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Abstract: In this note, we introduce quasi-∗-A(k) operators and obtain their spectral prop-

erties as follows: (i) If T is quasi-∗-A(k) for 0 < k ≤ 1, then the spectral mapping theorem

holds for the essential approximate point spectrum. (ii) If T is quasi-∗-A(k) for 0 < k ≤ 1, then

σja(T )\{0} = σa(T )\{0}. Besides, we consider tensor product of ∗-A(k) operators.
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1 Introduction

Let H be an arbitrary complex Hilbert space and T be a bounded linear operator on
H. We denote the ∗-algebra of all bounded linear operators on H by B(H).

An operator T is ∗-paranormal if ||T 2x|| ≥ ||T ∗x||2 for unit vector x. ∗-paranormal
operators have been studied by many researchers, see [5, 9, 11], etc. An operator T is said
to be class ∗-A if |T 2| ≥ |T ∗|2, where |T | = (T ∗T )

1
2 . As an easy extension of class ∗-A

operators, an operator T is said to be quasi-∗-A if T ∗|T 2|T ≥ T ∗|T ∗|2T in [17]. Moreover,
for k > 0, an operator T belongs to ∗-A(k) if (T ∗|T |2kT )

1
k+1 ≥ |T ∗|2. An operator T is

absolute-∗-k-paranormal if ||T ∗x||k+1 ≤ |||T |kTx||||x||k for every x ∈ H. Particularly an
operator T is a class ∗-A(resp. ∗-paranormal) operator if and only if T is a ∗-A(1)(resp.
absolute-∗-1-paranormal) operator.

In this note we extend ∗-A(k)(resp.∗-paranormal) operators and quasi-∗-A operators to
a new class of operators called quasi-∗-A(k)(resp.quasi-absolute-∗-k-paranormal) operators,
and study their spectral properties.

Definition 1.1 Let T ∈ B(H).
(i) For each k > 0, T belongs to quasi-∗-A(k) if

T ∗(T ∗|T |2kT )
1

k+1 T ≥ |T |4.

(ii) For each k > 0, T belongs to quasi-absolute-∗-k-paranormal if

||T ∗Tx||k+1 ≤ |||T |kT 2x||||Tx||k for every x ∈ H.

∗ Received date: 2013-05-16 Accepted date: 2013-07-11

Foundation item: Supported by the Basic Science and Technological Frontier Project of Henan

Province (132300410261).

Biography: Zuo Fei(1978–), male, born at Nanyang, Henan, lecturer, major in functional analysis.



44 Journal of Mathematics Vol. 35

It’s known that quasi-∗-A(1) operator is quasi-∗-A, and a quasi-∗-A(k) operator is quasi-
absolute-∗-k-paranormal (see Lemma 2.2), then we have the following implications:

∗-A(k) ⇒ quasi-∗-A(k) ⇒ quasi-absolute-∗-k-paranormal.

By simple calculation, we have the following lemma as appeared in [22].

Lemma 1.2 Let K = ⊕+∞
n=1Hn, where Hn

∼= H. For given positive operators A and B

on H, define the operator TA,B on K as follows:

TA,B =




0 0 0 0 0 0 · · ·
A 0 0 0 0 0 · · ·
0 B 0 0 0 0 · · ·
0 0 B 0 0 0 · · ·
0 0 0 B 0 0 · · ·
0 0 0 0 B 0 · · ·
...

...
...

...
...

...
. . .




.

Then the following assertions hold:

(i) TA,B belongs to ∗-A(k) if and only if B2 ≥ A2.

(ii) TA,B belongs to quasi-∗-A(k) if and only if AB2A ≥ A4.

The following example provides an operator which is quasi-∗-A(k) but not ∗-A(k).

Example 1.3 A non-∗-A(k) and quasi-∗-A(k) operator.

Take A and B as

A =

(
1 0
0 0

)
B =

(
1 1
1 1

)
.

