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Abstract: In this paper, we are devoted to the converse comparison theorem for backward

stochastic differential equations (BSDEs, for short) driven by 1-dimensional Lévy processes. With

the similar method of the converse comparison theorem under g-expectation, we prove the converse

comparison theorem under f -expectation. Moreover, we provide a necessary and sufficient condition

for the Jensen’s inequality to hold under the f -expectation, the nonlinear expectation defined by

BSDEs driven by Lévy processes.
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1 Introduction

BSDEs were first introduced by Pardoux and Peng [12]. In 1997, Peng introduced the so
called g-expectation, a kind of nonlinear expectation, based on the solution of a BSDE driven
by a Brownian motion. This expectation is called nonlinear since the linearity property of
the usual (linear) expectation is violated while other properties of the (linear) expectation
hold in this nonlinear case. Since then, many researchers in related fields have explored
the properties of BSDEs and related g-expectations, see [1, 4], for example. Among the
results they obtained, the comparison theorem of real-valued BSDEs turns out to be one
of the cornerstone results in this theory. This comparison theorem was first established by
Peng [13] in the one dimensional case and later on generalized by many authors, see [11]. It
allows one to compare the solutions of two real-valued BSDEs whenever we can compare the
terminal conditions and the generators. Recently the comparison theorem was extended to
multidimensional case by Hu et al. [6]. An inverse problem is interesting, namely, if we can
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compare the solution of two BSDEs with the same terminal condition, can we compare the
generators? The result of Chen [3] can be thought as the first step in solving this theorem,
and then it was further developed in [2] and [8] among others.

The comparison theorem and the related converse comparison theorem are applicable to
mathematical finance. These results give a necessary and sufficient condition for the wealth
process to be nonnegative, and also yield several of the classical properties of utilities, see
[5]. In economics and finance, the nonlinear g-expectation can describe the attitude of the
investor, e.g., risk preference or risk aversion. In [10], the author introduces the g-EU theory.
The validity of this theory depends on the Jensen’s inequality for conditional g-expectation.
In [2], Briand gives a counter example to show that the g-expectation need not satisfy
Jensen’s inequality for most convex functions. This raises a natural question: under what
conditions will the Jensen’s inequality hold? Jiang [9] and Hu [7] explored the validity of
Jensen’s inequality for the g-expectation and provide necessary and sufficient conditions for
the Jensen’s inequality.

BSDEs and related g-expectations appear in many financial problems especially in the
contingent claim valuation. A more realistic case will be financial markets with jumps,
where jumps are caused by natural accidents, policy interference and so on. In a market
with jumps, a jump-diffusion process will more aptly describe the price of the risky asset,
and hence BSDEs driven by Lévy processes are used in the contingent claim valuation.
The existence and uniqueness of the solution for this kind of equation was first dealt in
[1]. In [15], the author studied BSDEs with jumps and establishes several basic properties
including a comparison theorem. That study also introduced a nonlinear expectation, called
the f -expectation, related to the BSDE studied there. However, the converse comparison
theorem for this kind of equation and the conditional Jensen’s inequality corresponding to
the nonlinear expectation are not obtained so far, to the best of our knowledge. Therfore,
our first purpose in this paper is to establish a converse comparison theorem for the BSDEs
driven by Lévy processes. Based on this converse comparison theorem, we will provide a
necessary and sufficient condition for the Jensen’s inequality to hold.

The rest of the paper is organized as follows. In Section 2, we recall the basic definitions
and the notations of BSDEs driven by Lévy processes. In Section 3, we prove the converse
comparison theorem for this kind of BSDEs. In Section 4, we give the sufficient and necessary
condition of the Jensen’s inequality for the f -expectation. The last section reflects on the
conclusions of this work and discusses about our future work.

2 BSDEs Driven by Lévy Process

This section sets up the notations, terminologies, and assumptions that will be in force
for the rest of this work. We fix a finite time horizon T < ∞ and the natural filtration
F = {Ft}t∈[0,T ], which is generated by two mutually independent processes {Bt}t∈[0,T ] and
{Nt}t∈[0,T ]. Here, {Bt}t∈[0,T ] is a d-dimensional Brownian motion, {Nt}t∈[0,T ] is a Lévy
process with its Poisson random measure µ(ds, dx) defined on [0, T ]×R∗, where R∗ = R\{0},
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the compensator of the Poisson random measure is ν(ds, dx) = λ(dx)ds, and µ̃(ds, dx) =
µ(ds, dx)−ν(ds, dx) is a martingale measure for all A ∈ B(R∗), where λ(A) < ∞. Moreover,
λ is a σ-finite measure defined on B(R∗), such that

∫
R∗ (1 ∧ x2)λ(dx) < ∞. We shall now

introduce some basic spaces that we will be working with.

