € z€eQ €

Applying the classical elliptic theorems to problems (3.13) and (3.14), it is easy to see
that
Ky >0, Ly>0.

Define i = (K¢(z))", v = (K¢ (x))"2, where K is to be determined later.

A simple computation shows

Uy — A™ = —A(K¢(x))™" > nimyly K™ K0
k1

alla o =a[ [ (Ko@)rteru@)rteds] T < agriibigpi i),
Q
Therefore, we have

Uy — AT — a”ﬂpl@QlHil znlmlllelllK{nlllfl

— aRpibtakl kb okl o) (3.15)
By the similar way, it is easy to verify that
Ty — AT™2 — b”@lh,ﬁqz Hgfz Zn2m2lle212KIn212—l
_ aKmkzlerqzkthiIzkzllL1112k2l2|Q|%2‘ (3.16)

The numbers on the right-hand side of (3.15) and (3.16) are both nonnegative provided that

K(ml—p1k1)ll—1 L(mz—szQ)lz—l
1 1

myl mol
agm 11qlkll2 - : b§n2 22“ -
Ll |Q|a Ki]z 21|Q‘5

Take

1/11 1/l
ug (x) v *(2)
K= . : :
max { S o }

Now we turn our attention to the boundary conditions, that is for every x € 012,
15
u(x,t) = (K(¢(z))"* = K" </ wl(fv,y)dy> > K" / 1z, y)dy
Q Q

> Kb / o1 (2, 9)8" (y)dy = / o1 (e, y)a(a, t)dy.
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Similarly, we get
o) = (Kp(@)= > / pa(z, y)(x, t)dy,
Q

where we have used [y, € (0,1); / cpl(a:,y),/ wa(x,y) < 1; ¢p(x),9(x) € (0,1). By means
Q Q

of the comparison principle, we obtain (u,v) < (@,?). Hence, it yields that (u,v) exists

globally.

4 Blow-up Solutions

Proof of Theorem 2.2 (i) Due to the requirement of the comparison principle, we will
construct blow-up sub-solution in some sub-domain of € in which w,v > 0. Let ¢(z) be a
nontrivial nonnegative continuous function and vanished on 9€2. Without loss of generality,
we may assume that O € Q and ¢(0) > 0. We will construct a blow-up positive sub-solution

to complete proof. Set

_ 1 1/my || _ 1 1/ma ||
ot = g™ (i S ) 2t = =g ™ () 4

with

3
w(r) = R— - §r2+

L3 ||
_ < r< .
=157 1 67" , T 0<r<R, (4.2)

where [1,15,6 > 0 and 0 < T < 1 are to be determined later. Clearly, 0 < w(r) < R3/12 and

w(r) is non-increasing since w’(r) = r(r — R)/2 < 0. Note that

suppu(-,t) = suppu(-,t) = B(0, R(T —t)°) C B(0, RT?%) C Q (4.3)

for sufficiently small T" > 0. Obviously, (u,v) becomes unbounded as ¢ — T, at the point
x = 0. Calculating directly, we obtain that

mylyw'/ ™ (r) + 5rw’(r)w%(r)

@t - Auml (l‘, t) =

my (T —t)h+!

R—2r (N-1)(R-r)

tog_pmire t (T — t)milh+25 (4.4)
3
L(E)Ym  NR—(N+1)r
- (T _ t)l1+1 2(T _ t)m1l1+25 ’
noticing that T' < 1 is sufficiently small.
Similarly, we have
(&)™ NR—(N+1

v, — Av™ (z,t) < 2(33) (W + Lr (4.5)

(T — t)lz+1 2(T — t)m2l2+26 :
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Case 1 If 0 <r < NR/(N + 1), we have w(r) > (3N + 1)R3*/12(N + 1)3, then

k _
a|lup v ||k _a[/Q<(Tt)plzl+qllQ

m191+mapy k

o) o]

w

(xz,t) € Q x (0,7).