Then

B2 −A2 =

(
1 2
2 2

)
� 0.

Hence TA,B is not a ∗-A(k) operator.

On the other hand,

A(B2 −A2)A =

(
1 0
0 0

)(
1 2
2 2

)(
1 0
0 0

)
=

(
1 0
0 0

)
≥ 0.

Thus TA,B is a quasi-∗-A(k) operator.

Consider unilateral weighted shift operator as an infinite dimensional Hilbert space
operator. Recall that given a bounded sequence of positive numbers α : α1, α2, α3, · · · (called
weights), the unilateral weighted shift Wα associated with α is the operator on H = l2

defined by Wαen := αnen+1 for all n ≥ 1, where {en}∞n=1 is the canonical orthogonal basis
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for l2. Straightforward calculations show that Wα is quasi-∗-A(k) if and only if

Wα =




0 0 0 0 0 · · ·
α1 0 0 0 0 · · ·
0 α2 0 0 0 · · ·
0 0 α3 0 0 · · ·
0 0 0 α4 0 · · ·
...

...
...

...
...

. . .




,

where
(αi+1α

k
i+2)

1
k+1 ≥ αi (i = 1, 2, 3, · · · ).

The following examples show that quasi-∗-A operator and quasi-∗-A(2) operator are
independent.

Example 1.4 A non-quasi-∗-A and quasi-∗-A(2) operator.
Let T be a unilateral weighted shift operator with weighted sequence (αi), given α1 =

3, α2 = 1, α3 = 8, α3 = α4 = α5 = · · · . Simple calculations show that T is quasi-∗-A(2) and
a non-quasi-∗-A operator.

Example 1.5 A non-quasi-∗-A(2) and quasi-∗-A operator.
Let T be a unilateral weighted shift operator with weighted sequence (αi), given α1 =

1, α2 = 1
2
, α3 = 2, α4 = 1

8
, α5 = 64, α5 = α6 = · · · . Simple calculations show that T is

quasi-∗-A but not a quasi-∗-A(2) operator.

2 Spectrum of Quasi-∗-A(k) Operators

In the sequel, let σ(T ), σa(T ), σp(T ), σea(T ), σjp(T ), σja(T ) for the spectrum of T , the
approximate point spectrum of T , the point spectrum of T , the essential approximate point
spectrum of T , the joint point spectrum of T , the joint approximate point spectrum of T ,
respectively. λ ∈ σp(T ) if there is a nonzero x ∈ H such that (T − λ)x = 0. If in addition,
(T ∗ − λ)x = 0, then λ ∈ σjp(T ). Analogously, λ ∈ σa(T ) if there is a sequence {xn} of unit
vectors in H such that (T − λ)xn → 0. If in addition, (T ∗ − λ)xn → 0, then λ ∈ σja(T ).

Clearly, σjp(T ) ⊆ σp(T ), σja(T ) ⊆ σa(T ). In general, σjp(T ) 6= σp(T ), σja(T ) 6= σa(T ).
Recently, it was shown that, for some nonnormal operator T , the nonzero points of its

point spectrum and joint point spectrum are identical, the nonzero points of its approximate
point spectrum and joint approximate point spectrum are identical[3, 7, 19–21]. In this
section, we will extend that result to quasi-∗-A(k) for 0 < k ≤ 1.

To prove the inclusion relation between quasi-∗-A(k) operator and quasi-absolute-∗-k-
paranormal operator, we need the following lemma.

Lemma 2.1 [10] Let A be a positive linear operator on a Hilbert space H. Then
(i) (Aλx, x) ≥ (Ax, x)λ for any λ > 1 and ||x|| = 1.
(ii) (Aλx, x) ≤ (Ax, x)λ for any 0 ≤ λ ≤ 1 and ||x|| = 1.
Lemma 2.2 For each k > 0, every quasi-∗-A(k) operator is a quasi-absolute-∗-k-

paranormal operator.
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Proof Suppose that T belongs to quasi-∗-A(k) for k > 0, i.e.,

T ∗|T ∗|2T ≤ T ∗(T ∗|T |2kT )
1

k+1 T.