S2 =
{

càdlàg process ψ; E

(
sup

0≤t≤T
|ψt|2

)
< ∞

}
,

L2(µ̃) =
{
P ⊗ B(R∗)−measurable process v; E

(∫ T

0

∫

R∗
|vs(x)|2 λ(dx)ds

)
< ∞

}
,

the set of Ft-progressively measurable R-valued processes, where P denotes the σ-field of
predictable sets on [0, T ]× Ω, and

L2(B) =
{

predictable process θ; E

(∫ T

0

‖ θs ‖2 ds

)
< ∞

}
,

where L2(B) denotes the square integrable predictable processes with respect to the Brow-
nian filtration.

Let η ∈ L2(FT ) be the terminal condition. We consider

f : Ω× [0, T ]×R×Rd × L2(R∗,B(R∗), λ;R) → R.

Definition 2.1 A solution of the equation

Yt = η +
∫ T

t

f(s, Ys, Zs, Us)ds−
∫ T

t

ZsdBs −
∫ T

t

∫

R∗
Us(x)µ̃(ds, dx) (2.1)

with parameters (f, η) is a triple of processes (Yt, Zt, Ut) ∈ S2 × L2(W ) × L2(µ̃) satisfying
that equation for any t ∈ [0, T ].

Next we consider the existence and uniqueness of the solution.
Lemma 2.2 (see [15]) There exists a unique solution for equation (2.1) in S2×L2(W )×

L2(µ̃) provided the generator f satisfies the following conditions:
(i) E

[∫ T

0
|f(s, 0, 0, 0)|2 ds

]
< ∞;

(ii) f is Lipschitz continuous w.r.t y, z with the Lipschitz constant K;
(iii) there exist constants −1 < C1 ≤ 0 and C2 ≥ 0 such that for any

y ∈ R, z ∈ Rd, u, u′ ∈ L2(R∗,B(R∗), λ;R),

we have
f(t, y, z, u)− f(t, y, z, u′) ≤

∫

R∗
(u(x)− u′(x))γy,z,u,u′

t (x)λ(dx),

where γy,z,u,u′
t : Ω× [0, T ]×R∗ → R is P × B(R∗)- measurable and satisfies

C1(1 ∧ x) ≤ γy,z,u,u′
t ≤ C2(1 ∧ x).
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The last condition (iii) implies that f is Lipschitz continuous in u, with Lipschitz con-
stant denoted by A, and

|f(t, y, z, u)− f(t, y, z, u′)| ≤ C

∫

R∗
|u(x)− u′(x)| (1 ∧ |x|)λ(dx)

≤ A

(∫

R∗
|u(x)− u′(x)|2λ(dx)

) 1
2

.

We shall now recall a comparison theorem for BSDE driven by a Lévy process, see [15].
Let (Y i, Zi, U i) (i = 1, 2) be two solutions of our equation (2.1) associated respectively with
(η1, f1) and (η2, f2). Then, we have the following

Theorem 2.3 (see [15]) Assume that the conditions in Lemma 2.2 are fulfilled for η1,
η2, f1 and f2. If η1 ≤ η2 a.s., and f1(t, Y 1

t , Z1
t , U1

t ) ≤ f2(t, Y 1
t , Z1

t , U1
t ), dt × dP a.e., then

Y 1
t ≤ Y 2

t for t ∈ [0, T ] a.s.
Definition 2.4 Consider a BSDE driven by a Lévy process with generator f , satisfying
(i) f(s, y, 0, 0) = 0,∀y ∈ R;
(ii) f is Lipschitz continuous in y, z;
(iii) f satisfies the third condition in Lemma 2.2.
For any η fixed in L2(Ω,FT , P ), we denote the unique solution of the related BSDE by

(Y η,f,T
t , Zη,f,T

t , Uη,f,T
t ). Let εf (η) = Y η,f,T

0 denote the initial value of the solution. Then εf

is a non-linear expectation called f -expectation.
Lemma 2.5 Let, for any ξ ∈ L2(Ω,FT , P ), f satisfies the conditions in Definition 2.4.

