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Abstract: This paper studies the existence and multiplicity of positive solutions for (n−1, 1)–

type fractional conjugate boundary value problem. By virtue of Krasnoselskii–Zabreiko fixed point

theorem, several results are formulated in terms of some inequalities associated with Green’s func-

tion. The results obtained here improve some existing results in the literature.
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1 Introduction

In this paper, we study the existence and multiplicity of positive solutions for the frac-
tional boundary value problem

{
Dα

0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(i)(0) = u(1) = 0, 0 ≤ i ≤ n− 2,
(1.1)

where n ∈ N and n ≥ 3, α ∈ (n − 1, n] is a real number, Dα
0+ is the standard Riemann–

Liouville fractional derivative of order α and f ∈ C([0, 1]× [0,+∞), [0,+∞)).
In view of fractional differential equation’s modeling capabilities in engineering, science,

economy, and other fields, the last few decades has resulted in a rapid development of the
theory of fractional differential equation, see the recent books [1–5]. This may explain the
reason that the last few decades have witnessed an overgrowing interest in the research
of such problems, with many papers in this direction published. Recently, there are some
papers dealing with the existence of solutions (or positive solutions) of nonlinear fractional
differential equation by the use of techniques of nonlinear analysis (fixed point theorems,
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Leray–Schauder theory, upper and lower solution method, etc.), see for example [6–11] and
the references therein.

In [6], Zhao et al. considered the existence on multiple positive solutions for the non-
linear fractional differential equation boundary value problem

{
Dα

0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′(1) = 0,
(1.2)

where 2 < α ≤ 3 is a real number, Dα
0+ is the Riemann-Liouville fractional derivative.

By the properties of the Green function, the lower and upper solution method and fixed
point theorem, some new existence criteria for singular and nonsingular fractional differential
equation boundary value problem are established.

Meanwhile, we also note that conjugate boundary value problem of integer order differ-
ential equation has been extensively studied, see [12–15] and the references therein. However,
to the best of our knowledge, there is very little known about the existence of positive solu-
tions for fractional conjugate boundary value problem (1.1). To our knowledge, only [9–11]
were devoted to this direction. In [9], Yuan considered the semipositone conjugate fractional
boundary value problem (1.1) with a parameter λ and f : [0, 1]× [0,+∞) → (−∞,+∞) is a
sign-changing continuous function. He first given the properties of Green’s function of (1.1),
and then derived an interval of λ such that any λ lying in this interval, the semipositone
boundary value problem (1.1) has multiple positive solutions. In [10, 11], He adopted the
same method in [9] to discuss the existence of multiple positive solutions for (n − 1, 1)–
type semipositone conjugate and integral boundary value problems for coupled systems of
nonlinear fractional differential equations, respectively.

In this paper, we utilize Krasnoselskii–Zabreiko fixed point theorem to establish our
main results based on a priori estimates achieved by developing some inequalities associated
with fractional Green’s function. It is well known that a cone plays a very important role
involving the existence of solutions (positive solutions) for differential equations. It is difficult
to structure a cone for speciality of Green’s function for fractional equation. In this work,
we first study the properties of the Green’s function and obtain an inequality about it, and
then structure a cone associated with the inequality. Based on this, we obtained some easily
verifiable sufficient criteria to ensure the existence and multiplicity of positive solutions for
(1.1). Thus our results improve and extend the corresponding ones in [6–11].

2 Preliminaries

As is known to all, the Riemann–Liouville fractional derivative Dα
0+ is defined by

Dα
0+y(t) :=

1
Γ(n− α)

(
d
dt

)n ∫ t

0

y(s)ds

(t− s)α−n+1
,

where Γ is the gamma function and n = [α] + 1. For more details of fractional calculus, we
refer the reader to the recent books such as [1–5].
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Lemma 2.1 (see [9, Lemma 3.1]) Let f be determined by (1.1). Then the problem
(1.1) is equivalent to

u(t) =
∫ 1

0

G(t, s)f(s, u(s))ds,

where

G(t, s) :=
1

Γ(α)

{
tα−1(1− s)α−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1− s)α−1, 0 ≤ t ≤ s ≤ 1.
(2.1)