Then, for every x ∈ H,

||T ∗Tx||2(k+1) = (T ∗|T ∗|2Tx, x)(k+1)

≤ (T ∗(T ∗|T |2kT )
1

k+1
Tx, x)(k+1)

= ((T ∗|T |2kT )
1

k+1
Tx, Tx)(k+1)

≤ (T ∗|T |2kT 2x, Tx)||Tx||2k

= |||T |kT 2x||2||Tx||2k

.

Therefore,
||T ∗Tx||k+1 ≤ |||T |kT 2x||||Tx||k for every x ∈ H,

that is, T is quasi-absolute-∗-k-paranormal for k > 0.
Lemma 2.3 [6] Let H be a complex Hilbert space. Then there exists a Hilbert space

K such that H ⊂ K and a map ϕ : B(H) → B(K) such that
(i) ϕ is a faithful ∗-representation of the algebra B(H) on K;
(ii) ϕ(A) ≥ 0 for any A ≥ 0 in B(H);
(iii) σa(T ) = σa(ϕ(T )) = σp(ϕ(T )) for any T ∈ B(H).
Lemma 2.4 [21] Let ϕ : B(H) → B(K) be Berberian’s faithful ∗-representation. Then

σja(T ) = σjp(ϕ(T )).
Lemma 2.5 Let T be a quasi-∗-A(k) operator for 0 < k ≤ 1 and λ 6= 0. Then Tx = λx

implies T ∗x = λ̄x.
Proof Let λ 6= 0 and suppose x ∈ N(T − λ), we get Tx = λx. Since T is quasi-∗-A(k),

for every unit vector x ∈ H, ||T ∗Tx||k+1 ≤ |||T |kT 2x||||Tx||k, then

||T ∗x||k+1|λ|k+1 ≤ |λ|k+2|||T |kx|| = |λ|k+2(|T |2kx, x)
1
2

≤ |λ|k+2(|T |2x, x)
k
2 = |λ|k+2||Tx||k

= |λ|2k+2.

Hence, for all ||x|| = 1, ||T ∗x||2 ≤ |λ|2, and then

||T ∗x− λx|| = ((T − λ)∗x, (T − λ)∗x)

= ||T ∗x||2 − (x, λTx)− (λTx, x) + |λ|2||x||2

≤ |λ|2 − |λ|2 − |λ|2 + |λ|2

= 0.

Therefore, we have ||T ∗x− λx|| = 0, that is, T ∗x = λ̄x.
Remark 2.6 The condition “λ 6= 0” cannot be omitted in Lemma 2.5. In fact,

Example 1.3 shows that TA,B is a quasi-∗-A(k) operator, however for the vector x =
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(0, 0, 1,−1, 0, 0, · · · ), TA,B(x) = 0, but T ∗A,B(x) 6= 0. Therefore, the relation N(TA,B) ⊆
N(T ∗A,B) does not always hold.

Theorem 2.7 Let T ∈ B(H) be quasi-∗-A(k) for 0 < k ≤ 1. Then
(i) σjp(T )\{0} = σp(T )\{0};
(ii) If (T − λ)x = 0, (T − µ)y = 0, and λ 6= µ, then we have < x, y >= 0;
(iii) σja(T )\{0} = σa(T )\{0}.
Proof (i) Clearly by Lemma 2.5.
(ii) Without loss of generality, we assume µ 6= 0. Then (T − µ)∗y = 0 by Lemma 2.5.

Thus we have µ < x, y >=< x, T ∗y >=< Tx, y >= λ < x, y > . Since λ 6= µ, < x, y >= 0.

(iii) Let ϕ: B(H) → B(K) be Berberian’s faithful ∗-representation of Lemma 2.3. In
the following, we shall show that ϕ(T ) is also a quasi-∗-A(k) operator.