Then there exists a unique random variable η ∈ L2(Ω,FT , P ), such that

εf [IAξ] = εf [IAη], ∀A ∈ Ft.

This η ic called the conditional f -expectation of ξ and is denoted by εf [ξ | Ft]. Moreover,
εf [ξ | Ft] = Y ξ,f,T

t is the solution of equation (2.1) at time t.

3 Converse Comparison Theorem

In this section, we present one of the main result of this paper, namely, the converse
comparison theorem for the solutions of BSDEs driven by Lévy processes.

Suppose the triple (Y, Z, U) is the solution of the BSDE (2.1) and the generator f

satisfies the following
Assumption 3.1 For all (y, p, q), almost all sample paths t → f(t, y, p, q) are continu-

ous.
To establish our converse comparison theorem, we need the following two lemmas.
Lemma 3.2 Let (Y, Z, U) be the solution of BSDE (2.1). We then have

E

[
sup

t≤s≤T
eβs|Ys|2 | Ft

]
+ E

[∫ T

t

eβsZ2
s ds | Ft

]
+ E

[∫ T

t

∫

R∗
eβsU2

s λ(dx)ds | Ft

]

≤ CE

[
eβT η2 +

(∫ T

t

eβs/2|f(s, 0, 0, 0)|ds

)2

| Ft

]
,
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where C is a positive constant and β = 2K + 4K2, (recall that K is the Lipschitz constant
of f with respect to y and z).

Proof For any constant β, it follows from Ito’s formula that

eβsY 2
s +

∫ T

s

eβuZ2
udu +

∫ T

s

∫

R∗
eβuU2

u(x)µ(dx, du)

= eβT η2 − β

∫ T

s

eβu|Yu|2du + 2
∫ T

s

eβuYuf(u, Yu, Zu, Uu)du

−2
∫ T

s

eβuYuZudBu − 2
∫ T

s

∫

R∗
eβuYuUu(x)µ̃(du, dx). (3.1)

Also,

2
∫ T

s

eβuYuf(u, Yu, Zu, Uu)du

≤ 2
∫ T

s

eβu|Yu||f(u, Yu, Zu, Uu)|du

≤ 2
∫ T

s

eβu|Yu||f(u, Yu, Zu, Uu)− f(u, 0, 0, 0)|du + 2
∫ T

s

eβu|Yu||f(u, 0, 0, 0)|du

≤ 2K

∫ T

s

eβu|Yu|
[
|Yu|+ |Zu|+

(∫

R∗
|Uu(x)|2λ(dx)

)1/2
]

du + 2
∫ T

s

eβu|Yu||f(u, 0, 0, 0)|du

≤ 2K

∫ T

s

eβu|Yu|2du + 4K2

∫ T

s

eβu|Yu|2du +
1
2

∫ T

s

eβu|Zu|2du

+
1
2

∫ T

s

∫

R∗
eβu|Uu(x)|2λ(dx)du + 2

∫ T

s

eβu|Yu||f(u, 0, 0, 0)|du . (3.2)

Taking β = 4K2 + 2K, we see from (3.1) and (3.2), that

eβs|Ys|2 +
1
2

∫ T

s

eβu|Zu|2du +
∫ T

s

∫

R∗
eβu|Uu(x)|2µ(dx, du)

−1
2

∫ T

s

∫

R∗
eβu|Uu(x)|2λ(dx)du

≤ eβT η2 − 2
∫ T

s

eβuYuZudBu − 2
∫ T

s

∫

R∗
eβu|Uu(x)|2µ̃(dx, du)

+2
∫ T

s

eβu|Yu||f(u, 0, 0, 0)|du. (3.3)

In (3.3), let s = t and take the conditional expectation to get

eβtY 2
t +

1
2
E

[∫ T

t

eβuZ2
udu | Ft

]
+

1
2
E

[∫ T

t

∫

R∗
eβuU2

u(x)λ(dx)du | Ft

]

≤ E[eβT η2 | Ft] + 2E

[∫ T

t

eβu|Yu||f(u, 0, 0, 0)|du | Ft

]
. (3.4)
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It follows from equation (3.1) that

eβsY 2
s ≤ eβT η2 − β

∫ T

s

eβuY 2
u du + 2

∫ T

s

eβuYuf(u, Yu, Zu, Uu)du

−2
∫ T

s

eβuYuZudBu − 2
∫ T

s

∫

R∗
eβuYuUu(x)µ̃(du, dx) .