Here G(t, s) is called the Green’s function for the boundary value problem (1.1).
Lemma 2.2 (see [9, Lemma 3.2]) G(t, s) ∈ C([0, 1] × [0, 1], [0,+∞)) has the following

properties:
(R1) G(t, s) = G(1− s, 1− t), for (t, s) ∈ [0, 1]× [0, 1],
(R2) Γ(α)k(t)q(s) ≤ G(t, s) ≤ (α− 1)q(s), for (t, s) ∈ [0, 1]× [0, 1],
(R3) Γ(α)k(t)q(s) ≤ G(t, s) ≤ (α− 1)k(t), for (t, s) ∈ [0, 1]× [0, 1], where

k(t) =
tα−1(1− t)

Γ(α)
, q(s) =

s(1− s)α−1

Γ(α)
. (2.2)

Lemma 2.3 Let K1 := αΓ(α+1)
Γ(2α+2)

and K2 := α−1
Γ(α+2)

. Then the following inequality holds:

K1q(s) ≤
∫ 1

0

G(t, s)q(t)dt ≤ K2q(s),∀s ∈ [0, 1]. (2.3)

Let

E := C[0, 1], ‖u‖ := max
t∈[0,1]

|u(t)|, P := {u ∈ E : u(t) ≥ 0,∀t ∈ [0, 1]}.

Then (E, ‖ · ‖) becomes a real Banach space and P is a cone on E. We denote Bρ := {u ∈
E : ‖u‖ < ρ} for ρ > 0 in the sequel. Now, note that u solves (1.1) if and only if u is a fixed
point of the operator

(Au)(t) :=
∫ 1

0

G(t, s)f(s, u(s))ds.

Clearly, A : P → P is a completely continuous operator. Define the completely continuous
linear operators L : E → E by

(Lu)(t) :=
∫ 1

0

G(t, s)u(s)ds.

Then L is also a positive operator, i.e. L(P ) ⊂ P . Let ω = (α− 1)−1K1 and a cone on E as
follows

P0 =
{

u ∈ P :
∫ 1

0

u(t)q(t)dt ≥ ω‖u‖
}

.

Next, we shall prove that
Lemma 2.4 L(P ) ⊂ P0.
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Proof By (R2) of Lemma 2.2, we have

(Lu)(t) =
∫ 1

0

G(t, s)u(s)ds ≤ (α− 1)
∫ 1

0

q(s)u(s)ds.

On the other hand, from (2.3), we find
∫ 1

0

(Lu)(t)q(t)dt =
∫ 1

0

(∫ 1

0

G(t, s)u(s)ds

)
q(t)dt

≥K1

∫ 1

0

q(s)u(s)ds ≥ K1

α− 1
‖Lu‖

and thus
∫ 1

0
(Lu)(t)q(t)dt ≥ ω‖Lu‖, that is, L(P ) ⊂ P0. This completes the proof.

From now on, let r(L) denote the spectral radii of L. By Gelfand’s theorem, we could
easily have the following result.

Lemma 2.5 0 < r(L) ≤ K2.
Lemma 2.6 (see [16]) Let E be a real Banach space and W a cone of E. Suppose that

A : (BR\Br) ∩W → W is a completely continuous operator with 0 < r < R. If either
(1) Au 
 u for each ∂Br ∩W and Au � u for each ∂BR ∩W or
(2) Au � u for each ∂Br ∩W and Au 
 u for each ∂BR ∩W .

Then A has at least one fixed point on (BR\Br) ∩W .
For convenience, we now list our hypotheses on f . Let λ1 := 1/K1 > 0, λ2 := 1/K2 > 0.
(H1) lim inf

u→∞
f(t,u)

u
> λ1 uniformly with respect to t ∈ [0, 1].

(H2) lim sup
u→0+

f(t,u)
u

< λ2 uniformly with respect to t ∈ [0, 1].

(H3) lim inf
u→0+

f(t,u)
u

> λ1 uniformly with respect to t ∈ [0, 1].

(H4) lim sup
u→∞

f(t,u)
u

< λ2 uniformly with respect to t ∈ [0, 1].

(H5) There exists a number ρ > 0 such that the inequality f(t, u) ≤ ζρ holds whenever
u ∈ [0, ρ], ζ ∈ (0, (α− 1)−1Γ(α + 2)), and t ∈ [0, 1].

3 Existence of Positive Solutions

Theorem 3.1 Suppose that (H1) and (H2) are satisfied, then (1.1) has at least one
positive solution.