In fact, since T is a quasi-∗-A(k) operator, by Lemma 2.3, we have

(ϕ(T ))∗[((ϕ(T ))∗|ϕ(T )|2kϕ(T ))
1

k+1 − |(ϕ(T ))∗|2]ϕ(T )

= ϕ(T ∗[(T ∗|T |2kT )
1

k+1 − |T ∗|2]T ) ≥ 0.

Then

σa(T )\{0} = σa(ϕ(T ))\{0} by Lemma 2.3

= σp(ϕ(T ))\{0} by Lemma 2.3

= σjp(ϕ(T ))\{0} by (i)

= σja(T )\{0} by Lemma 2.4.

Recall that T ∈ B(H) is said to have finite ascent if N(T n) = N(T n+1) for some positive
integer n, where N(T ) for the null space of T .

Theorem 2.8 If T is quasi-∗-A(k) for 0 < k ≤ 1, then T − λ has finite ascent for each
λ ∈ C.

Proof If λ 6= 0, then N(T−λ) ⊆ N(T ∗−λ) by Lemma 2.5, thus N(T−λ) = N(T−λ)2.
If λ = 0, let x ∈ N(T 2), since T is quasi-∗-A(k), then

||T ∗Tx||k+1 ≤ |||T |kT 2x||||Tx||k for every x ∈ H.

We have

|||T |2x||k+1 = ||T ∗Tx||k+1 ≤ |||T |kT 2x||||Tx||k

= (|T |2kT 2x, T 2x)
1
2 ||Tx||k

≤ (|T |2T 2x, T 2x)
k
2 ||Tx||k||T 2x||(1−k)

= ||T 3x||k||Tx||k||T 2x||(1−k) for every x ∈ H.

Hence |T |2x = 0 implies Tx = 0. This shows that T − λ has finite ascent for each λ ∈ C.
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Recall that T ∈ B(H) has the single valued extension property (abbrev. SVEP), if for
every open set U of C, the only analytic solution f : U → H of the equation

(T − λ)f(λ) = 0

for all λ ∈ U is the zero function on U .
Theorem 2.9 If T is quasi-∗-A(k) for 0 < k ≤ 1, then T has SVEP.
Proof Clearly by Theorem 2.8 and [14, Proposition 1.8].
As a simple consequence of the preceding result, we obtain
Corollary 2.10 If T is quasi-∗-A(k) for 0 < k ≤ 1, then
(i) σea(f(T )) = f(σea(T )) for every f ∈ H(σ(T )), where H(σ(T )) is the space of

functions analytic on an open neighborhood of σ(T );
(ii) T obeys a-Browder’s theorem, that is σea(T ) = σab(T ), where σab(T ) := ∩{σa(T +

K) : TK = KT and K is a compact operator};
(iii) a-Browder’s theorem holds for f(T ) for every f ∈ H(σ(T )).
Proof Note that T has SVEP, Corollary 2.10 follows by [1].

3 Tensor Products of ∗-A(k) Operators

Given non-zero T , S ∈ B(H), let T ⊗S denote the tensor product on the product space
H ⊗H. The operation of taking tensor products T ⊗ S preserves many properties of T , S

∈ B(H), but by no means all of them. The normaloid property is invariant under tensor
products [16, p.623], T ⊗ S is normal if and only if T and S are normal [12, 18], however,
there exist paranormal operators T and S such that T ⊗S is not paranormal [4]. Duggal [8]
showed that for non-zero T , S ∈ B(H), T ⊗ S ∈ H(p) if and only if T , S ∈ H(p). Recently,
this result was extended to class ∗-A operators and class A operators in [9, 13], respectively.

In this section we consider the tensor products of ∗-A(k) operators. The following key
lemma is due to J. Stochel.