The following estimate holds by equation (3.2).

eβsY 2
s ≤ eβT η2 − 2

∫ T

s

eβuYuZudBu − 2
∫ T

s

∫

R∗
eβuYuUu(x)µ̃(du, dx)

+2
∫ T

t

eβu|Yu||f(u, 0, 0, 0)|du +
1
2

∫ T

t

∫

R∗
eβuU2

u(x)λ(dx)du .

Therefore

sup
t≤s≤T

eβsY 2
s ≤ eβT η2 − 2

∫ T

t

eβuYuZudBu − 2
∫ T

t

∫

R∗
eβuYuUu(x)µ̃(du, dx)

+2 sup
t≤s≤T

∣∣∣∣
∫ s

t

eβuYuZudBu

∣∣∣∣ + 2 sup
t≤s≤T

∣∣∣∣
∫ s

t

∫

R∗
eβuYuUu(x)µ̃(du, dx)

∣∣∣∣

+
1
2

∫ T

t

∫

R∗
eβuU2

u(x)λ(dx)du + 2
∫ T

t

eβu|Yu||f(u, 0, 0, 0)|du ,

and consequently

E

[
sup

t≤s≤T
eβsY 2

s | Ft

]
≤ E[eβT η2 | Ft] + 2E

[
sup

t≤s≤T

∣∣∣∣
∫ s

t

eβuYuZudBu

∣∣∣∣ | Ft

]

+2E

[
sup

t≤s≤T

∣∣∣∣
∫ s

t

∫

R∗
eβuYuUu(x)µ̃(du, dx)

∣∣∣∣ | Ft

]

+
1
2
E

[∫ T

t

∫

R∗
eβuU2

u(x)λ(dx)du | Ft

]

+2E

[∫ T

t

eβu|Yu||f(u, 0, 0, 0)|du | Ft

]
.

By the Burkholder-Davis-Gundy inequality,

E

[
sup

t≤s≤T
eβsY 2

s | Ft

]
≤ E[eβT η2 | Ft] + 2CE

[(∫ T

t

e2βuY 2
u Z2

udu

)1/2

| Ft

]

+
1
2
E

[∫ T

t

∫

R∗
eβu|Uu(x)|2λ(dx)du | Ft

]

+2E

[∫ T

t

eβu|Yu||f(u, 0, 0, 0)|du | Ft

]

+2CE

[∣∣∣∣
∫ T

t

∫

R∗
e2βuY 2

u U2
uµ(du, dx)

∣∣∣∣
1/2

| Ft

]

≤ E[eβT η2 | Ft] +
1
8
E

[
sup

t≤s≤T
eβsY 2

s | Ft

]
+ CE

[∫ T

t

|Zu|2eβudu | Ft

]
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+
1
4
E

[
sup

t≤s≤T
eβsY 2

s | Ft

]
+ CE

[∫ T

t

∫

R∗
eβu|Uu(x)|2du | Ft

]

+CE

[(∫ T

t

eβu/2|f(u, 0, 0, 0)|du

)2

| Ft

]
. (3.5)

Then, by estimates (3.4) and (3.5), we have

E

[
sup

t≤s≤T
eβsY 2

s | Ft

]
+ E

[∫ T

t

eβuY 2
u du | Ft

]
+ E

[∫ T

t

∫

R∗
eβuU2

u(x)λ(dx)du | Ft

]

≤ CE

[
eβT η2 +

(∫ T

t

eβs/2|f(s, 0, 0, 0)|ds

)2

| Ft

]
.

For any fixed p, q ∈ R, put

Xt,x
s = x + p(Bs −Bt) + q

∫ t

s

∫

R∗
1 ∧ |x|µ̃(du, dx) ,

nYs = y +

[
p(Bt+ 1

n
−Bt) + q

∫ t+ 1
n

t

∫

R∗
1 ∧ |x|µ̃(du, dx)

]
+

∫ t+ 1
n

s

f(u, nYu, nZu, nUu)du

−
∫ t+ 1

n

s

nZudBu −
∫ t+ 1

n

s

∫

R∗

nUu(x)µ̃(du, dx) .