Proof By (H1), there exist ε > 0 and b > 0 such that f(t, u) ≥ (λ1 + ε)u − b for all
u ≥ 0 and t ∈ [0, 1]. This implies

(Au)(t) ≥ (λ1 + ε)
∫ 1

0

G(t, s)u(s)ds− b

∫ 1

0

G(t, s)ds (3.1)

for all u ∈ P . Let
M1 := {u ∈ P : u ≥ Au}.

We shall prove that M1 is bounded in P . Indeed, u ∈ M1, along with (3.1), leads to

u(t) ≥ (λ1 + ε)
∫ 1

0

G(t, s)u(s)ds− b

∫ 1

0

G(t, s)ds.
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Multiply by q(t) on both sides of the above and integrate over [0, 1] and use (2.3) to obtain

∫ 1

0

u(t)q(t)dt ≥ (λ1 + ε)λ−1
1

∫ 1

0

u(t)q(t)dt− bλ−1
2

∫ 1

0

q(t)dt

and thus
∫ 1

0
u(t)q(t)dt ≤ ε−1b(α−1)Γ(2α+2)

αΓ(α+1)Γ2(α+2)
for all u ∈ M1. Note that we have M1 ⊂ P0 by

Lemma 2.4. This together with the preceding inequality implies

‖u‖ ≤ ε−1b(α− 1)2Γ2(2α + 2)
α2Γ2(α + 1)Γ2(α + 2)

for all u ∈ M1, which establishes the boundedness of M1, as required. Taking R > supM1,
we obtain

u � Au, ∀u ∈ ∂BR ∩ P. (3.2)

On the other hand, by (H2), there exist r ∈ (0, R) and ε ∈ (0, λ2) such that f(t, u) ≤
(λ2 − ε)u for all u ∈ [0, r] and t ∈ [0, 1]. This implies

(Au)(t) ≤ (λ2 − ε)
∫ 1

0

G(t, s)u(s)ds (3.3)

for all u ∈ Br ∩ P . Let
M2 := {u ∈ Br ∩ P : u ≤ Au}.

Now, we claim M2 = {0}. Indeed, if there exist u0 ∈ ∂Br ∩ P , then this together with (3.3)
leads to

u0(t) ≤ (λ2 − ε)
∫ 1

0

G(t, s)u0(s)ds.

Multiply by q(t) on both sides of the preceding inequality and integrate over [0, 1] and use
(2.3) to obtain ∫ 1

0

u0(t)q(t)dt ≤ (λ2 − ε)λ−1
2

∫ 1

0

u0(t)q(t)dt

and thus
∫ 1

0
u0(t)q(t)dt = 0, whence u0(t) ≡ 0, contradicting u0 ∈ ∂Br ∩ P . Therefore,

u 
 Au,∀u ∈ ∂Br ∩ P. (3.4)

Now Lemma 2.6 indicates that the operator A has at least one fixed point on (BR \Br)∩P .
Therefore (1.1) has at least one positive solution, which completes the proof.

Theorem 3.2 If (H3) and (H4) are satisfied, then (1.1) has at least one positive solution.
Proof By (H3), there exist r > 0 and ε > 0 such that

f(t, u) ≥ (λ1 + ε)u, for all u ∈ [0, r] and t ∈ [0, 1]. (3.5)

This implies

(Au)(t) ≥ (λ1 + ε)
∫ 1

0

G(t, s)u(s)ds (3.6)
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for all u ∈ Br ∩ P . Let M3 := {u ∈ Br ∩ P : u ≥ Au}. We claim that M3 = {0}. Indeed,
if the claim is false, then there exists u1 ∈ ∂Br ∩ P such that u1 ≥ Au1. Combining with
(3.6), we obtain

u1(t) ≥ (λ1 + ε)
∫ 1

0

G(t, s)u1(s)ds.

Multiply by q(t) on both sides of the above and integrate over [0,1] and use (2.3) to obtain
∫ 1

0

u1(t)q(t)dt ≥ (λ1 + ε)λ−1
1

∫ 1

0

u1(t)q(t)dt

and thus
∫ 1

0
u1(t)q(t)dt = 0, whence u1(t) ≡ 0, contradicting u1 ∈ ∂Br ∩ P . Consequently,

u � Au,∀u ∈ ∂Br ∩ P. (3.7)

In addition, by (H4), there exist ε ∈ (0, λ2) and m > 0 such that

f(t, u) ≤ (λ2 − ε)u + m, for all u ≥ 0 and t ∈ [0, 1]. (3.8)