Lemma 3.1 [18, Proposition 2.2] Let A1, A2 ∈ B(H), B1, B2 ∈ B(K) be non-negative
operators. If A1 and B1 are non-zero, then the following assertions are equivalent:

(i) A1 ⊗B1 ≤ A2 ⊗B2.
(ii) There exists c > 0 for which A1 ≤ cA2 and B1 ≤ c−1B2.
Theorem 3.2 Let T , S ∈ B(H) be non-zero operators. Then T⊗S is a ∗-A(k) operator

if and only if T and S are ∗-A(k) operators.
Proof By simple calculation we have

T ⊗ S is a ∗ -A(k) operator

⇔ [(T ⊗ S)∗|T ⊗ S|2k(T ⊗ S)]
1

k+1 ≥ |(T ⊗ S)∗|2

⇔ [(T ⊗ S)∗|T ⊗ S|2k(T ⊗ S)]
1

k+1 − |T ∗|2 ⊗ |S∗|2 ≥ 0

⇔ [(T ∗ ⊗ S∗)(|T |2k ⊗ |S|2k)(T ⊗ S)]
1

k+1 − |T ∗|2 ⊗ |S∗|2 ≥ 0

⇔ (T ∗|T |2kT )
1

k+1 ⊗ (S∗|S|2kS)
1

k+1 − |T ∗|2 ⊗ |S∗|2 ≥ 0

⇔ |T ∗|2 ⊗ [(S∗|S|2kS)
1

k+1 − |S∗|2] + [(T ∗|T |2kT )
1

k+1 − |T ∗|2]⊗ (S∗|S|2kS)
1

k+1 ≥ 0.
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Thus the sufficiency is easily proved. Conversely, suppose that T ⊗ S belongs to ∗-A(k).
Without loss of generality, it is enough to show that T belongs to ∗-A(k). Since T ⊗ S is
∗-A(k), we obtain

(T ∗|T |2kT )
1

k+1 ⊗ (S∗|S|2kS)
1

k+1 ≥ |(T ⊗ S)∗|2.
Therefore, by Lemma 3.1, there exists a positive real number l for which

l(T ∗|T |2kT )
1

k+1 ≥ |T ∗|2

and
l−1(S∗|S|2kS)

1
k+1 ≥ |S∗|2.

Consequently, for arbitrary x, y ∈ H, using Lemma 2.1 we have

||T ||2 = ||T ∗||2 = sup{(|T ∗|2x, x) : ||x|| = 1}
≤ sup{(l(T ∗|T |2kT )

1
k+1 x, x) : ||x|| = 1}

≤ l sup{((T ∗|T |2kT )x, x)
1

1+k : ||x|| = 1}
≤ l||T ∗|T |2kT || 1

1+k

≤ l||T ||2

and

||S||2 = ||S∗||2 = sup{(|S∗|2y, y) : ||y|| = 1}
≤ sup{[l−1(S∗|S|2kS)

1
k+1 y, y] : ||y|| = 1}

≤ l−1 sup{[(S∗|S|2kS)y, y]
1

1+k : ||y|| = 1}
≤ l−1||S∗|S|2kS|| 1

1+k

≤ l−1||S||2.

Clearly, we must have l = 1, and hence T is a ∗-A(k) operator.
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关于拟-∗-A(k)算子的注记

左 飞 ,左红亮 ,李 雯

(河南师范大学数学与信息科学学院, 河南新乡 453007)

摘要: 本文引入了拟-∗-A(k)算子并研究其谱性质如下: (i) 如果T 是拟∗-A(k) 算子, 其中0 < k ≤ 1,

则谱映射定理对T 的本质近似点谱成立. (ii) 如果T 是拟∗-A(k) 算子, 其中0 < k ≤ 1, 则σja(T )\{0} =

σa(T )\{0}. 最后对∗-A(k) 算子的张量积性质也进行了讨论.

关键词: 拟-∗-A(k) 算子; 单值扩展性质; 联合近似点谱; 张量积
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