Lemma 3.3 Supposing E[sup0≤t≤T |f(t, 0, 0, 0)|2] is finite, we have

n(nYt − y) −→ f(x, y, p, q), in L2 sense, as n →∞.

Proof For any fixed (t, y, p, q) and t ≤ s ≤ t +
1
n

, put

ñYs = nYs − [p(Bs −Bt) + q

∫ s

t

∫

R∗
1 ∧ |x|µ̃(du, dx)],

ñZs = nZs − p,

ñUs = nUs − q.

Then dñYs = dnYs − pd(Bs −Bt)− qd
∫ s

t

∫
R∗ 1 ∧ |x|µ̃(du, dx), that is

ñYs =
∫ t+ 1

n

s

f(u, nYu, nZu, nUu)du−
∫ t+ 1

n

s

(nZs − p)dBs −
∫ t+ 1

n

s

∫

R∗
(nUu(x)− q)µ̃(du, dx)

=
∫ t+ 1

n

s

f(u, ñYu + p(Bu −Bt) + q

∫ u

t

∫

R∗
1 ∧ |x|µ̃(dv, dx), ñZu + p, ñUu + q)du

−
∫ t+ 1

n

s

ñZsdBs −
∫ t+ 1

n

s

∫

R∗

ñUu(x)µ̃(du, dx).

By Lemma 3.2 and E[sup0≤t≤T |f(t, 0, 0, 0)|2] is finite, we have the following estimation

E

[
sup

t≤s≤t+ 1
n

|ñYs|2 | Ft

]
+ E

[∫ t+ 1
n

t

|ñZs|2ds | Ft

]
+ E

[∫ t+ 1
n

t

∫

R∗
|ñUs|2λ(dx)ds | Ft

]
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≤ Ceβ/nE




(∫ t+ 1
n

t

f(u, y + p(Bu −Bt) + q

∫ u

t

∫

R∗
1 ∧ |x|µ̃(dv, dx), p, q)du

)2

| Ft




≤ Ceβ/nE

[(∫ t+ 1
n

t

∣∣∣∣f(u, y + p(Bu −Bt) + q

∫ u

t

∫

R∗
1 ∧ |x|µ̃(dv, dx), p, q)− f(u, 0, 0, 0)

∣∣∣∣

+|f(u, 0, 0, 0)|du)2 | Ft

]

≤ CKeβ/n 1
n

E

[∫ t+ 1
n

t

[
|y + p(Bu −Bt) + q

∫ u

t

∫

R∗
1 ∧ |x|µ̃(dv, dx)|2 + q2 + p2

]
du (3.6)

+
∫ t+ 1

n

t

|f(u, 0, 0, 0)|2du | Ft

]

≤ CKeβ/n 1
n

(
p2 + q2 + y2

n
+

p2

2
1
n2

+ Kq2 1
n

)
+

1
n

Ceβ/nE

[∫ t+ 1
n

t

|f(u, 0, 0, 0)|2du | Ft

]

≤ Cy,p,q
1
n2

, (3.7)

where Cy,p,q is a constant depending on y, p and q.
Since

n(nYt − y) = nE

[∫ t+ 1
n

t

f(u, nYu, nZu, nUu)du | Ft

]

= nE

[∫ t+ 1
n

t

f(u, y + p(Bu −Bt) + q

∫ u

t

∫

R∗
1 ∧ |x|µ̃(dv, dx), p, q)du | Ft

]
+ Rn,

where

Rn = nE

[∫ t+ 1
n

s

f(u, y + ñYu + p(Bu −Bt) + q

∫ u

t

∫

R∗
1 ∧ |x|µ̃(dv, dx), ñZu + p, ñUu + q)du

−
∫ t+ 1

n

t

f(u, y + p(Bu −Bt) + q

∫ u

t

∫

R∗
1 ∧ |x|µ̃(dv, dx), p, q)du | Ft

]
,

we then get

|Rn| ≤ nKE

[∫ t+ 1
n

t

|ñYu|+ |ñZu|+
(∫

R∗
|ñUu|2λ(dx)

)1/2

du | Ft

]
.