Let M4 := {u ∈ P : u ≤ Au}. We shall prove that M4 is bounded in P . Indeed, if u ∈ M4,
then we have

u(t) ≤ (Au)(t) =
∫ 1

0

G(t, s)f(s, u(s))ds

≤
∫ 1

0

G(t, s)((λ2 − ε)u(s) + m)ds = (λ2 − ε)(Lu)(t) + u0(t),

(3.9)

where u0 ∈ P \ {0} being defined by u0(t) = m
∫ 1

0
G(t, s)ds. Notice r((λ2 − ε)L) < 1 by

Lemma 2.5. This implies the inverse operator of I − (λ2 − ε)L exists and equals

(I − (λ2 − ε)L)−1 = I + (λ2 − ε)L + (λ2 − ε)2L2 + · · ·+ (λ2 − ε)nLn + · · · ,

from which we obtain (I − (λ2 − ε)L)−1(P ) ⊂ P . Applying this to (3.9) gives u ≤ (I −
(λ2 − ε)L)−1u0 for all u ∈ M4. This proves the boundedness of M4, as required. Choosing
R > sup{‖u‖ : u ∈ M4} and R > ρ, we have

u 
 Au, ∀u ∈ ∂BR ∩ P. (3.10)

Now Lemma 2.6 implies that A has at least one fixed point on (BR \ Br) ∩ P . Therefore
(1.1) has at least one positive solution, which completes the proof.

Theorem 3.3 Suppose that (H1), (H3) and (H5) hold, then (1.1) has at least two
positive solutions.

Proof By (H5), we have

‖Au‖ = max
t∈[0,1]

∫ 1

0

G(t, s)f(s, u(s))ds

≤(α− 1)ζρ

∫ 1

0

q(s)ds =
(α− 1)ζρ

Γ(α + 2)
< ρ = ‖u‖
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for all u ∈ ∂Bρ ∩ P , from which we obtain

u 
 Au,∀u ∈ ∂Bρ ∩ P. (3.11)

On the other hand, by (H1) and (H3) , we may take R > ρ and r ∈ (0, ρ) so that (3.2)
and (3.7) hold (see the proofs of Theorems 3.1 and 3.2). Combining (3.2), (3.7) and (3.11),
we conclude, together with Lemma 2.6, A has at least two fixed points, one on (BR\Bρ)∩P

and the other on (Bρ\Br) ∩ P . Hence (1.1) has at least two positive solutions in P\{0}.
This completes the proof.

4 Examples

In this section, we offer some interesting examples to illustrate our main results.
Example 4.1 Let f(t, u) = uα, t ∈ [0, 1], u ∈ R+, where α ∈ (0, 1) ∪ (1,∞). If α ∈

(1,∞), then (H1) and (H2) are satisfied. If α ∈ (0, 1), then (H3) and (H4) are satisfied. By
Theorems 3.1 or 3.2, (1.1) has at least one positive solution.

Example 4.2 Let

f(t, u) =





λ2

2
uα, 0 ≤ u ≤ 1,

2λ1u
α − 2λ1 +

λ2

2
, u ≥ 1,

where α ≥ 1. Now (H1) and (H2) are satisfied. By Theorem 3.1, (1.1) has at least one
positive solution.

Example 4.3 Let

f(t, u) =





2λ1u
β, 0 ≤ u ≤ 1,

λ2

2
uβ + 2λ1 − λ2

2
, u ≥ 1,

where 0 < β ≤ 1. Now (H3) and (H4) are satisfied. By Theorem 3.2, (1.1) has at least one
positive solution.

Example 4.4 Let f(t, u) = λ(ua +ub), where 0 < a < 1 < b, 0 < λ < (α−1)−1Γ(α+2).
(H1), (H3) and (H5) are satisfied with ρ = 1. By Theorem 3.3, (1.1) has at least two positive
solutions.
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(n− 1, 1)–型分数阶共轭边值问题的正解

王 勇 ,杨 阳

(江南大学理学院,江苏无锡 214122)

摘要: 本文研究了(n− 1, 1)–型分数阶共轭边值问题正解的存在性与多解性问题. 利用Krasnoselskii–

Zabreiko不动点定理, 结合与Green函数相关的不等式, 获得了几个存在性结果, 推广了一些现有的结

果.
关键词: 分数阶边值问题; Green函数; 正解; 不动点定理
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