- a [(3N+ 1)R‘°’} T Q)+ (4.6)
= (T — t)kiirala) [ 12(N + 1) ’
, b (BN + 1)R3 ) %32 +52 0y
D2,,92 || k2
b”y u Hoz > (T _ t)kz(P2l2+‘I2l1) |:12(N + 1)3} |Q| ’
Hence,
h(f5)"/™  NR—(N+1r
my 10,91 ||k1 12
Uy — Ay ang vt ||a < (T _ t)l1+1 2(T _ t)m1l1+25
- a [(3N+1)R3}’3§'1 T| o
(T _ t)kl(plllJrfhlz) 12(N —+ 1)3 ’ 4.7
L(E)/m  NR—(N+1)r o
v, — Ap™2 — b”v;nzu(mnkz < 2312
Uy v UmUr e > (T _ t)l2+1 2(T _ t)m2l2+25
b [(3N+1)R3rﬁz’? pi’;2|9|%
\ (T _ t)kz(mlz-‘rlIzll) 12(N —+ 1)3
Case 2 If NR/(N +1) <r < R, then
L(g)"m™
mi 1 1 ||k 12
u = Au™ —autetl < @y
- a [(3N+ 1)R3} B 0%
(T — t)ymilitaila) [12(N + 1) © 48
. ()1 o
v = Au = bleutle < G e
- b [(31\7 + 1)R3} R 0%
(T — t)ke(p2latazts) [ 12(N + 1)3
There exist positive constants I, [, large enough to satisfy
pikil + @ikl > mali +1, @koli + pakals > mols +1, (4.9)
(m1 — 1)l1 > 1, (m2 - 1)12 > 17 .
and we can choose § > 0 be sufficiently small that
5 < min {plklll + (J1§?1lz - mlh7 p2kals + (J2§211 — maly } ' (4.10)
Thus, we have
prkily + qikily > maly +26 > 1 + 1, pokaly + qokaly > maly +20 > 1o + 1. (4.11)
Hence, for sufficiently small 7' > 0, (4.7) and (4.8) imply that
{ u, — A@ml _ (ZHﬂpqul ||§1 < 0, (l’,t) €0 x (OaT>7 (412)

v, — Av™ — bl[uPu®(|i2 <0,
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Since ¢(0) > 0 and () is continuous, there exist two positive constants p and & such that
o(x) > ¢, for all z € B(0,p) C Q. Choose T small enough to insure B(0, RT?) C B(0,p),

hence u < 0, v < 0 on 9N x (0,7). Under the assumption that /f(x,y)dy < 1 and
Q

/ g(x,y)dy < 1 on 99, we have
Q

u(et) < [ Sty < [ gtet.dy

Q Q

on 09 x (0,T). Furthermore, choose uy(x), vo(x) so large that ug(x) > u(z,0) and
vo(z) > v(x,0).
By the comparison principle, we have (u,v) < (u,v). It shows that solution (u,v) to system
(1.1) blows up in finite time.
(ii) In this section, we consider the case my > p1ky, ma > poks and

qQik1goka = (my — piky)(ma — poks).

Clearly, there exist two positive constants Iy, I such that

mily = prkily + qrkila, maly = pakals + qokaly, (my — 1)1 > 1, (mg — 1)l > 1. (4.13)

Denote by Ag, > 0 and ¢r(r) the first eigenvalue and the corresponding eigenfunction of
the following eigenfunction problem
N-1
T

—¢"(r) - ¢'(r) = Ag(r), r € (0,R);  ¢'(0) =0, $(R) =0. (4.14)

It is well known that ¢ (r) can be normalized as ¢g(r) > 0 in B and

¢r(0) = max ¢p(r) = 1.

rEB

By the property (Let 7 = ) of eigenvalues and eigenfunctions, we see that
ABr = R7*Ap,

and
Or(r) = ¢1(r/R) = é:1(7),
where Ap, and ¢; are the first eigenvalue and the corresponding normalized eigenfunction

of the eigenvalue problem in the unit ball B;(0). Moreover,
max d1(1) = $1(0) = ¢pr(0) = max or(r) =1. (4.15)
We define the functions u(z,t), v(z,t) in the forms

u(z,t) = (T_lt) b (), vl t) = (T_lt) (). (4.16)
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In the following, we will prove that (u,v) blows up in finite time in the ball B = B(0, R).

So (u,v) does blow up in the larger domain €. Calculating directly, we have

AN

51

u, — Au™ —allurv® |8 < [ll — oy (IR Tl - /\Blell)}
2

v = Aoms = bluron|| < [l — b (1R RS = Apamale)]

(4.17)

where
Nk Nk
IR < KR [l | < KR

and K, K, are independent of R. Then, in view of A\g,, = R™2\p,, we may assume that R,
that is the ball B, is sufficiently large that

il O il

A i 4.18
Bp < min — , ol , ( )

so for small T > 0, we get
u, — Au™ —allu” o™ |5 <0, v, — Av™ = blluPu® | < 0. (4.19)

Therefore, (u,v) is a positive sub-solution in the ball B, which blows up in finite time

provided the initial data is sufficiently large that
w(@,0) = T~ ¢ (|2]) < uo(w), v(z,0) = T™2¢%(|2]) < vo()

in the ball B. Thanks to the comparison principle, the arbitrary nonnegative solution (u,v)

of (1.1) must blow up in finite time now.
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