Now, by inequality (3.6),

E[|Rn|2] ≤ n2K2E




(∫ t+ 1
n

t

|ñYu|+ |ñZu|+
(∫

R∗
|ñUu|2λ(dx)

)1/2

du

)2



≤ nK2E

[∫ t+ 1
n

t

(
|ñYu|2 + |ñZu|2 +

∫

R∗
|ñUu|2λ(dx)

)
du

]
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≤ nK2E

[
1
n

sup
t≤s≤t+ 1

n

|ñYs|2 +
∫ t+ 1

n

t

|ñZu|2du +
∫ t+ 1

n

t

∫

R∗
|ñUu|2λ(dx)du

]

≤ Cy,p,q(
1
n2

+
1
n

)

−→ 0.

Let

An = nE

[
f(u, y + p(Bu −Bt) + q

∫ u

t

∫

R∗
1 ∧ |x|µ̃(dv, dx), p, q)du | Ft

]
− f(t, y, p, q).

Then

|An| ≤ nE

[
f(u, p(Bu −Bt) + q

∫ u

t

∫

R∗
1 ∧ |x|µ̃(dv, dx), p, q)− f(u, y, p, q)du | Ft

]

+nE

[∫ t+ 1
n

t

|f(t, y, p, q)− f(u, y, p, q)|du | Ft

]
,

and

E[|An|2] ≤ KE

[∫ t+ 1
n

t

(
p2(Bu −Bt)2 + q2

(∫ u

t

∫

R∗
1 ∧ |x|µ̃(dv, dx)

)2

+ p2 + q2

)
du

]

+KE

[∫ t+ 1
n

t

|f(t, y, p, q)− f(u, y, p, q)|2du

]

= I + II,

where

I = KE

[∫ t+ 1
n

t

(
p2(Bu −Bt)2 + q2

(∫ u

t

∫

R∗
1 ∧ |x|µ̃(dv, dx)

)2

+ p2 + q2

)
du

]

II = KE

[∫ t+ 1
n

t

|f(t, y, p, q)− f(u, y, p, q)|2du

]
.

Obviously I ≤ K
p2

2
1
n2

+K
q2

2
1
n

+(p2+q2)
1
n
−→ 0. By Assumption 3.1, we easily see II → 0,

and hence the result holds.
Now, here is our converse comparison theorem.
Theorem 3.4 Let f1(t, y, p, q) and f2(t, y, p, q) satisfy the conditions in Lemma 2.2

and in Definition 2.4. ∀η ∈ L2(FT ), denote Y 1
t (η) = Y η,f1,T

t , Y 2
t (η) = Y η,f2,T

t . If ∀t ∈ [0, T ],
we have Y 1

t (η) ≤ Y 2
t (η), P−a.s., then ∀(t, y, p, q), f1(t, y, p, q) ≤ f2(t, y, p, q) holds P−a.s..

Proof For any fixed (t, y, p, q), define

ηn := y + p(Bt+ 1
n
−Bt) + q

∫ t+ 1
n

t

∫

R∗
1 ∧ |x|µ̃(ds, dx).
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By Lemma 3.3, we know n(Y i
t (ηn)− y) −→ fi(t, y, p, q), i = 1, 2 in L2 sense.

On the other hand, n(Y 1
t (ηn)− y) ≤ n(Y 2

t (ηn)− y), so

f1(t, y, p, q) ≤ f2(t, y, p, q), P − a.s..

By Assumptions 3.1, ∀(t, y, p, q), f1(t, y, p, q) ≤ f2(t, y, p, q) holds P−a.s..

4 Jensen’s Inequality

In this section, we give a necessary and sufficient condition for the Jensen’s inequality
to hold under the f -expectation that has been defined in Section 2. Indeed, we appeal to
the Converse Comparison Theorem to prove this basic inequality.

Theorem 4.1 Suppose f satisfies the conditions in Lemma 2.2, Definition 2.4, and
Assumption 3.1. Then the following statements are equivalent

(1) P−a.s f dose not depend on y, and for ∀λ ∈ R and (t, p, q),

f(t, λp, λq) ≥ λf(t, p, q);

(2) the conditional Jensen’s inequality holds, that is, ∀η ∈ L2(FT ) and a convex function
ψ defined on R, the following inequality holds εf [ψ(η) | Ft] ≥ ψ(εf [η | Ft]), P − a.s..

Proof (1) =⇒ (2) Let ϕ(x) = λx + u, λ 6= 0. Let (Y, Z, U) denote the solution of the
following BSDE

Yt = η +
∫ T

t

f(s, Zs, Us)ds−
∫ T

t

ZsdBs −
∫ T

t

∫

R∗
Us(x)µ̃(ds, dx),

and (Y ′, Z ′, U ′) the solution of the following BSDE

Y ′
t = ϕ(η) +

∫ T

t

f ′(s, Z ′s, U
′
s)ds−

∫ T

t

Z ′sdBs −
∫ T

t

∫

R∗
U ′

s(x)µ̃(ds, dx),

where f ′(t, p, q) = λf(t, p
λ
, q

λ
). Obviously, Y ′

t = λYt + u,Z ′ = λZ, U ′ = λU and

Yt = εf [η | Ft], Y ′
t = εf ′ [ϕ(η) | Ft].

For P−a.s., f(t, p, q) ≥ f ′(t, p, q), by comparison Theorem 2.3, we have

εf [ϕ(η) | Ft] ≥ εf ′ [ϕ(η) | Ft], P − a.s.,

and εf ′ [ϕ(η) | Ft] = Y ′
t = λYt + u = λεf [η | Ft] + u = ϕ[εf (η | Ft)]. For any convex function

ψ, there exists a countable set D on R2 such that

ψ(x) = sup
(λ,u)∈D

(λx + u).

For any (λ, u) ∈ D,

εf [ψ(η) | Ft] = εf [ sup
(λ,u)∈D

(λη + u) | Ft] ≥ λεf [η | Ft] + u, P − a.s..
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For D is a countable set,

εf [ψ(η) | Ft] ≥ sup
(λ,u)∈D

[λεf [η | Ft] + u] = ψ(εf [η | Ft]), P − a.s..

(2) =⇒ (1) Let (Y, Z, U) be the solution of the following BSDE:

Yt = η +
∫ T

t

f(s, Ys, Zs, Us)ds−
∫ T

t

ZsdBs −
∫ T

t

∫

R∗
Us(x)µ̃(ds, dx),

and (Y ′, Z ′, U ′) be the solution of the following BSDE

Y ′
t = ϕ(η) +

∫ T

t

f ′(s, Y ′
s , Z ′

s, U
′
s)ds−

∫ T

t

Z ′sdBs −
∫ T

t

∫

R∗
U ′

s(x)µ̃(ds, dx),

where f ′(t, y, p, q) = λf(t,
y − u

λ
, p

λ
, q

λ
), and ϕ(x) = λx + u is a convex function.

As above, we have

εf [ϕ(η) | Ft] ≥ ϕ(εf [η | Ft]) = λYt + u = Y ′
t = εf ′ [ϕ(η) | Ft].

By Theorem 3.4, ∀(t, y, p, q), we have f(t, y, p, q) ≥ f ′(t, y, p, q), P−a.s., that is

f(t, λy + u, λp, λq) ≥ λf(t, y, p, q).

Let λ = 1. Then, f(t, y +u, p, q) ≥ f(t, y, p, q), that means f dose not depend on y, and
we can easily get that f(t, λp, λq) ≥ λf(t, p, q).

5 Discussion

BSDEs driven by Lévy processes are widely used in mathematical finance, especially in
the contingent claim evaluation in incomplete market. In this paper, we give the converse
comparison theorem for the BSDEs driven by Lévy processes. The sufficient and necessary
condition is obtained via the converse comparison theorem. These two results are the gener-
alization of the corresponding results for BSDEs driven by Brownian motion, and they can
be used in contingent claim evaluation, which has been mentioned in Section 1. There are
many elementary problems to be solved for the f -expectation, such as up-crossing inequality
etc.
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Lévy 过程驱动的BSDE的反比较定理与Jensen不等式

李 标1 ,徐 静2, 张 波3

(1. 中南财经政法大学金融学院, 湖北 武汉 430073)

(2. 重庆大学经济与管理学院, 重庆 400030)

(3. 中国人民大学统计学院, 北京 100872)

摘要: 本文研究了由一维Lévy过程驱动的倒向随机微分方程（BSDE）的反比较定理. 利用一般g -期

望下BSDE的反比较定理的证明方法, 推导出了一般f -期望下BSDE的反比较定理, 并给出了一般f -期望

下Jensen不等式成立的充分必要条件.
关键词: 反比较定理; Lévy过程; Jensen不等式
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